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Abstract

Proteins are Nature’s molecular machinery and comprise diverse roles while consisting of 

chemically similar building blocks. In recent years, protein engineering and design have become 

important research areas, with many applications in the pharmaceutical, energy, and biocatalysis 

fields, among others—where the aim is to ultimately create a protein given desired structural 

and functional properties. It is often critical to model the relationship between a protein’s 

sequence, folded structure, and biological function to assist in such protein engineering pursuits. 

However, significant challenges remain in concretely mapping an amino acid sequence to specific 

protein properties and biological activities. Mutations may enhance or diminish molecular protein 

function, and the epistatic interactions between mutations result in an inherently complex mapping 

between genetic modifications and protein function. Therefore, estimating the quantitative effects 

of mutations on protein function(s) remains a grand challenge of biology, bioinformatics, and 

many related fields and would rapidly accelerate protein engineering tasks when successful. 

Such estimation is often known as variant effect prediction (VEP). However, progress has 

been demonstrated in recent years with the development of machine learning (ML) methods in 

modeling the relationship between mutations and protein function. In this Review, recent advances 

in variant effect prediction (VEP) are discussed as tools for protein engineering, focusing on 

techniques incorporating gains from the broader ML community and challenges in estimating 

biomolecular functional differences. Primary developments highlighted include convolutional 

neural networks, graph neural networks, and natural language embeddings for protein sequences.
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Graphical Abstract

INTRODUCTION

Proteins are Nature’s machines and control nearly all biological phenomena. These 

macromolecules are encoded as a sequence of amino acids that fold into a complex three-

dimensional structure, which governs function. While common secondary structural motifs 

occur, the precise folds and residue interactions cause specific protein functions. A protein’s 

function is essentially the molecule’s biological role—its molecular purpose. While protein 

function is diverse, efforts have focused on the systematic classification of genes and 

proteins.1 Furthermore, a central tenant of biology is that structure governs function—

i.e., the shape of a (macro-)molecule controls its associated biological phenomena. The 

relationship between a protein’s sequence and function is challenging to characterize, as 

modifying an amino acid will change a site’s chemical and physical properties,2 and distant 

mutations may impact function. This relationship is known as the protein sequence–function 

relationship, or envisioned as the underlying protein fitness landscape, a complex mapping 

between a protein’s amino acid sequence, structure, and function (“fitness”). Even point 

mutations to the protein sequence can impact the protein’s fold, stability, and modify 

interactions with proteins and other molecules.3 In addition, a structural modification will 

typically alter the conformational dynamics, which are difficult to characterize—further 

affecting the protein’s function.

Given the vast array of diverse functions proteins accomplish, it is often desirable to 

develop a protein given wanted structural and functional properties, also known as protein 

engineering and design. In addition, this can be framed as the inverse folding problem or 

de novo protein design.4 Protein design generally focuses on producing sequences without 

a given template, while protein engineering aims to tune a given sequence.5 Essentially, 

navigating the protein sequence-function relationship such that the protein’s biomolecular 

function is adapted toward the desired function. The simplest case to consider comprises 

enhancing an already native function to a protein, such as increasing the transport rate of an 

endogenous substrate for a membrane protein. This protein has already evolved to transport 

that particular molecule, and now, it is desired for this specific function to be elevated while 
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not diminishing overall protein stability. More complex, however, is refining non-native 

functions, such as transporting another molecule or introducing substrate selectivity. While 

this is merely one example, the farther one strays from endogenous function, the more 

difficult the engineering challenge becomes. Determining a sequence for an entirely new 

function without a starting sequence is the most challenging and is de novo protein design. 

Novel protein sequence design tools are beyond the scope of this work.

Protein engineering plays a vital role across many industries— as tuning specific protein 

functions is applicable across many disciplines. The medical, chemical, environmental, 

food, and other fields benefit from tuning protein sequences with desired properties.6 

Engineering antibodies for cancer treatments have demonstrated great promise, and recent 

work has focused on enhancing the safety and efficacy of the therapeutics.7 As research 

continues toward precision medicine, engineering many specific protein therapeutics will 

be of excellent use.8,9 Like personalized medicine, engineering enzymes for the safe and 

selective biocatalysis of small molecules has received much attention in recent years.10 

The design of industrially relevant enzymes adds many opportunities and novel synthetic 

routes. Here, selectivity and specificity, along with reaction kinetics, can be tuned through 

optimizing a protein sequence for a given task. Protein engineering has also recently gained 

traction in environmental applications, from plastic degradation to enhancing photosynthesis 

pathways.11,12 The food industry has also benefited from protein engineering applications.13 

Overall, protein engineering has the power to accelerate and revolutionize many disciplines 

but may be a costly and time-consuming process in practice.

It is beneficial to screen sequences and predict an estimated function in silico, i.e., without 

synthesizing every protein sequence to assist in this process. This alleviates the experimental 

burden of enumerating through a vast sequence space and then validating predictions. 

One approach to adequately model this complex relationship between sequence, structure, 

and function is using machine learning (ML) models, as they are universal function 

approximators. Generally, such models take in a protein sequence with mutations and predict 

a quantitative score associated with that mutation’s impact on the protein’s function. This 

is known as variant effect prediction (VEP). Care must be taken in understanding the 

physical interpretation of the fitness score, as protein function is simultaneously diverse and 

nuanced (i.e., selective transport of multiple ligands, binding to other molecules, enzyme 

reactions, etc.). Yet, still, this approximated impact on function proves helpful. Typically, 

such models are constructed locally around the initial wild type (WT) sequence, take in 

single to higher-order (~4) mutations, and are intended to predict the effect for variants 

close to the WT sequence. Such models are employed when local optimums around the WT 

sequence are sought.

Here, VEP methods for predicting mutational impacts on quantitative protein function are 

highlighted as tools for protein engineering efforts, with future challenges for the field 

considered. Other works have been written focusing more broadly on protein engineering, 

the design of novel sequences, and the applications with ML, and readers are directed to 

accompanying references.4,5,14–16
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EXPERIMENTAL METHODS FOR MEASURING VARIANT EFFECT

To begin modeling the mapping of protein sequence to function, experimental measurements 

of protein function are necessary. Multiple approaches have been developed for 

experimentally generating data to assess the impacts of mutations on protein function, 

including site-directed mutagenesis, site-saturation mutagenesis, and directed evolution.17,18 

The labeled data for ML-based approaches must cover enough variation in sequence space 

before describing sequence-function relationships.

Site-directed mutagenesis is the least comprehensive of the methods, as this is a single 

mutation from one amino acid to another.19 A single residue is mutated to another, 

providing a single sampling of the protein sequence-function relationship. Single mutations 

are accessible to laboratories for many proteins of interest and represent a low-throughput 

method of determining mutational effects.

More complex is combinatorial alanine-scanning, where large stretches of the protein are 

individually mutated to the amino acid alanine—with a chemically inert, compact side chain 

group.20 Here, residues with functional side chains are revealed through a loss of protein 

function, thus giving researchers insight into critical residues in the protein sequence. The 

limitation, of course, is the lack of diversity in only performing alanine substitutions.

