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ABSTRACT

Metabolic features of the tumor microenvironment (TME) antagonize an-
titumor immunity. We hypothesized that T cell–infiltrated (Thi) tumors
with a known antigen should exhibit superior clinical outcomes, though
some fare worse given unfavorable metabolic features leveraging T cell–
infiltrated (Thi), human papillomavirus–related (HPV+) head and neck
squamous cell carcinomas (HNSC) to test this hypothesis. Expression of
2,520 metabolic genes was analyzed among Thi HPV+ HNSCs stratified by
high-risk molecular subtype. RNA sequencing (RNA-seq) data from The
Cancer Genome Atlas (TCGA; 10 cancer types), single-cell RNA-seq data,
and an immunotherapy-treated melanoma cohort were used to test the as-
sociation between metabolic gene expression and clinical outcomes and
contribution of tumor versus stromal cells to metabolic gene expression.
Polyamine (PA) metabolism genes were overexpressed in high-risk, Thi
HPV+ HNSCs. Genes involved in PA biosynthesis and transport were asso-
ciatedwithT-cell infiltration, recurrent or persistent cancer, overall survival
status, primary site, molecular subtype, andMYC genomic alterations. PA
biogenesis gene sets were associated with tumor-intrinsic features while

myeloid cells in HPV+ HNSCs were enriched in PA catabolism, regula-
tory, transport, putrescine, and spermidine gene set expression. PA gene
set expression also correlated with IFNγ or cytotoxic T-cell single-sample
gene set enrichment analysis (ssGSEA) scores across TCGA tumor types.
PA transport ssGSEA scores were associated with poor survival whereas
putrescine ssGSEA scores portended better survival for several tumor
types. Thi melanomas enriched in PA synthesis or combined gene set ex-
pression exhibited worse anti-PD-1 responses. These data address hurdles
to antitumor immunity warranting further investigation of divergent PA
metabolism in the TME.

Significance: Despite the presence of tumor-infiltrating lymphocytes and
antigen, antitumor immunity is often insufficient in tumor control. We
leverage HPV-related head and neck cancers to identify metabolic chal-
lenges to antitumor immune responses. PA metabolism is associated with
tumor-intrinsic features while the myeloid compartment exhibits enriched
PA regulatory gene expression.

Introduction
Features promoting antitumor immunity include the presence of cytotoxic
tumor-infiltrating lymphocytes (TIL) and antigen (e.g., viral, tumor neoanti-
gens; refs. 1–4). However, not all immune cell–infiltrated, immunogenic tumors
exhibit favorable antitumor immunity. The tumor microenvironment (TME)
diminishes antitumor T-cell function through recruitment of tolerogenic cell
types, nutrient depletion, and the creation of an acidic, hypoxic microenviron-
ment (5).Metabolism affects immune checkpoint inhibition (ICI) response. ICI
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may be most effective in highly glycolytic tumors (6). Therefore, we hypothe-
sized that metabolic adaptations diminish antitumor immunity in an otherwise
favorable TME.

To test this hypothesis, we selected a cohort of human papillomavirus (HPV)-
associated head and neck squamous cell carcinomas (HNSC) characterized
by CD8+ T-cell infiltration and virus-derived tumor-associated antigens (4).
By leveraging the immune characteristics of these tumors, we surmised that
tumor-intrinsic or -extrinsic features of the TME diminish the antitumor
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immune response in some, but not all tumors, focusing onmetabolic features of
the TME.We leveraged genomic atlases to test our hypothesis.We validated our
findings across 10 different cancers from The Cancer Genome Atlas (TCGA)
and immunotherapy-treated melanomas.

Materials and Methods
Clinical Data Collection
TCGA level 1 clinical data were abstracted from FireBrowse (http://firebrowse.
org/). Data for the HNSC samples were derived from: gdac.broadinstitute.org_
HNSCC.Merge_Clinical.Level_1.2016012800.0.0/HNSCC.clin.merged.txt. The
HPV status was identified using the variable: patient.hpv_test_results.hpv_
test_result.hpv_status (levels: positive, negative, indeterminate).

RNA Sequencing and Alignment
Sequencing and alignment of TCGA data have been described previously
(https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_
mRNA_Pipeline/). TCGA RSEM expression data were obtained through Fire-
Browse. File names from each cancer site are documented in Supplementary
Table S17.

RNA Expression Data Preparation and Analysis
RSEM expression data were extracted and preprocessed by excluding genes
with zero reads across tumors. Genes with detectable reads in at least 50% of
samples were included. We used the variance stabilizing transformation and
normalization function in DESeq2 (RRID: SCR_015687) to normalize data
for use in downstream analyses (7). Differential expression (DE) analysis was
performed using DESeq2 on RSEM data rounded to the nearest integer. Net-
work analysis was performed using Shiny GAM: integrated analysis of genes
and metabolites (https://artyomovlab.wustl.edu/shiny/gam/; ref. 8). Hierarchi-
cal clustering was performed with the ComplexHeatmap R package (RRID:
SCR_017270) using the “ward.D” clustering method and “Pearson” distance on
the rows and columns (9).

T-Cell Receptor Diversity Analysis
T-cell receptor (TCR) diversity was assayed and reported in the Supplemen-
tary Data of Thorsson and colleagues (10) We used the Shannon entropy and
Richness variables from TCGA HNSC data to test the relationship between
polyamine (PA) pathway gene set expression and TCR diversity.

Single-Sample Gene Set Enrichment Analysis
Single-sample gene set enrichment analysis (ssGSEA; v10.0.3) was implemented
in GenePattern (RRID:SCR_003201) to estimate PA pathway and immune gene
set scores (Supplementary Table S1; ref. 11). Default parameters were used with
rank normalization for all ssGSEAs.

Cellular Abundance Estimates from Bulk
RNA-sequencing Data
We utilized CIBERSORT in “Impute Cell Expression” mode on TCGA tran-
scripts per million (TPM) RNA sequencing (RNA-seq) data from patients with
HNSC to infer relative cellular proportions. For the CIBERSORT analysis, we
used a HNSC reference single-cell (sc) RNA-seq dataset (12) in TPM normal-
ization space to define proportions of tumor cells, macrophages, fibroblasts,
CD8+, and CD4+ T cells in bulk RNA-seq data. TCGA HNSC TPM RNA-seq
data were used for this analysis to keep the bulk RNA-seq and reference matrix
in the same normalization space per CIBERSORT recommendations.

