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Abstract

Recently molecularly targeted agents and immunotherapy have been advanced for the treatment of 

relapse or refractory cancer patients, where disease progression-free survival or event-free survival 

is often a primary endpoint for the trial design. However, methods to evaluate two-stage single-

arm phase II trials with a time-to-event endpoint are currently processed under an exponential 

distribution, which limits application of real trial designs. In this paper, we developed an optimal 

two-stage design, which is applied to the four commonly used parametric survival distributions 

and a non-parametric logspline distribution. The proposed method has advantages compared to 

existing methods in that the choice of underlying survival model is more flexible and the power of 

the study is more adequately addressed. Therefore, the proposed optimal two-stage design can be 

routinely used for single-arm phase II trial designs with a time-to-event endpoint as a complement 

to the commonly used Simon’s two-stage design for the binary outcome.
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1 Introduction

Traditional phase II cancer trials are often conducted as single-arm studies to determine 

whether new treatment agents have sufficient antitumor activities to warrant further 

investigation in randomized phase III trials. The antitumor activity for evaluating cytotoxic 

compounds might be quantified by tumor response which is often categorized as a binary 

endpoint: responder or non-responder. The two-stage procedures proposed by Simon [1] are 

commonly used for these trial designs.

However, there are some situations in which tumor response may not be an appropriate 

endpoint. These circumstances occur with agents such as cytostatic, molecularly targeted 
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agents and immunotherapy that can prevent the tumor growth but may not kill the tumor 

cells and/or lead to tumor shrinkage. In such cases, time-to-event (TTE), e.g., disease 

progression-free survival or event-free survival, is an alternative endpoint for the trial design. 

Due to limited methods available to design single-arm phase II trial with a TTE endpoint, 

the TTE endpoint is often dichotomized as a binary endpoint and the trial is designed using 

Simon’s two-stage approach. However, efficiency is greatly compromised by dichotomizing 

the TTE at a fixed landmark time point.

Researchers have proposed a variety of methods for single-arm phase II trial designs with 

TTE as the primary endpoint. To test survival probability at a fixed time point, Case 

and Morgan [2] and Huang et al. [3] developed optimal two-stage designs. Huang and 

Thomas [4] extended their methodology to include three-stage designs. In addition, Lin et 

al. [5], and Wu and Xiong [6] proposed multiple-stage designs. However, one issue for 

such trial designs is the choice of the landmark time point. Furthermore, none of these 

designs are fully efficient. Finkelstein et al. [7], Sun et al. [8], Wu [9,10] and Schmidt 

et al. [11] proposed single-stage designs by using the one-sample log-rank test (OSLRT) 

which evaluates the treatment effect based on the entire survival distribution. Kwak and 

Jung [12] and Belin et al. [13] developed an optimal two-stage design without and with 

restricted follow-up, respectively. However, both Kwak and Jung, and Belin’s two-stage 

designs are implemented under the exponential distribution which limits application for real 

trial designs. Furthermore, the sample size calculations in both Kwak and Jung, and Belin’s 

designs could be underpowered [9].

Motivated by an institutional small-cell lung cancer trial, we developed a flexible and 

accurate optimal two-stage single-arm trial design with a TTE endpoint. The proposed 

method can be applied to the four commonly used parametric survival distributions: Weibull, 

log-normal, gamma and log-logistic. If none of the four parametric survival distributions 

fit the null distribution well, then a non-parametric logspline distribution can be used to fit 

historical data and applied to the trial design. Thus, the choice of the underlying survival 

model is flexible. Furthermore, the exact variance estimate of the OSLRT proposed by Wu 

[9] is used for the two-stage design, thus, the power of the study is adequately provided. 

Therefore, the proposed method can be routinely used for two-stage single-arm phase II 

trials designed with a TTE endpoint that complements the Simon’s two-stage design for a 

binary endpoint.

2 One-Sample Log-Rank Test

The OSLRT was first introduced by Breslow [14], and its applications to the single-arm 

phase II trial designs were discussed by Sun et al. [15], Kwak and Jung [12], Wu [9,10], 

Schmidt et al. [11] and Belin et al. [13]. The study design based on the OSLRT requires 

each patient to be followed until an event occurs or until the end of study. In real practice, 

however, the full follow-up information for a phase II trial is often difficult to obtain in the 

late period of trial, particularly when the accrual duration is long; obtaining the status of 

each patient within a restricted period is more realistic [13].
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In this article, a restricted follow-up time period for each patient is assumed up to a 

clinically meaningful time-point x. Thus, the hypothesis of interest for the trial design is 

given as follows:

H0:S(u) ≤ S0(u) vs . S(u) > S0(u), for all u ≤ x

or equivalent to the hypothesis, in terms of cumulative hazard function,

H0:Λ(u) ≥ Λ0(u) vs Λ(u) < Λ0(u), for all u ≤ x

where S(·) and Λ(·) are the true survival distribution and cumulative hazard function for 

the experimental group, respectively; S0(·) and Λ0(·) are the known survival distribution and 

cumulative hazard function under the null hypothesis, respectively. An alternative survival 

distribution S1(u), or cumulative hazard function Λ1(u) for all u ≤ x needs to be specified for 

the sample size or power calculation.