Hence, site-saturation mutagenesis methods were developed to systematically mutate each 

residue to every other of the 20 canonical, proteogenic amino acids. Site-saturation 

mutagenesis methods, hereinafter referred to as deep mutational scans (DMS), are 

experimental assays that provide a wealth of information on the effects of mutations on 

protein function.17,21–24 These experiments are traditionally limited to slight perturbations 

from the WT (natural) sequence but give information about local changes in protein 

function. The resulting variant enrichment detected by sequencing assay results enables 

an assessment of how point mutations affect function at high throughput rates. However, one 

limitation is the traditional lack of higher-order mutants, though screening and predicting 

higher-order mutations are both active areas of research.25–27 Limited higher-order DMS 

studies are present for small proteins but become intractable for large proteins due to the 

high cost of generating the variant library and committing experimental methods.28 Deep 

sequencing methods have also been established as a standalone protein engineering tool but 

benefit from the combination with computational VEP modeling efforts.29

In addition, there is generally a lack of direct functional measurements, as the assays 

are coupled with variant expression and stability.30 A beneficial mutation for function 

may destabilize variant protein production, which can be challenging to disentangle 

experimentally and computationally. Recent reports have focused on more directly 

measuring protein function and removing changes in protein expression; however, this 

involves innovative assay development.31,32

Directed evolution (DE) further builds upon site-saturation mutagenesis methods by 

repeated rounds of selection and mutagenesis to improve protein fitness, akin to mimicking 

natural evolutionary processes.33 Mutations can be made in a random fashion or a directed 

manner if prior knowledge about the protein’s function and the mechanism is known. 
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Then, selective pressure (screening) is conducted to assess the functional impact of each 

mutation. Traditional, greedy DE optimizes each position iteratively while not considering 

epistatic interactions between sites. This works well for functions accessible through small 

steps in sequence space but may become trapped in local minima. ML-guided DE has 

recently received attention, and both methods’ intersection has proved successful for protein 

engineering tasks.34 Such methods are tightly integrated with the DE screening process 

and thus will be excluded from the following VEP tools, but have shown great promise in 

accelerating protein engineering efforts.

VARIANT EFFECT PREDICTION METHODS

Models that attempt to capture the relationship between a protein sequence and function 

are known as variant effect prediction (VEP) methods (e.g., given a protein sequence and 

potential mutation, output the functional change). Much work has been done to develop 

VEP methods.27,35–44 These primarily differ in their approach to which information is 

utilized to develop and fit the VEP model, and they can be categorized as fixed features, 

supervised, unsupervised, and metapredictor methods. An overview of different standard 

VEP model approaches is shown in Figure 1. An independent study of the agreement 

between experimental DMS studies and many VEP models was recently reported in the 

literature.45 A survey of different approaches is highlighted herein, with contributions 

preceding advances related to recent deep learning (DL) methods noted.

Fixed Feature Variant Prediction Methods.

Fixed-feature VEP methods include some of the first approaches to evaluating the effect of 

mutations on protein function, or rather, mutation toleration at a given site. Such methods 

do not involve ML and are direct statistics from given inputs and features. These are often 

more straightforward methods, based on averaged quantities about amino acid frequency and 

amino acid properties (size, charge, and hydrophobicity). These methods do not fit a training 

dataset and are the most general methods.

One example is BLOSUM62, a block substitution scoring matrix.46 Here, protein sequences 

with ≥62% identity were aligned, and the frequency of observed amino acid substitutions 

was determined. BLOSUM62 provides a sense of tolerance between amino acids, because 

of their chemical properties and estimated perturbation. It is not necessarily a VEP 

method, but this is still commonly used as the default scoring matrix for many multiple 

sequence alignment (MSA) methods. In the independent evaluation by Livesey and Marsh, 

multiple methods perform worse than this substitution matrix, highlighting the difficulty in 

developing universal predictors that capture the protein sequence to function relationship.

Another commonly used static feature method is SIFT (and SIFT 4G), which is similar, 

in principle, to BLOSUM methods.35,47 Briefly, homologous sequences are found near the 

protein sequence of interest by searching large-scale sequence databases. After clustering 

nearly identical sequences, an MSA is generated for all the related sequences. Finally, 

each amino acid substitution probability is calculated using Dirichlet mixtures.48 The SIFT 

method was updated to reduce computation in SIFT 4G, enabling the process to scale to 

genome-wide calculations. Learning from MSAs has carried through the years for VEP 
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models, as recent advances such as DeepSequence and ECNet (discussed later) rely on such 

information for predictions.27,40 Still, BLOSUM and SIFT are accessible statistical methods 

in deciphering the sequence to fitness landscape and are often incorporated into more recent 

approaches.

Supervised Variant Prediction Methods.

Supervised VEP methods rely on fitting models to experimental measurements of the fitness 

landscape, which often is derived from DMS experiments, because of their large-scale 

datasets. Models resulting from supervised VEP methods attempt to capture the relationship 

between a set of input features and an experimental fitness for some mutations, then predict 

the fitness for unseen input features (i.e., new mutations). Although they are not always 

readily generalizable, they often do well in prediction tasks.

SNPs&GO incorporates sequence features in fitting to clinical genetic variant human disease 

data.49,50 Livesey and Marsh found a strong correlation with SNPs&GO predictions and 

DMS data for human and yeast proteins.45 Here, a support vector machine (SVM) ML 

model was used to categorize mutations as disease-causing or not. SVMs typically utilize 

the so-called “kernel trick” to increase data dimensionality before determining decision 

boundaries. In the successor SNPs&GO3D, information about the structure within 6 Å of the 

mutation site is considered in making predictions. However, incorporating static structural 

information did not regularly improve predictions for correlation with matching DMS data. 

Although counterintuitive, this may reflect the importance of evolutionary information in 

predicting variant effects.

The Envision predictor from Gray et al. is a random forest (RF) regressor on DMS 

datasets of eight proteins.39 While other prediction models existed, Envision was the 

first model directly trained on large datasets of molecular variant effects. One set of 

features was used per mutation, although not all features were available for all proteins, 

including structural or evolutionary information. Developing a generalizable model during 

the training process was emphasized, so a “leave-one-protein-out” and standard 10-fold 

cross-validation methods were used during dataset splitting. Because of Envision’s decision 

tree ensemble architecture, feature importance can easily be extracted by summing each 

feature’s frequency. The top three critical features were the B-factor, solvent accessibility, 

and sequence identity to the closest homologue with mutation. Structural and evolutionary 

features have been previously shown as necessary in predicting the functional impacts of 

mutations.51–53 The authors noted that the structural and evolutionary features’ masking 

reduced prediction performance by 39% and 18%, respectively. The importance of structural 

information for VEP across supervised approaches differs, and methods incorporating 

such spatial information may require further exploration. As with any model, feature 

completeness must be examined and considered for new targets of interest.

TLmutation utilizes transfer learning to adapt evolutionary couplings to fitness 

measurements.26 Here, Potts models built from EVcouplings38 are masked to only include 

residue–residue interactions that contribute to predicting DMS data (function information)

—thereby removing pairs that primarily contribute to protein survival. By incorporating 

transfer learning, the large corpus of unlabeled biological data can be combined with labeled 
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experimental data. This approach demonstrated improved prediction accuracy and could 

extend existing function information to new proteins and mutations. TLmutation could also 

transfer function predictions across related proteins and further improved the prediction of 

higher-order variants solely from single-variant fitness data.