T-Cell Infiltration Stratification
T-cell infiltration scores from ssGSEA were generated using CD8+ T-cell
and cytotoxic T cell (CTL) gene sets described by Bindea and colleagues
(ref. 13; Supplementary Table S1). We scaled ssGSEA scores from each gene set.
Samples were dichotomized [T cell–enriched (Thi) vs. T cell–depleted (Tlo)]
using an upper quartile cutoff of ssGSEA scores for both CTL and CD8+

T-cell gene sets (Supplementary Table S2). Tumors in the highest ssGSEA score
quartile for either the CD8+ T cell or CTL signature were categorized as Thi
and the remainder Tlo (Supplementary Table S2). ssGSEA stratification of
T-cell infiltration status was consistent with inferred CD8+ T-cell abundance
from computational microdissection with CIBERSORT (Wilcoxon rank-sum
of CD8+ T-cell abundance between Thi and Tlo, P < 0.001; Supplementary
Fig. S1; ref. 14). ssGSEA stratification was used for all downstream analyses for
(i) comparability with other studies using the Bindea immune cell gene sets
to infer immune cell responses; and (ii) to use a consistent, gene set–driven
approach, agnostic to the tissue of origin.

Metabolic Gene Curation
We defined a set of 2,520 genes implicated in metabolism using gene sets from
Broad Institute’sMolecular Signature Database (MSigDB; ref. 15) and Shaul and
colleagues (16).

Survival Analysis
We utilized univariate Cox regression analysis to test associations between PA
pathway scores and risk of mortality.

Molecular Subtype Classification
To define molecular subtypes using TCGA HNSC expression data, we utilized
an R script kindly provided by the Fertig and Seiwert labs based on prior work
which implements a correlation-based nearest centroid technique (17). Sub-
types were assigned for the entire TCGA HPV+ and HPV− HNSC dataset
including basal, classical, or mesenchymal subtypes.

HPV Integration
Using data from Parfenov and colleagues, we assigned TCGA HPV+ HNSC
viral integration status (18).

Tumor Mutation Burden
Tumor mutation burden (TMB) data from TCGA MC3 (19) were extracted
using maftools (20). We defined high TMB as ≥10 mutations/megabase pair
(Mbp) and low TMB as <10 mutations/Mbp.

scRNA-Seq Analysis
HPV+ HNSC TIL data from Cillo and colleagues (21) were downloaded, pre-
processed, normalized, and scaled using Seurat (v4.0.1; refs. 22, 23). Data were
mapped onto a single-cell reference dataset to identify immune cell subsets
(22) which were used to evaluate expression of PA pathway enzymes across
cell types. The “AddModuleScore” function was used to determine PA gene set
(i.e., “module”) scores using the gene sets defined below. A similar process was
used for HPV− HNSC scRNA-seq data which were TPM normalized and were
preprocessed, log2 transformed, and scaled (12).

Statistical Analysis
R programming software (version 3.6.1) was used for statistical analyses (24).
Kruskal–Wallis or Wilcoxon tests were used to compare data distributions be-
tween more than two groups or two groups, respectively, for non-normally
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distributed data. χ2 tests were used to evaluate independence between groups
with expected cell counts ≥5. Fisher exact tests were used to test for indepen-
dence with any expected cell count <5. To account for multiple hypothesis
testing, the FDR was controlled using the method of Benjamini and Hochberg.
Pearson correlation analyses were performed in R using the WGCNA software
package (RRID:SCR_003302; ref. 25). An alpha of 0.05 was used as a thresh-
old for statistical significance, except in the case of multiple hypothesis testing
where a q value of 0.25 was used. *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001;
****, P ≤ 0.0001; ns, P > 0.05.

Data Availability Statement
TCGA expression data are available from FireBrowse (http://firebrowse.org/)
with the filenames defined in Supplementary Table S17. Accession numbers for
data accessed through the NCBI Gene Expression Omnibus include GSE91061
(26), GSE10322 (12), and GSE139324 (21). Source code is available online

through the GitHub repository: https://github.com/alexharbison/polyamines_
immunometabolism_cancer.git (DOI: 10.5281/zenodo.4959622).

Ethics Approval and Consent to Participate
Data were obtained from publicly available databases.

Results
Survival Among T Cell–enriched, Antigen-driven
HPV+ HNSC
We stratified TCGAHPV+ HNSCs into high (Thi) and low (Tlo) T-cell infiltra-
tion. Of the HPV+ HNSCs, 47% (46/97) were Thi whereas only 31% (130/420)
HPV− HNSCs were Thi (χ2 test, P = 0.002). Patients with HPV+ HNSC
had better survival than carcinogen-driven (HPV−) HNSCs (Fig. 1A). Among
the HPV+ HNSCs, 3-year survival probability was greater for Thi [0.90, 95%

FIGURE 1 PA metabolism genes are differentially expressed between T cell–infiltrated HPV-related (HPV+) HNSCs stratified by a prognostic
molecular gene signature. A, Survival among TCGA HNSC stratified by HPV status [HPV+, n = 97; HPV− (carcinogen-driven), n = 421]. B, HPV+ HNSC
tumors were stratified by T-cell infiltration as inferred by ssGSEA CD8+ T-cell and cytotoxic lymphocyte gene set scores. Survival based on T-cell
infiltration status is shown. C, Metabolic gene transcriptional network analysis comparing TCGA HPV+ Thi HNSCs based on the high-risk HPV+ HNSC
C1 gene set DE results (C1 high vs. C1 low). Red nodes, gene expression enriched in C1 high tumors. Green nodes, gene expression enriched in C1 low
HPV+ HNSCs. D, ssGSEA scores from a curated set of 35 genes involved in PA metabolism among TCGA HPV+ Thi HNSCs stratified by C1 gene set
expression strata divided into high, intermediate, and low. *, P ≤ 0.05.
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confidence intrerval (CI): 0.81–1.0] than Tlo tumors (0.55, 95% CI: 0.40–0.75;
log-rank test, P= 0.0018; Fig. 1B). In contrast, HPV− HNSCs did not have bet-
ter 3-year survival when stratified by T-cell status (Tlo: 0.53, 95%CI: 0.46–0.60;
Thi: 0.59, 95% CI: 0.51–0.70; log-rank test, P = 0.42).