One recent approach by Song et al. takes a modified approach where a positive-unlabeled 

framework was developed.54 Here, the treatment of high and low fitness sequences and 

sequence labeling (i.e., the appearance of the variant’s sequence after sequencing) are 

modeled as separate outcomes. This explicit separation alleviates the inherent bias that arises 

from the challenge of isolating sequences with negative fitness, which may shift the model’s 

decision threshold. The authors demonstrate improved performance in classifying mutant 

fitness over unsupervised and structural methods and designed Bgl3 variants with enhanced 

thermal tolerance. Incorporating explicit statistical modeling in variant effect prediction 

methods may improve accuracy in modeling sequence–function relationships and aid in 

the understanding of predicted variants. Previous statistical modeling of DMS fitness has 

enabled protein structure predictions by identifying key residue–residue interactions and, 

therefore, would likely combine well with VEP efforts.55

Supervised models rely on labeled (i.e., known) variant information during the model 

creation process, although this may not translate to more accurate matching with the 

experimental variant function. As methods progress, more importance will be placed on 

effectively bridging the gap between unlabeled biological data, such as protein sequences, 

and other biological experiments like variant fitness measurements—either through transfer 

learning or incorporating multiple data sources into the training process. Supervised models 

may also suffer issues of data circularity, although this is beyond the scope of this Review.56 

Briefly, an issue arises as supervised models are created with labeled variants and then 

assessed with the same mutations, thus inflating the generalized performance.

Unsupervised Variant Prediction Methods.

Unsupervised VEP methods do not fit experimental data and often rely on evolutionary 

information to make predictions. This entails methods that capture the frequencies and 

dependencies among amino acid residues given evolutionary pressure. Despite not being 

trained with actual protein fitness measurements, these methods perform strongly, because 

of the extensive protein sequence information available. Such methods also avoid data 

circularity and overfitting to the training protein families.

Multiple methods have explored this area, including EVmutation, DeepSequence, and 

SeqDesign methods.38,40,57 While sequence conservation from constructing MSAs has 

been employed previously, the dependencies among residues have not been explicitly 

captured. Here, models capture the dependencies among residues; this is otherwise known as 

epistasis—which has been shown to affect molecular function.58 First, in this line of work, 

EVmutation explicitly models the evolutionary landscape as a statistical energy function 

with site-specific bias and pairwise interaction terms. EVmutation is not a deep learning-

based (DL) method but rather a statistical model capturing dependencies across pairs of 

residues. To improve upon EVmutation and capture higher-order epistatic relationships, 

DeepSequence was developed—which employs a variational autoencoder framework to 
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model the evolutionary fitness landscape. DeepSequence previously had the best agreement 

with experimental datasets, although additional supervised DL methods have been published 

since that evaluation.45 DeepSequence learns the probability of a given mutation at a site 

given the sequence from a protein family’s evolutionary history. Lastly, SeqDesign removes 

the constraint of learning from aligned sequences.57 However, this is a deep autoregressive 

generative model (a form of a convolutional neural network) and thus discussed later. These 

models have greatly expanded the efforts to adequately capture the sequence to fitness 

landscape and underlying dependencies, utilizing unlabeled biological data.

Supervised and unsupervised VEP methods each have their unique advantages, and future 

work will likely focus on reconciling the two (although TLmutation and ECNet have 

already begun such pursuits26,27). While unsupervised methods readily generalize across 

protein space, they neglect to learn from the many labeled mutagenesis datasets appearing 

in the literature. Both data sources comprise valuable information for developing VEP 

methods, and neither should be neglected. However, when using datasets for assessing 

model performance, caution should be taken as model architectures, parameters, and 

hyperparameters may over-represent training set protein families, and real-world prediction 

accuracy may be overstated. As VEP models become routine in variant prioritization and 

clinical applications, emphasis must be placed on uniform, generalizable performance across 

the proteome.

Metapredictor Variant Prediction Methods.

Metapredictor methods leverage the predictive power of ensembling models together to 

improve performance. Here, the outputs of other VEP models are used as inputs and 

typically trained similarly to supervised learning methods. Model ensembles benefit when 

individual models are accurate and diverse in task specialty (i.e., which protein datasets are 

best matched by each particular model), leading to increased generalization.59

Of note is the REVEL VEP method.37 REVEL combines 13 other VEP tools as features and 

is an RF ML method trained on rare neutral and disease variants. The features of greatest 

significance in the developed RF were the FATHMM and VEST models.60,61 FATHMM 

employs a hidden Markov modeling method to analyze MSAs, which is unique among the 

other techniques, likely contributing to high feature importance and REVEL’s enhanced 

performance over other metapredictors.

Ensemble learning has not been applied uniformly to VEP methods with DL, although 

it has been used in some existing DL models. Multiple diverse predictors are trained for 

a task in ensemble learning, and predictions are consolidated across them.62 ELASPIC2 

incorporates features from a pretrained transformer and graph convolutional neural networks 

and models mutation effect on stability and protein binding.42 Neural networks typically 

have high output variance and are sensitive to training details, so combining multiple models 

improves performance and provides error estimates. Creating a metapredictor with other 

strong VEP predictors, such as DeepSequence, has yet to be done. Each additional model to 

make predictions adds computational cost and complexity of training and inference. ECNet, 

discussed later, does take a similar approach to EVmutation in its learning process.
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DEEP LEARNING METHODS

Convolutional Neural Networks (Supervised Methods).

Convolutional neural networks (CNNs) are commonly employed for computer vision tasks 

but have also been applied to various domains. Such architectures work by sliding filters 

(kernels) over inputs that detect patterns in the underlying data through the training process. 

For example, in image recognition tasks, the filters often detect oriented edges and form 

shapes from edges. A diagram of a CNN architecture is shown in Figure 2a. By having 

multiple convolutional layers stacked together, the network can accumulate context and 

feed the activations to dense layers for predictions. Often, CNNs are applied to an array of 

multidimensional inputs, such as the pixels in an image having a height, width, and three 

color channels—although CNNs can operate over an arbitrary number of dimensions.

Recent developments have focused on leveraging CNNs for protein function prediction by 

devising models that can learn from the biophysical environment of mutations. Xu et al. 

completed a thorough examination of protein representation features and supervised models 

for protein engineering.41 Here, combinations of protein features and model architectures 

were examined, including sequence, embedding, and structural features. In addition, CNNs, 

RFs, SVMs, and three other ML methods were considered with each feature representation. 

It was found that overall, sequence-based amino acid descriptors with CNN models 

outperformed other methods across multiple protein types, likely due to the high-level 

context accumulation CNNs accomplish.

Another line of work has focused on a specific type of CNN: deep autoregressive generative 

models. Such methods are unsupervised or semisupervised, dilated, one-dimensional CNNs 

that learn to predict the following amino acid given all preceding residues in the sequence. 

The major advancement of autoregressive generative models is capturing information 

without deep sequence alignments—a limitation of DeepSequence for viral proteins. The 

first model developed was mutationTCN,63 which was shown to perform similarly to 

DeepSequence. The mutationTCN model was improved upon using a form of knowledge 

distillation to develop MTBAN, which shows increased performance at the cost of longer 

training times.43 As the successor to DeepSequence, SeqDesign was developed to model 

sequences with highly variable regions, such as antibodies.57 SeqDesign performs on par 

in matching experimental data as DeepSequence, although the sequence alignment-based 

method does perform better in some instances. While SeqDesign may be used as a VEP 

model, emphasis was placed on generating viable, novel protein sequences.

CNNs have demonstrated great predictive power and capability in learning the fitness 

landscape of multiple proteins. Other applications have utilized CNNs for protein active site 

detection, structural mutant classification, and thermostability estimation.64–67 Applications 

for protein engineering, variant effect estimation, and sequence design have been considered.

Graph Neural Networks (Supervised Methods).