Metabolic Genes Enriched Among High-risk, HPV+

T Cell–infiltrated HNSCs
To identify metabolic features impairing the antitumor immune response in an
otherwise favorable viral antigen positive, T cell–enriched TME, we performed
a metabolism focused transcriptional network analysis (8) comparing TCGA
HPV+ Thi HNSCs stratified by a high-risk HPV+ HNSC gene signature (i.e.,
C1; ref. 27). We hypothesized that T cell–infiltrated HPV+ C1 HNSCs exhibit
a poor prognosis secondary to aberrant metabolic features. The C1 signature is
driven primarily by tumor cell–intrinsic expression. Notably, immune-related
signatures are not differentially expressed between theC1 (worse prognosis) and
C2 (better prognosis) HPV+ HNSC subsets. The HPV+ C1 signature demon-
strates an intermediate gene expression profile between HPV− and HPV+

tumors with better survival (i.e., HPV+ C2) and has lower expression of the
HPV E1ˆE4 splicing isoform, a feature associated with resistance to radiation.

To identifymetabolic gene network differences betweenTCGAHPV+ ThiHN-
SCs stratified by the C1 signature, we generated a score across tumors taking the
cumulative expression across C1 genes (CDA, DFNA, KRT, MDFI, UPP,
DPF, RGS, TUBB, PPPRB, RHOD, CPA, PNLIPRP) for each sample
and stratifying them into high, intermediate, and low strata. The distribution
of C1 strata by T-cell infiltration status is shown in Table 1. Nine percent of Thi
tumors and 55% of Tlo tumors were C1 high (χ2 test, P < 0.001).

Focusing our analysis on 2,520metabolism-related genes derived fromMSigDB
(1,617 genes total; refs. 15, 28) and Shaul and colleagues (ref. 16; 903 addi-
tional genes; Supplementary Table S3), DE analysis comparing HPV+ Thi
C1 high (C1hi; N = 4) versus C1 low (C1lo; N = 22) tumors revealed 935
metabolic genes upregulated in the HPV+ Thi C1hi HNSCs (Supplementary
Table S4). Database for Annotation, Visualization and Integrated Discovery
(DAVID) analysis demonstrated enrichment of genes involved inmitogenic sig-
naling (TSC,MAPK, INSR,PIKCG) plus lipid (INPPA,LPL), central carbon
(IDH, SDHB-D, HK, HK, LDHA, LDHC), arginine and proline metabolism
(SMOX, ARG, NOS, AMD, SRM, AGMAT, PRODH; Supplementary
Table S5) among the HPV+ Thi C1 high tumors. DE results were used as input
for network analysis focused on identification of the most differing metabolic
subnetworks between C1hi versus C1lo tumors (Fig. 1C). Consistent with the
DAVID pathway-level analysis, we observed a subnetwork of PA metabolism
gene enrichment among the C1hi tumors including SMOX, SRM, and MTAP.
Notably, this PA subnetwork illustrated a close associationwith lactate (LDHA),
kynurenine (KYNU, IDO), tryptophan (WARS), beta-alanine (UPB), and
α-ketoglutarate (IDH) metabolism (Fig. 1C; Supplementary Fig. S2). Quan-
tification of PA metabolism gene expression was performed using ssGSEA as
a function of C1 expression strata. A set of 35 curated genes involved in PA
metabolism and transport were quantified across TCGA HPV+ Thi HNSCs
using ssGSEA demonstrating lower PA ssGSEA scores among the C1lo tumors
relative to the C1 intermediate or C1hi tumors (Fig. 1D).

We also compared DE among HPV+ Thi tumors based on their molecu-
lar subtype (classical vs. immune/mesenchymal; Supplementary Table S6).
Among HPV+ HNSCs, the immune/mesenchymal subtype has a better prog-
nosis than classical subtype tumors (17). The immune/mesenchymal subtype is

TABLE 1 Distribution of TCGA HPV+ Thi and Tlo HNSCs by clinical and
genomic features

T-cell status

Variable Thi, N = 46a Tlo, N = 51a P

C1 score <0.001b

High 4/46 (8.7%) 28/51 (55%)
Intermediate 20/46 (43%) 12/51 (24%)
Low 22/46 (48%) 11/51 (22%)

Group <0.001b

Basal 0/46 (0%) 15/51 (29%)
Classical 8/46 (17%) 30/51 (59%)
Mesenchymal 38/46 (83%) 6/51 (12%)

Site <0.001c

Hypopharynx 1/46 (2.2%) 4/51 (7.8%)
Larynx 2/46 (4.3%) 4/51 (7.8%)
Oral cavity 7/46 (15%) 25/51 (49%)
Oropharynx 36/46 (78%) 18/51 (35%)

PIK3CA 0.44b

Alterationd 36/46 (78%) 44/51 (86%)
No alteration 10/46 (22%) 7/51 (14%)

AKT1 0.44b

Alterationd 7/46 (15%) 12/51 (24%)
No alteration 39/46 (85%) 39/51 (76%)

MTOR 0.16b

Alterationd 9/46 (20%) 4/51 (7.8%)
No alteration 37/46 (80%) 47/51 (92%)

MYC 0.035b

Alterationd 19/46 (41%) 33/51 (65%)
No alteration 27/46 (59%) 18/51 (35%)

aStatistics presented: n/N (%).
bχ2 test of independence.
cFisher exact test.
dAlteration defined a presence of mutation, copy-number gain or
amplification, or homozygous deletion.

characterized by immunemarkers (e.g.,CDA, ICOS) andmesenchymalmark-
ers (e.g., VIM, SA). The most distinctive transcriptional feature of the
classical subtype in both HPV+ and HPV− HNSCs is enrichment for PA
metabolism gene expression (17). Molecular subtype across TCGAHNSCs was
defined using a correlation-based, nearest centroid classification approach (17).
Table 1 shows the distribution of molecular subtypes given T-cell status across
HPV+ HNSCs. Eighty-three percent of Thi tumors and 12% of Tlo tumors were
classified as mesenchymal (χ2 test, P < 0.001; Table 1). No HPV+ Thi tumors
were classified as basal. The basal subtype is characterized by a predominance
of HPV− HNSCs, hypoxia, and EGFR/HER signaling (17). The remainder of
Thi tumors were classified as classical (N = 8). DE analysis demonstrated 438
metabolic genes upregulated in the classical tumors. DAVID pathway analy-
sis revealed upregulation of genes involved in mitogenic signaling (GSKB,
TSC,BRAF, PIKCD) in addition to lipid (INPPA, PLAGA, LPIN), purine
(NTE, ENTPD, NME), central carbon (IDH, HK, ACAT), arginine, and
proline metabolism (ARG, NOS, PRODH; Supplementary Table S7). Given
these findings and prior metabolomic data demonstrating enrichment of PAs
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in HNSC tissues (29, 30), we next sought to test the relationship between PA
expression and clinical and tumor genomic features.