Graph neural networks (GNNs) are models that operate on input graph structures (Figure 

2b). Graphs consist of connected nodes through edges and capture information about a 

network. Among biological domains, many examples of natural phenomena lend themselves 
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to graph structures. For example, molecules are graphs with atoms being nodes and bonds 

being edges, while proteins are graphs where nodes are amino acids, and the edges are bonds 

or the distance between them. Gene or protein interactions are also often considered network 

graph structures. Similar to CNNs, GNNs accumulate context about the graph’s structure, 

either at the entire graph or node levels. After the training process, the model can capture the 

relationship between nodes and the entire network.

Past ML work on incorporating graph structure into predicting the effects of mutations has 

primarily focused on encoding the context of a mutation (the local environment surrounding 

the mutation site) for other tasks. The rationale is that the modification to the local 

environment is more telling of a mutation’s effect than only the mutation identity itself 

(although the evolutionary context may also dwarf structural information, as seen by the 

success of unsupervised methods).

One such recent example of utilizing GNNs for VEP was completed by Gelman et al.68 

Briefly, the fitness sequence landscape was modeled from DMS data using convolutional 

and graph convolutional neural networks. The protein structure graph has residues as nodes, 

and edges are formed between residues below a threshold distance to create an unweighted, 

undirected graph. Interestingly, explicitly including each protein’s structure in the network 

architecture did not improve model performance over the fully connected or sequence 

convolutional approaches. Even shuffling the graph structure of the network architecture, 

when using a final fully connected layer, did not essentially degrade the correlation with 

the experimental data. While protein structure is important for determining the impact of 

mutations on protein function, neural networks may overcome explicit structural constraints 

through parameter sharing and already capturing prevalent nonlinear relationships.

It is a natural extension of protein structure to consider the biomolecule as a network of 

residue interactions, which may better predict mutational effects. Reconciling unsupervised, 

evolutionary guided sequence-based approaches with structural graph representations may 

also demonstrate further insights into the mechanism of mutational effects when provided 

with appropriate datasets. Molecular dynamics simulations may aid these methods in 

predicting important future contacts or learning useful embeddings for additional tasks.

Natural Language Embeddings (Supervised and Unsupervised Methods).

One significant challenge in computational biology is how to best represent biomolecules 

as features for ML tasks. Natural language processing (NLP) has accelerated many speech-

related tasks in recent years, including machine translation and image captioning. Such 

models learn the contextual meaning of words and their relationships in a continuous 

space.69 For example, the distance between “king” and “prince” for the language embedding 

should be similar to the distance between “queen” and “princess”. Distances in the 

embedding space should correspond to a semantic meaning between concepts. An overview 

of NLP embeddings for protein sequences is shown in Figure 2c.

Natural language models have also been applied to the language of life–protein amino acid 

sequences. Such models capture a global view of the large protein space landscape, and 

additionally, these models have not been evaluated uniformly as features for predicting 
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protein function. Instead of treating each amino acid as an independent entity, such models 

learn which amino acid patterns are prevalent by training on up to billions of sequenced 

proteins. One example might be that two polar, uncharged amino acids, such as serine and 

threonine, would be encoded similarly, since they have similar physicochemical properties. 

Again, this extends to entire protein sequences, not just amino acids. Analogous to words 

with similar meanings, we can consider two proteins with similar structures and functions 

occupying similar positions in the embedding space and the converse scenario for two 

distantly related proteins.

A few natural language embedding representations of proteins have been developed, 

and these often contain information about the sequence’s organismal origin, structural 

information, evolutionary information, and functional information. Alley et al. demonstrated 

the usefulness of simple models utilizing the data-driven embedding as features for 

various protein engineering tasks.70 Elnaggar et al. employed their developed language 

model embeddings to predict protein localization and solubility, among other properties.71 

Because of the high cost of training natural language models, NLP method development is 

complex.72 However, a developed Python package eases the barrier for using the language 

models for inference only.73

One recent work employing language embeddings with past approaches is ECNet, which 

combines global and local evolutionary context into a single DL model for VEP.27 The 

global evolutionary context, essentially where the protein sequence lies in the context of 

all protein sequences, is provided by the natural language embedding as a general protein 

representation. A similar approach to EVmutation was taken for local evolutionary context, 

where epistatic pairwise interactions are explicitly learned from an MSA of homologous 

protein sequences. ECNet outperforms DeepSequence in VEP, although this is a supervised 

method employing DMS data for a given protein in the model training process. For proteins 

without DMS data available, ECNet cannot yet be applied—although it is of great utility for 

protein engineering tasks and the prioritization of constructing higher-order variants.

Other models have also been built on top of natural language embeddings for predicting 

conservation and variant effects.44,74 Bepler and Berger recently authored a more in-depth 

review of recent progress in protein sequence language models.75

DISCUSSION AND CHALLENGES

Understanding a mutation’s impact on protein function remains an elusive task across the 

many biological disciplines. Much progress has been made in VEP methods, especially 

with the rise of DL methods, including CNNs, GNNs, and NLP developments for proteins. 

Recent advances in DL methods have accelerated the modeling of the protein fitness 

landscape. However, no model currently captures the sequence and structural effects on 

protein function (or stability) to full effect. There are still many advances in applying DL 

methods for predicting changes in protein function.
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Data Availability Sources.

ML tools improve with increased data types and availability, and VEP methods are not an 

exception. More diverse sets of proteins are necessary to develop generalizable training 

sets that do not overly favor parts of protein space that have been sampled, such as 

screening more membrane proteins. As the cost of sequencing continues to decrease and 

novel assay development continues, more protein sequence-function datasets are likely to 

be released. However, with the rise in sequence–function relationship dataset collection 

efforts, we encourage such datasets to be publicly accessible and adequately annotated 

with experimental conditions for use by others. The FAIR data principles provide high-

level guidelines for data sharing,76 and consolidated databases such as MaveDB and the 

NCBI Gene Expression Omnibus provide repositories for data deposition.77,78 Providing a 

uniform format and accessible data structures for downstream ML applications will enable 

quicker model development, increase training set sizes, and accelerate research efforts. 

Similar practices have been applied for the standardized reporting of enzyme data, namely, 

EnzymeML and STRENDA.79,80

Adequately capturing epistatic interactions also remains a challenge in developing VEP 

tools. Typically, protein fitness datasets only consider single mutations to the WT protein 

sequence, making it challenging to model higher-order mutations effectively due to 

nonadditive epistatic interactions. As more datasets are collected, screening a subset of 

double mutants may allow ML models to uncover long-range site interactions in regulating 

protein function.

The experimental efforts in collecting sequence-function data for developing VEP methods 

also face challenges, as assessing sequence–function relationships may not always be 

straightforward. A balance must be maintained when scaling up experimental efforts 

for larger proteins, as the variants must be adequately sampled during mutagenesis.81 

Otherwise, data accuracy may suffer, and the agreement between replicates may break down. 

In addition, selection strategies need to reflect the type of function sought after—which 

may be difficult to probe in an assay amenable to high throughput screening. Most often, 

this includes fluorescent reporters, chaining protein activity to overall cell survivability, 

and using yeast or phage display methods. If the sequence–function relationship of interest 

does not neatly fit into one of the methods mentioned above, creativity in assay design is 

required.82 Lastly, a historically biased sampling of variants from concentrated locations 

in the proteome (protein space) is noted. To develop generalizable VEP models capable 

of estimating specific functional impacts for a wide variety of protein functions, DMS 

data from across the proteome is necessary. Otherwise, models developed without such 

data will be biased in accuracy toward the training set proteins. Predictions of protein 

stability have already been shown to be sensitive to training dataset dependence,83 so 

supervised VEP methods will likely behave similarly. In recent years, experimental efforts 

have been improving for expanding the collection of large-scale protein sequence–function 

relationships assessed. Yet, future work will likely consider prioritizing undersampled 

protein functions and maintaining dataset quality.

One foreseeable path forward in expanding the types of data models used is to include 

protein dynamics in predicting functional effects. While sequence and structure provide a 
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blueprint and snapshot of three-dimensional arrangement, changes in protein motions and 

the conformational ensemble may provide essential information for predicting functional 

effects. Mutations often shift the relative populations in the conformational ensemble, 

and acquiring and introducing this data into the ML pipeline would likely enhance VEP 

accuracy. As ML reduces the screening burden of protein sequences, an additional step 

could be relatively short molecular simulations to estimate the motions of variants, adding 

another data source into the computational pipeline. To the authors’ knowledge, protein 

dynamics, though, have not been explicitly included in a VEP model. However, they may 

demonstrate increased performance or reveal information about the effects of mutations 

on the conformational ensemble. Molecular dynamics (MD) simulations provide structural 

insights into protein function by integrating the equations of motion over time.84,85 

Perturbations to the protein’s sequence may shift the conformational ensemble to favor 

different states from the WT sequence or may introduce entirely new conformations for the 

protein to adapt. Only including a single protein structure in model development may be 

limiting predictive accuracy for variants.

Advanced Machine Learning Methods and Interpretability.

ML achievements occur rapidly, and computational biologists must be at the forefront of 

adopting new developments to problems in the biological domain. There have been many 

successful approaches to developing VEP models, but it is not easy to piece the many 

successes together into one comprehensive method. The field of meta-learning aims to build 

ML models capable of improving the learning process itself.86 Upcoming VEP methods 

will likely borrow meta-learning ideas to combine the many heterogeneous biological 

data sources and make the most informed predictions across various subtasks. Protein 

sequences, structures, dynamics, and functional assays all represent assorted facets of the 

entire biological process. Next-generation VEP tools should include as much information as 

possible in informing variant function predictions.

A recent trend in the broader ML community has involved the interpretability of models, 

such that humans are capable of understanding the features that lead to a model’s 

prediction.87 Here, mapping predictions to the input features is crucial, especially for 

problems in protein engineering, as such explanations are often helpful in understanding 

biological mechanisms and valuable for rational design. In the development of therapeutics, 

explainability is also vital in producing safe and effective biologics. One such approach 

is Shapely Additive Explanations (SHAP), which has gained much attention by using a 

game-theoretic approach to relate feature contributions to individual predictions.88 In this 

case, the evolutionary history, amino acid properties, or other features could be assigned 

importance in altering functional effects.

Similarly, since incorporating MD data may improve VEP accuracy, including such 

protein dynamics would provide insight into understanding the biophysical mechanism 

of mutations. For example, a mutation may only interact with a critical residue in one 

conformational state, while no interaction would ordinarily be inferred from the static 

crystal structure. Knowledge of residue–residue interactions that only occur for specific 

conformations is valuable information for a VEP model. Combining MD simulations and 
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DMS experiments have shown success in prior work explaining the properties of variants. 

However, no VEP model to date has directly integrated both sources of information in 

informing predictions.32,89–91 Related work has demonstrated the ability of ML methods 

for extracting structural difference signatures from high-dimensional MD simulations and 

for generating conformational ensembles, so future work may combine such methods with 

existing VEP ideas.92,93 MD simulations provide a wealth of information about a mutation’s 

resulting impacts on structure and dynamics. The next generation of VEP models may use 

such information to design and explain variant effects.

Outlook.

The most accurate VEP method will consider all facets of protein function, expanding 

upon local and global evolutionary contexts and likely considering mutant impacts on 

protein dynamics, thus improving protein engineering efforts. By assessing novel sequences 

in silico, such protein engineering efforts would be dramatically accelerated, improving 

efforts across the medical, chemical, environmental, food, and other disciplines. The 

Critical Assessment of Genome Interpretation for evaluating existing methods will also 

spur advancements in the VEP field, much the way it revolutionized the protein folding 

problem.94,95 Understanding mutational impacts on protein function are critical for protein 

engineering efforts and will improve overall societal health and well-being.

ACKNOWLEDGMENTS

The authors thank Matthew Chan for creating the overview graphic. Adapted by J.H. for use as a journal cover.

Funding

This work was supported by the National Institutes of Health, under Award No. R35GM142745, and seed grant 
from the Cancer Center at Illinois to D.S., and the Chemistry-Biology Interface Research Training Program (No. 
T32-GM070421) and Samuel W. Parr Fellowship to J.H.

Biographies

Jesse Horne is a Ph.D. student in the Department of Chemical and Biomolecular 

Engineering at the University of Illinois Urbana–Champaign. He joined the Shukla group in 

Fall 2020 as a Fellow of the NIH Chemistry-Biology Interface Training Program. Originally 

from Las Vegas, NV, he obtained his B.S. and M.S. degrees in Chemical Engineering from 

the University of Alabama. Currently, his research interests include developing machine 

learning algorithms for predicting mutant protein function and generating novel small 

molecules, with applications in improving healthcare and agriculture.

Horne and Shukla Page 14

Ind Eng Chem Res. Author manuscript; available in PMC 2022 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Prof. Diwakar Shukla is an associate professor in the Department of Chemical and 

Biomolecular Engineering at the University of Illinois Urbana–Champaign. He is also an 

affiliate faculty of the Center for Biophysics and Quantitative Biology, Plant Biology and 

Bioengineering. His laboratory focuses on studying the underlying molecular mechanisms 

of biological processes, such as substrate transport across membranes and cell signaling 

using computational and experimental approaches. Prof. Shukla earned his Ph.D. from the 

Massachusetts Institute of Technology and completed postdoctoral research at Stanford 

University.

REFERENCES

(1). Gene Ontology Consortium. The Gene Ontology (GO) Database and Informatics Resource. 
Nucleic Acids Res. 2004, 32, 258D–261.

(2). Sinai S; Kelsic ED A Primer on Model-Guided Exploration of Fitness Landscapes for Biological 
Sequence Design. arXiv.org, 2020 (accessed on Nov. 17, 2020).

(3). Ng PC; Henikoff S Predicting the Effects of Amino Acid Substitutions on Protein Function. Annu. 
Rev. Genomics Hum. Genet 2006, 7, 61–80. [PubMed: 16824020] 

(4). Huang P-S; Boyken SE; Baker D The Coming of Age of de Novo Protein Design. Nature 2016, 
537, 320–327. [PubMed: 27629638] 

(5). Woolfson DN A Brief History of de Novo Protein Design: Minimal, Rational, and Computational. 
J. Mol. Biol 2021, 433, 167160. [PubMed: 34298061] 

(6). Turanli-Yildiz B; Alkim C; Petek Z In Protein Engineering; Kaumaya P, Ed.; InTech, 2012.

(7). Ulitzka M; Carrara S; Grzeschik J; Kornmann H; Hock B; Kolmar H Engineering Therapeutic 
Antibodies for Patient Safety: Tackling the Immunogenicity Problem. Protein Eng., Des. Sel 
2020, 33, gzaa025. [PubMed: 33128053] 

(8). Goetz LH; Schork NJ Personalized Medicine: Motivation, Challenges, and Progress. Fertil. Steril 
2018, 109, 952–963. [PubMed: 29935653] 

(9). Suwinski P; Ong C; Ling MHT; Poh YM; Khan AM; Ong HS Advancing Personalized Medicine 
Through the Application of Whole Exome Sequencing and Big Data Analytics. Front. Genet 
2019, 10, 49. [PubMed: 30809243] 

(10). Woodley JM Integrating Protein Engineering with Process Design for Biocatalysis. Philos. Trans. 
R. Soc., A 2018, 376, 20170062.