PA Synthesis and Transport Genes are Associated with
Worse Clinical and Molecular Features Among Patients
with HPV+ HNSC
To characterize the extent to which PA metabolism genes are related to clini-
cal and molecular features among HPV+ HNSCs, we performed hierarchical
clustering of gene expression using the 35 PA metabolism-related genes intro-
duced above. Hierarchical clustering revealed three sample clusters (Fig. 2A,
column clusters). Oropharyngeal tumors made up most of the cohort (54/97)
followed by oral cavity cancers (32/97; Table 2). Clusters 1 and 2 consisted of
87% and 78% oropharyngeal tumors versus cluster 3 which was enriched in oral
cavity tumors (68%; Fisher exact test, P< 0.001). Clusters 1 and 2 were predom-
inantly Thi (69% (27/39) and 61% (11/18), respectively; Fig. 2A; Table 2). Cluster
3 tumors were mainly Tlo (80% (32/40)). The distribution of Thi and Tlo tu-
mors by primary site is shown in Table 1. Oropharyngeal tumors comprised
78% of Thi tumors and 35% of Tlo tumors. Tumor stage did not differ between
clusters nor did smoking status (Fig. 2A; Table 2).

Recurrent/Metastatic (R/M), tumor status, and overall survival status were
worse in cluster 3. Thirty-two percent of cluster 3 subjects experienced R/M
compared with 18% and 11% of clusters 1 and 2, respectively (Fisher exact test,
P = 0.18; Fig. 2A; Table 2). Cluster 3 had a higher proportion of patients with
recurrent or persistent tumors [“with tumor”; 46% (18/39)] than clusters 1/2
subjects [16% (6/38) and 18% (3/17); Fisher exact test, P = 0.007; Table 2].
Clusters 1/2 subjects experienced a lower frequency of deaths over the 3-year
follow-up interval [15% (6/39) and 22% (4/18), respectively] than cluster 3 sub-
jects [50% (20/40); χ2 test, P = 0.003; Table 2]. R/M was not different between
clusters among Thi (Fisher exact test, P= 0.4) or Tlo subsets (Fisher exact test,
P = 0.46; Supplementary Table S8). Thi tumors had a higher percentage of
recurrent or persistent tumors in cluster 1 and 3 (22% and 25%, respectively)
compared with cluster 2 (0%; Fisher exact test, P = 0.23; Supplementary Ta-
ble S8). Clusters 1 and 2 exhibited upregulation of PA regulatory genes (i.e.,
SAT, OAZ–; Fig. 2B). These results suggest that PA metabolism gene ex-
pression varies by CTL infiltration and is associated with clinical features and
primary site.

Next, we evaluated the relationship between TMB and molecular subtype (i.e.,
immune/mesenchymal vs. classical; ref. 17) with T-cell infiltration among sam-
ple clusters. High TMBwas present in 11% (4/38), 5.6% (1/18), and 5.7% (2/35) of
tumors in clusters 3, 2, and 1, respectively (Fisher exact test, P = 0.88; Table 2).
Molecular subtype analysis demonstrated a high rate of mesenchymal tumors
in clusters 1 and 2 [74% (29/39) and 61% (11/18), respectively] compared with
cluster 3 which was enriched in classical subtype tumors [52% (21/40); Fisher
exact test, P < 0.001; Fig. 2A; Table 2]. While the mesenchymal subtype may
be associated with the degree of cancer-associated fibroblasts (12), there was a
strong association between mesenchymal subtype and Thi status (Table 1).

Genomic alterations including copy-number gain, amplification, homozygous
deletion, and mutations of PIKCA, AKT, MTOR, and MYC were analyzed
given their role in regulating PAmetabolism.AKT andMYCwere alteredmore
frequently in cluster 3 (32% and 72%, respectively) compared with clusters 1
and 2 (10% and 38% vs. 11% and 44%, respectively; AKT: Fisher exact test, P=
0.039;MYC: χ2 test, P = 0.007; Table 2). PIKCA was altered in 72%, 83%, and
92% of cases in clusters 1, 2, and 3, respectively (Fisher exact test, P = 0.056;

Table 2). There was no difference in MYC alterations between clusters in the
Thi tumors (Fisher exact test, P= 0.84; Supplementary Table S8).MTOR alter-
ations were more frequent among Thi tumors in clusters 2 (45%) and 3 (25%)
compared with cluster 1 (7%; Fisher exact test, P = 0.016; Supplementary Table
S8). PIKCA and AKT did not vary between clusters. Genomic alterations did
not vary by T-cell status, except for MYC which was enriched in Tlo tumors
(65% vs. 41% of Thi tumors; χ2 test, P = 0.035; Table 1).

Genewise clustering analysis was performed. PA genes clustered into two
groups. Group 1 included genes involved in synthesis (ODC,ARG, SMS, SRM,
AMD) and transport, and Group 2 included genes involved in the regula-
tion of PA transport and ODC activity (OAZ, OAZ, OAZ), hypusination
(DOHH, DHPS), and PA transport (Fig. 2A). Group 1 PA genes were differ-
entially enriched in cluster 3 tumors (except ARG, ALDHA, and SMS) and
downregulated in clusters 1 and 2 (Fig. 2B; Supplementary Table S9). In com-
parison, PA synthesis genes (SRM, AMD, ARG), transporters (e.g., SLCA
and GPC), and SMOX were enriched in HPV+ Tlo relative to HPV+ Thi HN-
SCs (Supplementary Fig. S3A; Supplementary Table S10). HPV− HNSCs were
also differentially enriched in PA synthesis genes (SRM, ODC), transporters
(SLCA,GPC, SLCA), and SMOX expression compared with HPV+ HNSC
(Supplementary Fig. S3B; SupplementaryTable S10). Taken together, these anal-
yses reveal a propensity for T-cell infiltration among HPV+ oropharyngeal
squamous cell carcinomas whereas HPV+ oral cavity squamous cell carcino-
mas appear to be largely T-cell deficient and enriched in the more aggressive
basal and classical molecular phenotypes. Strikingly, HPV+ HNSCs clustered
into T cell–enriched and T cell–deficient clusters based on expression of a set of
35 curated PA metabolism genes. Whether this reflects the role of PAs in T-cell
metabolic function or tumor cell–intrinsic gene expression features which in-
fluence the extent of T-cell infiltration remains unknown. Therefore, our next
objective was to evaluate the extent to which tumor cells and stromal cells
contribute to PA metabolism gene expression.

PA Gene Expression and Tumor-intrinsic Features
First, we tested whether PA gene expression is a function of tumor-intrinsic
features (i.e., molecular subtype, HPV status, HPV integration, or TMB).
We defined PA biogenesis–specific gene sets based on prior knowledge
(Table 3; ref. 31). We included broader PA biogenesis–defined gene sets (i.e.,
synthesis, catabolism, regulatory, and transport) as well as metabolite specific
gene sets (i.e., putrescine, spermidine, and hypusine) given the unique cellu-
lar functions of these respective metabolites. PAOX was included in both the
putrescine and spermidine synthesis gene sets as it oxidizes N-acetylated PAs
to generate putrescine and spermidine. The SAT gene product catalyzes PA
acetylation. AMD is included in the spermidine synthesis gene set as it en-
codes S-adenosylmethionine decarboxylase which produces the aminopropyl
donor, S-adenosylmethionine, necessary for spermidine synthesis. Hypothe-
sizing that PAmetabolites can be immunosuppressive, the “combined” gene set
was informatically and empirically defined using PA genes that were negatively
correlated with both Bindea cytotoxic lymphocyte gene set (CTL) and REAC-
TOME IFNγ gene set ssGSEA scores across multiple TCGA T cell–infiltrated
tumor types (Supplementary Figs. S4A and S4B; ref. 32). The transporters
included have been previously reported as putative PA transporters (31, 33–44).

Hypothesizing that PA metabolism gene expression depends on molecular
subtype, we did not identify differences in enrichment of the PA gene sets
among the HPV+ HNSCs (Fig. 3A). Among the HPV− Thi HNSCs, ssGSEA
scores from several PA gene sets were significantly higher among the basal
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FIGURE 2 PA synthesis and transport genes are associated with worse clinical and molecular features among patients with HPV+ HNSC.
A, Heatmap illustrates hierarchical clustering of scaled variance transformed RSEM counts for PA synthesis, catabolism, hypusination, and transport
genes among TCGA HPV+ HNSCs (n = 97). Clinical and molecular features are annotated in the bars above the heatmap. Genomic annotations are
plotted at the bottom of the heatmap for the genes shown. Rows represent unique genes. Columns represent unique patients. Hierarchical clustering
was performed across columns and rows. Stage, AJCC 7th edition clinical stage. TMB (tumor mutation burden): TMBhi, ≥10 mutations/Mbp; TMBlo,
<10 mutations/Mbp. B, Volcano plot demonstrating DE analysis results comparing cluster 3 with clusters 1 and 2 based on the hierarchical clustering
results in A. Large blue dots, PA metabolism genes. NS, nonsignificant.
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TABLE 2 Clinical and molecular characteristics of TCGA HPV+ HNSC clusters based on polyamine metabolism gene expression

Cluster

Variable Cluster 1, N = 39a Cluster 2, N = 18a Cluster 3, N = 40a Pb

Tstatus <0.001
Thi 27/39 (69%) 11/18 (61%) 8/40 (20%)
Tlo 12/39 (31%) 7/18 (39%) 32/40 (80%)

Stage 0.67
Stage I 0/39 (0%) 1/18 (5.6%) 3/40 (7.5%)
Stage II 6/39 (15%) 1/18 (5.6%) 5/40 (12%)
Stage III 6/39 (15%) 3/18 (17%) 7/40 (18%)
Stage IV 27/39 (69%) 13/18 (72%) 25/40 (62%)

Recurrence/metastasis 7/39 (18%) 2/18 (11%) 13/40 (32%) 0.18
Tumor status 0.007

Tumor free 32/38 (84%) 14/17 (82%) 21/39 (54%)
With tumor 6/38 (16%) 3/17 (18%) 18/39 (46%)
(Missing) 1 1 1

Overall survival 0.003
Alive 33/39 (85%) 14/18 (78%) 20/40 (50%)
Dead 6/39 (15%) 4/18 (22%) 20/40 (50%)

Smoking 0.14
Current smoker 8/39 (21%) 4/17 (24%) 13/40 (32%)
Nonsmoker 17/39 (44%) 3/17 (18%) 8/40 (20%)
Other 14/39 (36%) 10/17 (59%) 19/40 (48%)
(Missing) 0 1 0

Site <0.001
Hypopharynx 1/39 (2.6%) 2/18 (11%) 2/40 (5.0%)
Larynx 1/39 (2.6%) 0/18 (0%) 5/40 (12%)
Oral cavity 3/39 (7.7%) 2/18 (11%) 27/40 (68%)
Oropharynx 34/39 (87%) 14/18 (78%) 6/40 (15%)

TMB category 0.88
TMBhi 2/35 (5.7%) 1/18 (5.6%) 4/38 (11%)
TMBlo 33/35 (94%) 17/18 (94%) 34/38 (89%)
(Missing) 4 0 2

Group <0.001
Basal 0/39 (0%) 0/18 (0%) 15/40 (38%)
Classical 10/39 (26%) 7/18 (39%) 21/40 (52%)
Mesenchymal 29/39 (74%) 11/18 (61%) 4/40 (10%)

PIK3CA 0.056
Alteration 28/39 (72%) 15/18 (83%) 37/40 (92%)
No alteration 11/39 (28%) 3/18 (17%) 3/40 (7.5%)

AKT1 0.039
Alteration 4/39 (10%) 2/18 (11%) 13/40 (32%)
No alteration 35/39 (90%) 16/18 (89%) 27/40 (68%)

MTOR 0.20
Alteration 4/39 (10%) 5/18 (28%) 4/40 (10%)
No alteration 35/39 (90%) 13/18 (72%) 36/40 (90%)

MYC 0.007
Alteration 15/39 (38%) 8/18 (44%) 29/40 (72%)
No alteration 24/39 (62%) 10/18 (56%) 11/40 (28%)

aStatistics presented: n/N (%).
bStatistical tests performed: χ2 test of independence; Fisher exact test.
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TABLE 3 PA metabolism gene sets

Pathway Description Genes

Synthesis Polyamine biosynthesis. ODC1, SRM, SMS, AMD1
Catabolism Polyamine catabolism. SAT1, PAOX, SMOX
Regulatory Regulation of biosynthesis

and transport.
OAZ1, OAZ2, OAZ3

Transport Putative polyamine
transporters.