(11). Meng X; Yang L; Liu H; Li Q; Xu G; Zhang Y; Guan F; Zhang Y; Zhang W; Wu N; Tian J 
Protein Engineering of Stable IsPETase for PET Plastic Degradation by Premuse. Int. J. Biol. 
Macromol 2021, 180, 667–676. [PubMed: 33753197] 

(12). Wilson RH; Alonso H; Whitney SM Evolving Methanococcoides Burtonii Archaeal Rubisco for 
Improved Photo-synthesis and Plant Growth. Sci. Rep 2016, 6, 22284. [PubMed: 26926260] 

(13). Kapoor S; Rafiq A; Sharma S Protein Engineering and Its Applications in Food Industry. Crit. 
Rev. Food Sci. Nutr 2017, 57, 2321–2329. [PubMed: 26065315] 

(14). Lutz S; Iamurri SM In Protein Engineering: Methods and Protocols; Bornscheuer UT, Höhne M, 
Eds.; Methods in Molecular Biology; Springer: New York, 2017; pp 1–12.

(15). Siedhoff NE; Schwaneberg U; Davari MD In Methods in Enzymology; Tawfik DS, Ed.; Enzyme 
Engineering and Evolution: General Methods, Vol. 643; Academic Press, 2020; pp 281–315.

(16). Mazurenko S; Prokop Z; Damborsky J Machine Learning in Enzyme Engineering. ACS Catal. 
2020, 10, 1210–1223.

Horne and Shukla Page 15

Ind Eng Chem Res. Author manuscript; available in PMC 2022 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://arxiv.org/


(17). Siloto RMP; Weselake RJ Site Saturation Mutagenesis: Methods and Applications in Protein 
Engineering. Biocatal. Agric. Biotechnol 2012, 1, 181–189.

(18). Packer MS; Liu DR Methods for the Directed Evolution of Proteins. Nat. Rev. Genet 2015, 16, 
379–394. [PubMed: 26055155] 

(19). Bachman J Laboratory Methods in Enzymology: DNA; 2013; Vol. 529, p 241.

(20). Morrison KL; Weiss GA Combinatorial Alanine-Scanning. Curr. Opin. Chem. Biol 2001, 5, 
302–307. [PubMed: 11479122] 

(21). Araya CL; Fowler DM Deep Mutational Scanning: Assessing Protein Function on a Massive 
Scale. Trends Biotechnol. 2011, 29, 435–442. [PubMed: 21561674] 

(22). Fowler DM; Fields S Deep Mutational Scanning: A New Style of Protein Science. Nat. Methods 
2014, 11, 801–807. [PubMed: 25075907] 

(23). Gupta K; Varadarajan R Insights into Protein Structure, Stability and Function from Saturation 
Mutagenesis. Curr. Opin. Struct. Biol 2018, 50, 117–125. [PubMed: 29505936] 

(24). Dunham A; Beltrao P Exploring Amino Acid Functions in a Deep Mutational Landscape. Mol. 
Syst. Biol 2021, 17, e10305. [PubMed: 34292650] 

(25). Sarkisyan KS; et al. Local Fitness Landscape of the Green Fluorescent Protein. Nature 2016, 533, 
397–401. [PubMed: 27193686] 

(26). Shamsi Z; Chan M; Shukla D TLmutation: Predicting the Effects of Mutations Using Transfer 
Learning. J. Phys. Chem. B 2020, 124, 3845–3854. [PubMed: 32308006] 

(27). Luo Y; Jiang G; Yu T; Liu Y; Vo L; Ding H; Su Y; Qian WW; Zhao H; Peng J ECNet Is 
an Evolutionary Context-Integrated Deep Learning Framework for Protein Engineering. Nat. 
Commun 2021, 12, 5743. [PubMed: 34593817] 

(28). Fowler DM; Stephany JJ; Fields S Measuring the Activity of Protein Variants on a Large Scale 
Using Deep Mutational Scanning. Nat. Protoc 2014, 9, 2267–2284. [PubMed: 25167058] 

(29). Wrenbeck EE; Faber MS; Whitehead TA Deep Sequencing Methods for Protein Engineering and 
Design. Curr. Opin. Struct. Biol 2017, 45, 36–44. [PubMed: 27886568] 

(30). Starita LM; Fields S Deep Mutational Scanning: A Highly Parallel Method to Measure the 
Effects of Mutation on Protein Function. Cold Spring Harb. Protoc 2015, 711–714. [PubMed: 
26240414] 

(31). Jones EM; Lubock NB; Venkatakrishnan A; Wang J; Tseng AM; Paggi JM; Latorraca NR; 
Cancilla D; Satyadi M; Davis JE; Babu MM; Dror RO; Kosuri S Structural and Functional 
Characterization of G Protein–Coupled Receptors with Deep Mutational Scanning. eLife 2020, 9, 
e54895. [PubMed: 33084570] 

(32). Young HJ; Chan M; Selvam B; Szymanski SK; Shukla D; Procko E Deep Mutagenesis of a 
Transporter for Uptake of a Non-Native Substrate Identifies Conformationally Dynamic Regions. 
bioRxiv, Biochem. 2021, (accessed on Nov. 10, 2021).

(33). Romero PA; Arnold FH Exploring Protein Fitness Landscapes by Directed Evolution. Nat. Rev. 
Mol. Cell Biol 2009, 10, 866–876. [PubMed: 19935669] 

(34). Wittmann BJ; Yue Y; Arnold FH Informed Training Set Design Enables Efficient Machine 
Learning-Assisted Directed Protein Evolution. Cell Syst. 2021, 12, 1026–1045.e7. [PubMed: 
34416172] 

(35). Sim N-L; Kumar P; Hu J; Henikoff S; Schneider G; Ng PC SIFT Web Server: Predicting Effects 
of Amino Acid Substitutions on Proteins. Nucleic Acids Res. 2012, 40, W452–W457. [PubMed: 
22689647] 

(36). Adzhubei I; Jordan DM; Sunyaev SR Predicting Functional Effect of Human Missense Mutations 
Using PolyPhen-2. Curr. Protoc. Hum. Genet 2013, 76, 7.20.1–7.20.41.

(37). Ioannidis NM REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense 
Variants. Am. J. Hum. Genet 2016, 99, 877–885. [PubMed: 27666373] 

(38). Hopf TA; Ingraham JB; Poelwijk FJ; Schärfe CPI; Springer M; Sander C; Marks DS Mutation 
Effects Predicted from Sequence Co-Variation. Nat. Biotechnol 2017, 35, 128–135. [PubMed: 
28092658] 

Horne and Shukla Page 16

Ind Eng Chem Res. Author manuscript; available in PMC 2022 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(39). Gray VE; Hause RJ; Luebeck J; Shendure J; Fowler DM Quantitative Missense Variant Effect 
Prediction Using Large-Scale Mutagenesis Data. Cell Syst. 2018, 6, 116–124.e3. [PubMed: 
29226803] 

(40). Riesselman AJ; Ingraham JB; Marks DS Deep Generative Models of Genetic Variation Capture 
the Effects of Mutations. Nat. Methods 2018, 15, 816–822. [PubMed: 30250057] 

(41). Xu Y; Verma D; Sheridan RP; Liaw A; Ma J; Marshall NM; McIntosh J; Sherer EC; Svetnik V; 
Johnston JM Deep Dive into Machine Learning Models for Protein Engineering. J. Chem. Inf. 
Model 2020, 60, 2773–2790. [PubMed: 32250622] 

(42). Strokach A; Lu TY; Kim PM ELASPIC2 (EL2): Combining Contextualized Language Models 
and Graph Neural Networks to Predict Effects of Mutations. J. Mol. Biol 2021, 433, 166810. 
[PubMed: 33450251] 

(43). Kim HY; Jeon W; Kim D An Enhanced Variant Effect Predictor Based on a Deep Generative 
Model and the Born-Again Networks. Sci. Rep 2021, 11, 19127. [PubMed: 34580383] 

(44). Sarfati H; Naftaly S; Papo N; Keasar C Predicting Mutant Outcome by Combining Deep 
Mutational Scanning and Machine Learning. Proteins: Struct., Funct., Bioinf 2022, 90, 45–57.

(45). Livesey BJ; Marsh JA Using Deep Mutational Scanning to Benchmark Variant Effect Predictors 
and Identify Disease Mutations. Mol. Syst. Biol 2020, 16, e9380. [PubMed: 32627955] 

(46). Henikoff S; Henikoff JG Amino Acid Substitution Matrices from Protein Blocks. Proc. Natl. 
Acad. Sci. U. S. A 1992, 89, 10915–10919. [PubMed: 1438297] 

(47). Vaser R; Adusumalli S; Leng SN; Sikic M; Ng PC SIFT Missense Predictions for Genomes. Nat. 
Protoc 2016, 11, 1–9. [PubMed: 26633127] 

(48). Sjölander K; Karplus K; Brown M; Hughey R; Krogh A; Mian I; Haussler D Dirichlet Mixtures: 
A Method for Improved Detection of Weak but Significant Protein Sequence Homology. 
Bioinformatics 1996, 12, 327–345.

(49). Calabrese R; Capriotti E; Fariselli P; Martelli PL; Casadio R Functional Annotations Improve 
the Predictive Score of Human Disease-Related Mutations in Proteins. Hum. Mutat 2009, 30, 
1237–1244. [PubMed: 19514061] 

(50). Capriotti E; Calabrese R; Fariselli P; Martelli PL; Altman RB; Casadio R WS-SNPs&GO: A 
Web Server for Predicting the Deleterious Effect of Human Protein Variants Using Functional 
Annotation. BMC Genomics 2013, 14, S6.

(51). Saunders CT; Baker D Evaluation of Structural and Evolutionary Contributions to Deleterious 
Mutation Prediction. J. Mol. Biol 2002, 322, 891–901. [PubMed: 12270722] 

(52). Kumar S; Suleski MP; Markov GJ; Lawrence S; Marco A; Filipski AJ Positional Conservation 
and Amino Acids Shape the Correct Diagnosis and Population Frequencies of Benign and 
Damaging Personal Amino Acid Mutations. Genome Res. 2009, 19, 1562–1569. [PubMed: 
19546171] 

(53). Caldararu O; Blundell TL; Kepp KP Three Simple Properties Explain Protein Stability Change 
upon Mutation. J. Chem. Inf. Model 2021, 61, 1981–1988. [PubMed: 33848149] 

(54). Song H; Bremer BJ; Hinds EC; Raskutti G; Romero PA Inferring Protein Sequence-Function 
Relationships with Large-Scale Positive-Unlabeled Learning. Cell Syst. 2021, 12, 92–101.e8. 
[PubMed: 33212013] 

(55). Braberg H; Echeverria I; Kaake RM; Sali A; Krogan NJ From Systems to Structure—Using 
Genetic Data to Model Protein Structures. Nat. Rev. Genet 2022, 1–13. [PubMed: 34782779] 

(56). Grimm DG; Azencott C-A; Aicheler F; Gieraths U; MacArthur DG; Samocha KE; Cooper DN; 
Stenson PD; Daly MJ; Smoller JW; Duncan LE; Borgwardt KM The Evaluation of Tools Used 
to Predict the Impact of Missense Variants Is Hindered by Two Types of Circularity. Hum. Mutat 
2015, 36, 513–523. [PubMed: 25684150] 

(57). Shin J-E; Riesselman AJ; Kollasch AW; McMahon C; Simon E; Sander C; Manglik A; Kruse 
AC; Marks DS Protein Design and Variant Prediction Using Autoregressive Generative Models. 
Nat. Commun 2021, 12, 2403. [PubMed: 33893299] 

(58). Breen MS; Kemena C; Vlasov PK; Notredame C; Kondrashov FA Epistasis as the Primary Factor 
in Molecular Evolution. Nature 2012, 490, 535–538. [PubMed: 23064225] 

(59). Zhou Z-H In Machine Learning; Zhou Z-H, Ed.; Springer: Singapore, 2021; pp 181–210.

Horne and Shukla Page 17

Ind Eng Chem Res. Author manuscript; available in PMC 2022 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(60). Carter H; Douville C; Stenson PD; Cooper DN; Karchin R Identifying Mendelian Disease Genes 
with the Variant Effect Scoring Tool. BMC Genomics 2013, 14, S3.

(61). Shihab HA; Gough J; Cooper DN; Stenson PD; Barker GLA; Edwards KJ; Day INM; 
Gaunt TR Predicting the Functional, Molecular, and Phenotypic Consequences of Amino Acid 
Substitutions Using Hidden Markov Models. Hum. Mutat 2013, 34, 57–65. [PubMed: 23033316] 

(62). Polikar R In Ensemble Machine Learning: Methods and Applications; Zhang C, Ma Y, Eds.; 
Springer US: Boston, MA, 2012; pp 1–34.

(63). Kim HY; Kim D Prediction of Mutation Effects Using a Deep Temporal Convolutional Network. 
Bioinformatics 2020, 36, 2047–2052. [PubMed: 31746978] 

(64). Jiang M; Wei Z; Zhang S; Wang S; Wang X; Li Z FRSite: Protein Drug Binding Site Prediction 
Based on Faster R–CNN. J. Mol. Graphics Modell 2019, 93, 107454.

(65). Torng W; Altman RB 3D Deep Convolutional Neural Networks for Amino Acid Environment 
Similarity Analysis. BMC Bioinformatics 2017, 18, 302. [PubMed: 28615003] 

(66). Fang X; Huang J; Zhang R; Wang F; Zhang Q; Li G; Yan J; Zhang H; Yan Y; Xu L Convolution 
Neural Network-Based Prediction of Protein Thermostability. J. Chem. Inf. Model 2019, 59, 
4833–4843. [PubMed: 31657922] 

(67). Samaga YBL; Raghunathan S; Priyakumar UD SCONES: Self-Consistent Neural Network 
for Protein Stability Prediction Upon Mutation. J. Phys. Chem. B 2021, 125, 10657–10671. 
[PubMed: 34546056] 

(68). Gelman S; Fahlberg SA; Heinzelman P; Romero PA; Gitter A Neural Networks to Learn Protein 
Sequence–Function Relationships from Deep Mutational Scanning Data. Proc. Natl. Acad. Sci. 
U. S. A 2021, 118, e2104878118. [PubMed: 34815338] 

(69). Cambria E; White B (Natural Language Processing). Curves: A Review of Natural Language 
Processing Research [Review Article] IEEE Comput. Intell. Mag201494857.