ATP13A2, GPC1, SLC3A2,
SLC7A2, SLC7A5, SLC7A6,
SLC7A7, SLC7A8, SLC7A10,
SLC7A11, SLC12A8, SLC18B1,
SLC22A1, SLC22A2,
SLC22A3, SLC22A16,
SLC47A1

Putrescine Putrescine biogenesis. PAOX, SAT1, ODC1
Spermidine Spermidine biogenesis. PAOX, SAT1, SRM, SMOX,

AMD1
Hypusine Hypusine biogenesis. DHPS, DOHH
Combined Empirically defined by

negative correlation
with CTLa ssGSEA score
across cancers.

ODC1, SMS, SMOX, AMD1,
ALDH18A1, PRODH, OAT,
OAZ2, GPC1, SLC3A2,
SLC7A1, SLC7A2

aCytotoxic lymphocyte gene set as defined in Bindea and colleagues.

compared with the classical or mesenchymal subtypes including the synthe-
sis, catabolism, regulatory, spermidine, and hypusine gene sets. In contrast,
PA-combined gene set ssGSEA scores were lower among the basal tumors com-
pared with the classical or mesenchymal HPV− HNSCs. HPV+ Tlo HNSCs
also lacked differences in PA ssGSEA scores except for transport which was sig-
nificantly higher among basal tumors whereas putrescine ssGSEA scores were
higher among the classical and mesenchymal tumors than the basal tumors
(Supplementary Fig. S5).

PA pathway expression was characterized on the basis of HPV status. Prior
studies identified that viral replication depends on PAs (45) and that some
viruses may stimulate PA synthesis (46, 47). Moreover, nicotine drives ODC
expression (48). PA synthesis, catabolism, transport, and spermidine ssGSEA
scores were higher among HPV− Thi versus HPV+ Thi HNSCs (Fig. 3B).
PA synthesis and combined gene set ssGSEA scores were higher among
HPV− smokers compared with nonsmokers whereas regulatory ssGSEA scores
were higher among the nonsmokers (Supplementary Fig. S6). HPV+ smok-
ers demonstrated higher PA synthesis, transport, and combined ssGSEA scores
than nonsmokers (Supplementary Fig. S6).

We examined whether HPV integration impacts PA pathway expression evalu-
ating the association between PA pathway ssGSEA scores and HPV integration
(18). Defining tumors as HPV integrated or HPV nonintegrated, we observed
greater synthesis, putrescine, and hypusine ssGSEA scores among the HPV+

Thi HNSCs with nonintegrated HPV whereas there were no differences in
the integration status among the HPV+ Tlo HNSCs (Fig. 3C; Supplementary
Fig. S5C).

Finally, we tested the relationship between TMB and PA gene set expression
given that PAs are involved in epigenetic regulation and DNA stabilization.
Among HPV+ Thi HNSCs, PA synthesis, transport, and combined ssGSEA

scores were higher among the TMBhi tumors (≥10 mutations/Mbp; Fig. 3D).
TMBlo HPV+ Tlo HNSCs had higher regulatory ssGSEA scores than TMBhi
HPV+ TloHNSCs (Supplementary Fig. S5D). Taken together, these data reveal
evidence that PA gene set expression varies with molecular subtype, HPV sta-
tus, integration status, and TMB among HPV+ Thi HNSCs. While these data
reveal associations between PA gene set expression and tumor features, we were
also interested in the extent to which tumor-infiltrating immune cells express
PA genes. This could reveal insight into strategic targeting of PAmetabolism to
optimize antitumor immunity while diminishing tumor cell proliferation and
viability.

PA Gene Set Expression Among HNSC Intratumoral
Immune Populations
Given the importance of PA expression to T-cell and macrophage function
(49, 50), we utilized scRNA-seq data to examine PA expression across HPV+

HNSC intratumoral immune populations (Fig. 4; ref. 21). We generated single-
cell PA pathway enrichment scores using the gene sets defined above which
we projected onto single cells (Fig. 4A-C). PA catabolism, regulatory, pu-
trescine, and spermidine gene sets were significantly enriched in CD16+ and
CD14+ monocytes relative to the lymphoid lineages (Fig. 4C; Supplementary
Tables S12 and S13). PA transport gene set expression was enriched among the
CD14+ monocytes relative to other lineages except CD4+ CTLs. PA synthe-
sis gene set expression was significantly greater among CD4+ TCM, CD4+

naïve, CD8+ TEM, and regulatory T cells (Treg) relative to CD14+ monocytes.
Expression of CD16+ and SAT, OAZ/, SMS, and SLCA was differentially
higher among CD14+ and CD16+ (except SMS) monocytes relative to other
lineages (Supplementary Fig. S7; Supplementary Table S14). Moreover, analysis
of scRNA-seq data from 21HPV− HNSCs (12) demonstrated greater PA regula-
tory, catabolism, and spermidinemodule expression inmacrophages compared
with T cells or tumors cells (Supplementary Fig. S8; Supplementary Tables S15
and S16). In contrast, HPV− HNSC tumor cells had greater transport and com-
bined pathway gene set expression than T cells, macrophages, or fibroblasts and
higher synthesis gene set expression than T cells or fibroblasts (Supplementary
Fig. S8; Supplementary Tables S15 and S16).