(70). Alley EC; Khimulya G; Biswas S; AlQuraishi M; Church GM Unified Rational Protein 
Engineering with Sequence-Based Deep Representation Learning. Nat. Methods 2019, 16, 1315–
1322. [PubMed: 31636460] 

(71). Elnaggar A; Heinzinger M; Dallago C; Rehawi G; Wang Y; Jones L; Gibbs T; Feher T; Angerer 
C; Steinegger M; Bhowmik D; Rost B ProtTrans: Towards Cracking the Language of Life’s Code 
Through Self-Supervised Deep Learning and High Performance Computing. IEEE Trans. Pattern 
Anal. Mach. Intell 2021, 1.

(72). Strubell E; Ganesh A; McCallum A Energy and Policy Considerations for Deep Learning in NLP. 
AAAI 2020, 34, 13693–13696.

(73). Dallago C; Schütze K; Heinzinger M; Olenyi T; Rost B Bio_embeddings: Python Pipeline for 
Fast Visualization of Protein Features Extracted by Language Models. F1000Res 2020, 9, 876.

(74). Marquet C; Heinzinger M; Olenyi T; Dallago C; Erckert K; Bernhofer M; Nechaev D; Rost 
B Embeddings from Protein Language Models Predict Conservation and Variant Effects. Hum. 
Genet 2021, DOI: 10.1007/s00439-021-02411-y.

(75). Bepler T; Berger B Learning the Protein Language: Evolution, Structure, and Function. Cell Syst. 
2021, 12, 654–669.e3. [PubMed: 34139171] 

(76). Wilkinson MD; et al. The FAIR Guiding Principles for Scientific Data Management and 
Stewardship. Sci. Data 2016, 3, 160018. [PubMed: 26978244] 

(77). Esposito D; Weile J; Shendure J; Starita LM; Papenfuss AT; Roth FP; Fowler DM; Rubin AF 
MaveDB: An Open-Source Platform to Distribute and Interpret Data from Multiplexed Assays of 
Variant Effect. Genome Biol. 2019, 20, 223. [PubMed: 31679514] 

(78). Edgar R; Domrachev M; Lash AE Gene Expression Omnibus: NCBI Gene Expression and 
Hybridization Array Data Repository. Nucleic Acids Res. 2002, 30, 207–210. [PubMed: 
11752295] 

(79). Pleiss J Standardized Data, Scalable Documentation, Sustainable Storage – EnzymeML As A 
Basis For FAIR Data Management In Biocatalysis. ChemCatChem. 2021, 13, 3909–3913.

(80). Tipton KF; Armstrong RN; Bakker BM; Bairoch A; Cornish-Bowden A; Halling PJ; Hofmeyr 
J-H; Leyh TS; Kettner C; Raushel FM; Rohwer J; Schomburg D; Steinbeck C Standards for 
Reporting Enzyme Data: The STRENDA Consortium: What It Aims to Do and Why It Should 
Be Helpful. Perspect Sci. 2014, 1, 131–137.

Horne and Shukla Page 18

Ind Eng Chem Res. Author manuscript; available in PMC 2022 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(81). Narayanan KK; Procko E Deep Mutational Scanning of Viral Glycoproteins and Their Host 
Receptors. Front. Mol. Biosci 2021, 8, 636660. [PubMed: 33898517] 

(82). Stein A; Fowler DM; Hartmann-Petersen R; Lindorff-Larsen K Biophysical and Mechanistic 
Models for Disease-Causing Protein Variants. Trends Biochem. Sci 2019, 44, 575–588. 
[PubMed: 30712981] 

(83). Caldararu O; Mehra R; Blundell TL; Kepp KP Systematic Investigation of the Data Set 
Dependency of Protein Stability Predictors. J. Chem. Inf. Model 2020, 60, 4772–4784. [PubMed: 
32786698] 

(84). Shukla D; Hernández CX; Weber JK; Pande VS Markov State Models Provide Insights into 
Dynamic Modulation of Protein Function. Acc. Chem. Res 2015, 48, 414–422. [PubMed: 
25625937] 

(85). Braun E; Gilmer J; Mayes HB; Mobley DL; Monroe JI; Prasad S; Zuckerman DM Best Practices 
for Foundations in Molecular Simulations [Article v1.0]. LiveCoMS 2019, 1, 5957. [PubMed: 
31788666] 

(86). Hospedales T; Antoniou A; Micaelli P; Storkey A Meta-Learning in Neural Networks: A Survey. 
IEEE Trans Pattern Anal Mach Intell. 2021 DOI: 10.1109/TPAMI.2021.3079209.

(87). Molnar C Interpretable Machine Learning; 2019.

(88). Lundberg SM; Lee S-I A Unified Approach to Interpreting Model Predictions. In Advances 
in Neural Information Processing Systems; Guyon I, Luxburg UV, Bengio S, Wallach H, 
Fergus R, Vishwanathan S, Garnett R, Eds.; Curran Associates, Inc., 2017; Vol. 30. https://
proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf

(89). Park J; Selvam B; Sanematsu K; Shigemura N; Shukla D; Procko E Structural Architecture of 
a Dimeric Class C GPCR Based on Co-Trafficking of Sweet Taste Receptor Subunits. J. Biol. 
Chem 2019, 294, 4759–4774. [PubMed: 30723160] 

(90). Chan MC; Selvam B; Young HJ; Procko E; Shukla D The Substrate Import Mechanism of the 
Human Serotonin Transporter. Biophys. J 2022, 121, 715–730. [PubMed: 35114149] 

(91). Chan MC; Procko E; Shukla D Structural Rearrangement of the Serotonin Transporter 
Intracellular Gate Induced by Thr276 Phosphorylation. ACS Chem. Neurosci 2022, 13, 933–945. 
[PubMed: 35258286] 

(92). Ward MD; Zimmerman MI; Meller A; Chung M; Swamidass SJ; Bowman GR Deep Learning the 
Structural Determinants of Protein Biochemical Properties by Comparing Structural Ensembles 
with DiffNets. Nat. Commun 2021, 12, 3023. [PubMed: 34021153] 

(93). Fleetwood O; Kasimova MA; Westerlund AM; Delemotte L Molecular Insights from 
Conformational Ensembles via Machine Learning. Biophys. J 2020, 118, 765–780. [PubMed: 
31952811] 

(94). Hoskins RA; Repo S; Barsky D; Andreoletti G; Moult J; Brenner SE Reports from CAGI: The 
Critical Assessment of Genome Interpretation. Hum. Mutat 2017, 38, 1039–1041. [PubMed: 
28817245] 

(95). Jumper J; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 
583. [PubMed: 34265844] 

Horne and Shukla Page 19

Ind Eng Chem Res. Author manuscript; available in PMC 2022 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf


Figure 1. 
Overview of different VEP model approaches. (a) Fixed feature models are calculations 

from input protein features or MSAs. (b) Unsupervised methods typically learn interactions 

among sites. (c) Supervised models employ labeled fitness or disease variant data in fitting 

mutation features. (d) Metapredictors take in the outputs of other VEP models as features 

into an ensemble model.
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Figure 2. 
Overview of recent trends in DL as VEP models. (a) Convolutional neural networks extract 

patterns from input features and have been applied to many protein predictive tasks. (b) 

Graph neural networks explicitly encode the protein structure as a graph consisting of 

residues as nodes and edges as connections. These benefit from having a meaningful 

neural network arrangement. (c) Natural language embeddings for protein sequences capture 

meaningful relationships at the global and local evolutionary scales. Such embeddings 

capture organism, structural, and functional information.
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