CIBERSORT was used to infer the cellular composition of the TME bulk RNA-
seq data from TCGA HPV+ Thi HNSCs. These data were used to test the
correlation between cell-type abundance and ssGSEA scores for PA pathway
expression (Fig. 4D). After adjusting for multiple hypothesis testing, we ob-
served a nonstatistically significant positive correlation between macrophage
abundance and regulatory gene set expression (r = 0.39, FDR q-value =
0.29). Fibroblasts exhibited a strong negative correlation with hypusine gene
set expression (r = −0.55, q-value = 0.003). Collectively, these data demon-
strate relatively greater enrichment of PA catabolism and regulatory gene set
expression in themyeloid compartment relative to the lymphoid compartment.

Pan-Cancer PA Gene Set Expression and
Immune Response
We tested the relationship between PA pathway gene set expression and
T-cell receptor (TCR) diversity (10). We compared richness and Shannon en-
tropy scores between PA gene set strata among TCGA HPV+ HNSCs. TCR
richness and Shannon entropy were negatively associated with PA synthesis
(Kruskal–Wallis test, P = 0.004 and P = 0.006, respectively; Supplemen-
tary Fig. S9). Other PA pathway gene set scores were not associated with
TCR clonality among these tumors except putrescine and hypusine scores
which were associated with higher richness and Shannon scores among the
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FIGURE 3 PA metabolism gene set expression and tumor-intrinsic features. PA gene set expression was quantitated using ssGSEA. PA metabolism
genes were grouped into synthesis, catabolism, regulatory, transport, putrescine biosynthesis, spermidine biosynthesis, hypusine biosynthesis, and
combined gene sets. PA ssGSEA scores across TCGA Thi HNSCs were stratified by molecular subtype (A), HPV status (B), HPV integration status (C),
and TMB (TMBhi, ≥10 mutations/Mbp; TMBlo, <10 mutations/Mbp; D). *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001; ****, P ≤ 0.0001; ns, P > 0.05.

intermediate strata than the low or high putrescine and hypusine strata
(Supplementary Fig. S9).

We further hypothesized that tumor cell PA synthesis and/or transport gene
set expression is associated with worse antitumor T-cell function as inferred by
IFNγ or cytotoxic lymphocyte ssGSEA scores. Correlation analyses were per-
formed between the REACTOME IFNγ signaling gene set or the Bindea CTL
ssGSEA scores and PA pathway ssGSEA scores (Fig. 5A). The IFNγ ssGSEA
scores were significantly negatively correlated with PA combined, synthesis,
and hypusine ssGSEA scores in seven (r range: −0.42 to −0.17), six (r range:
−0.45 to −0.25), and 12 (r range: −0.38 to −0.15) cancer types, respectively
(FDR q < 0.25). IFNγ scores were positively correlated with catabolism or pu-
trescine scores in four cancer types, respectively. Similarly, CTL gene set scores
were significantly negatively correlated with PA combined pathway scores in
nine cancer types (R range: −0.39 to −0.16) and positively correlated with
PA catabolism and regulatory scores in 10 (R range: 0.12–0.29) and six (R
range: 0.18–0.37) cancer types (Fig. 5A). Hypothesizing that PAs contribute
to immunosuppression, we sought to characterize the association between PA
pathway ssGSEA scores and survival across cancers.

Pan-Cancer PA Gene Set Expression and Outcomes in
T Cell–enriched Tumors
We performed Cox regression testing the association between PA pathway ss-
GSEA scores and risk of mortality in T cell–enriched tumors. High transport
scores were associated with a greater risk of mortality among Bladder urothe-
lial carcinoma (BLCA), HNSC, and HPV+ Cervical and endocervical cancers
(CESC) TCGA cohorts. Combined PA pathway gene set scores were associated
with higher mortality among the BLCA, Lung adenocarcinoma (LUAD), and
HPV+ CESC cohorts, with a trend toward worse survival among the Prostate
adenocarcinoma (PRAD), Skin Cutaneous Melanoma (SKCM), HPV+ HNSC
and CESC tumors (Fig. 5B). Interestingly, high putrescine ssGSEA scores were
associated with better survival among HNSC, KIRC, LUAD, LUSC, and HPV+

CESC Thi tumors. In contrast, PA combined pathway gene set scores were
not associated with increased risk of mortality across Tlo tumors (Supplemen-
tary Fig. S10). However, higher PA transport scores were associated with worse
survival among Tlo HNSC, SKCM, and BLCAs.

Given the negative association between the PA combined pathway ssGSEA
scores with effector lymphocyte gene set scores and prognosis, we hypothesized
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FIGURE 4 PA pathway expression and TILs in HPV+ HNSC. Publicly available TIL scRNA-seq data from eight HPV+ HNSCs (14,859 cells) were
mapped onto a reference single-cell dataset to infer cell lineage. A, Uniform Manifold Approximation and Projection (UMAP) demonstrating lineage
assignments across HPV+ HNSC TILs. B, PA metabolism pathway expression overlaid onto UMAP demonstrating pathway expression among clusters
and quantified in C. D, CIBERSORT was used to infer cellular abundance for stromal cells in the TME using TCGA HPV+ Thi HNSCs. Cellular abundances
were correlated with PA pathway ssGSEA scores and Pearson correlation coefficients (r) represented in the heatmap.
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FIGURE 5 Immune functional markers and survival vary with PA pathway ssGSEA scores across T-infiltrated tumors. Ten of the mostly highly
inflamed cancer types were stratified by T-cell infiltration status (Thi vs. Tlo) inferred using TCGA bulk RNA-seq data as described in the article. A,
Correlation between PA ssGSEA scores and REACTOME IFNγ pathway (top) and cytotoxic lymphocyte pathway (bottom) ssGSEA scores are shown in
the heatmaps. Correlation coefficients (r) for the correlation between PA ssGSEA score and immune pathway ssGSEA score for each cancer type are
presented in the heatmap. B, Pan-cancer Cox regression analysis among the Thi tumors for each cancer type was performed using continuous PA
ssGSEA scores as a covariate. log2 HRs are plotted. Diamonds represent statistically significant associations (log test − log2 P, FDR q < 0.25) and
circles represent nonsignificant associations; size of shape represents magnitude of the q-value. C, Survival among nivolumab-treated Thi melanomas
(n = 11) by combined (left; high: n = 4, low: n = 7), synthesis (middle; high = 5, low = 6), or transport (right; high: n = 7, low: n = 4) PA ssGSEA score
strata. D, Barplots showing proportion of complete or partial responders (CR/PR), stable disease (SD), or progressive disease (PD) given combined
(left), synthesis (middle), or transport (right) PA ssGSEA score strata.

that PA expression affects response to ICI. Specifically, we were interested in the
association with ICI response based on PA biosynthetic and transport pathway
expression (given the availability of commercially available inhibitors of these
functions) among a subset of T cell–enriched, nivolumab-treated melanomas

(26). High combined PA pathway ssGSEA scores were associated with worse
survival (Fig. 5C). There was no difference in survival based on the synthesis
or transport ssGSEA scores. Response to ICI was greatest among patients with
low combined or synthetic gene set ssGSEA scores (Fig. 5D).
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Discussion
To identify metabolic features impairing the antitumor immune response in
an otherwise favorable TME, we leveraged T cell–infiltrated, immunogenic,
HPV+ HNSC. Using this strategy, PA gene set expression was associated with
aggressive molecular phenotypes, diminished antitumor immunity, poor prog-
nosis across cancer types, and a poor response to immunotherapy among
melanomas. These data demonstrated both tumor-dependent and stromal dif-
ferences in PAmetabolismgene expression.As PAs are necessary for tumor pro-
liferation and function, T-cell activation and differentiation, and macrophage
differentiation, the PA metabolism axis represents a therapeutic target for
leveraging divergent PA metabolic needs between tumor and immune cells.

PAs, a family of low molecular weight polycations, regulate cell processes from
proliferation and adaptive immunity (51, 52) to epigenetic modifications (53,
54), metabolite availability (55, 56), transcriptional regulation (57), and chro-
matin stabilization (58). Cells primarily synthesize PAs and acquire them from
the TME. Given the essential role of PAs in tumor and T-cell function (49), this
pathway may be rationally targeted to diminish tumor growth and/or enhance
antitumor immunity. In recent work, investigators identified the dependence
of CD4+ T-cell differentiation on PA metabolism, for example demonstrating
that TH17 cells and Tregs may rely more on transport than PA synthesis (59,
60). In our scRNA-seq analyses among tumor TILs from HPV+ HNSCs, we
did not observe a difference in PA transport gene set expression between Tregs
and CD4+ CTL, CD4+ TCM, or CD4+ TEM cells (Supplementary Table S13).
In contrast, we identified relatively greater PA spermidine and putrescine gene
set expression among the Tregs compared with CD4+ TCM and CD4+ TEM
cells. We did not test PA gene set expression in other CD4+ T-cell lineages
as this was beyond the scope of this study, but it would be intriguing to com-
pare the effect of PA metabolism on CD4+ T-cell differentiation in the context
of the TME.

The metabolic milieu of the TME diminishes antitumor immune control by
producing inhibitory metabolites, depleting essential nutrients, and creating a
hypoxic and acidic ecosystem. Here, PA gene set expression was upregulated
in high-risk, T cell–infiltrated HPV+ HNSCs. Gene expression clusters with
T cell–infiltrated tumors were enriched in PA catabolism and regulation genes
(i.e., SAT, OAZ–3). PA gene expression varied by molecular subtype, HPV
status, HPV integration status, and TMB status. High TMB HPV+ Thi HN-
SCs were associated with higher PA synthesis, transport, and spermidine gene
set scores. At the single-cell level in HPV+ HNSCs, PA catabolism, regulatory,
transport, putrescine, and spermidine gene set ssGSEA scores were enriched
in the myeloid compartment relative to lymphoid lineages. In the pan-cancer
analysis, we observed negative correlations between PA synthesis, transport,
combined, or hypusine gene set ssGSEA scores with effector lymphocyte func-
tion ssGSEA scores. The question persists of whether immunosuppressive
immune populations leverage PA metabolism to permit tumor growth and
whether there is a feedback loop of PA-dependent tumor-intrinsic paracrine
function promoting immunosuppressive immune function.

PA blockade therapy (AMXT1501/DFMO) using difluoromethylornithine
(DFMO), an ornithine decarboxylase inhibitor, and AMXT1501 (31, 61), a PA
transport inhibitor, demonstrates excellent responses in diffuse intrinsic pon-
tine glioma (62) or MYCN transgenic mice models (31). AMXT1501/DFMO
shows activity in immunocompetent, but not immunodeficient mouse tumor

models (63). In contrast, monotherapy is less effective than combined therapy,
likely secondary to compensatory mechanisms. This may account for the lim-
ited responses noted to date with PA monotherapy (64, 65). In is intriguing to
speculate that PA expression in the TME may serve as a biomarker for patient
selection in employing agents of the PA pathway such as in the case of patients
with HPV+ HNSC with increased T-cell infiltrates and high PA levels.

Disruption of PA homeostasis in the TME may affect the function of infil-
trating immune cells. Several metabolites contribute to PA synthesis including
methionine, glutamine, arginine, and proline. About 30% of PAs are derived
from glutamine in activated T cells, though PA synthesis blockade prevents
T-cell expansion (49). In macrophages, inhibition of either PA synthesis or
hypusination diminishes oxidative phosphorylation and prevents alternative
macrophage differentiation (50). PAs are immunosuppressive, and tumors may
leverage PAs for intrinsically mediated immune evasion by inducing autophagy
(66), favorable epigenetic alterations (53), or stabilizing their DNA from the
effects of cytotoxic lymphocytes (58).

Future studies will need to address some of the limitations of this study includ-
ing the small sample size of HPV+ HNSCs, limiting our power for survival
analyses. Cohorts powered to detect differences in survival as a function of
metabolite enrichment may further elucidate mechanisms diminishing anti-
tumor immunity. Defining the extent to which PA metabolism diminishes
antitumor immunity either because of exposure to supraphysiologic intracellu-
lar PA levels and/or through cell-intrinsic mechanisms that promote tumor cell
survival will help overcome hurdles to immunotherapy. Finally, the role of PA
transport in T-cell function is unknown. The degree towhich putative PA trans-
porters regulate nutrient transport and antitumor immunity requires further
investigation. These data aim to uncover fundamental insights into the effect
of metabolites in the TME and antitumor immune responses and spur a line
of inquiry investigating the extent to which PA metabolism impairs antitumor
immunity.
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