We assume that the failure time Ti and censoring time Ci are independent and {Ti, Ci, i = 

1, . . ., n} are independent and identically distributed. The observed failure time and failure 

indicator are Xi = Ti ∧ Ci and Δi = I(Ti ≤ Ci), respectively, for the ith subject. On the basis 

of observed data {Xi, Δi, i = 1, · · ·, n}, we define O = ∑i = 1
n Δi as the observed number 

of events, and E = ∑i = 1
n Λ0 Xi  as the expected number of events (asymptotically), then the 

OSLRT is defined by

L = E − O
E . (1)

Note: We reversed the order O and E in the test statistic L so that reducing the number of 

events compared to the null hypothesis provides a positive value of L.

It has been shown that L is asymptotically standard normal distributed under the null 

hypothesis [14]. Hence, we reject null hypothesis H0 with one-sided type I error rate α if L > 

z1−α, where z1−α is the 100(1 − α) percentile of the standard normal distribution.

3 Single-Stage Design

With restricted follow-up, that is each patient is followed for a fixed length of period x, and 

assuming no loss to follow-up during the follow-up time of x, then, censoring time Ci is 

fixed to x, and the survival function of censoring time Ci is G(u) = I(u ≤ x), where I(·) is an 

indicator function. Thus, the sample size for a single-stage design using the OSLRT derived 

with restricted follow-up time x can be simplified as follows:

n0 =
σ0z1 − α + σz1 − β

2

ω2 ,
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where ω = v0 − v1, σ0
2 = v0 and σ2 = v1 − v1

2 + 2v00 − v0
2 − 2v01 + 2v0v1, with v0, v1, v00 and 

v01 given as follows:

v0 = ∫0
x

S1(u)dΛ0(u),

v1 = ∫0
x

S1(x)dΛ1(u),

v00 = ∫0
x

S1(u)Λ0(u)dΛ0(u),

v01 = ∫0
x

S1(u)Λ0(u)dΛ1(u) .

3.1 Optimal Two-Stage Design

Single-arm phase II trials are often designed with an interim analysis so that they can be 

stopped early if a drug or treatment is ineffective. The data are examined at calendar time t ≤ 

τ, where t is measured from the start of study and τ is the duration of a period of enrollment 

ta plus a fixed follow-up time x, i.e. τ = ta + x. Further assuming no loss to follow-up during 

the follow-up period of x, then, we observe the time-to-failure Xi(t) = Ti ∧ x ∧ (t − Ai)+ and 

the failure indicator Δi(t) = I(Ti ≤ x ∧ (t − Ai)+), i = 1, · · ·, n, where Ai is the entry time of 

the ith subject which is assumed to be uniform on [0, ta]. Based on the observed data {Xi(t), 
Δi(t), i = 1, · · ·, n}, let Ni(t, u) = Δi(t)I(Xi(t) ≤ u) and Yi(t, u) = I(Xi(t) ≥ u) be the failure and 

at-risk processes, respectively. To consider a two-stage design with an interim analysis at 

calendar time t1 and final analysis at calendar time τ, the corresponding sample sizes are n1 

and n for the interim analysis and final analysis, respectively. Let Z1 = W 1/σ1 and Z = W /σ
be the OSLRT statistics for the first stage and second stage, respectively [16], where

W 1 = n1
−1/2 ∑

i = 1

n1 ∫0
∞

Yi t1, u dΛ0(u) − Ni t1, du ,

W = n−1/2 ∑
i = 1

n ∫0
∞

Yi(τ, u)dΛ0(u) − Ni(τ, du)

and
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σ1
2 = n1

−1 ∑
i = 1

n1 ∫0
∞

Yi t1, u dΛ0(u),

σ2 = n−1 ∑
i = 1

n ∫0
∞

Yi(τ, u)dΛ0(u) .

Under the null hypothesis H0, the means E(W1|H0) = E(W|H0) = 0 and variances var(W1|H1) 

= ν1 and var(W|H1) = ν, where ν1 and ν are given as follows:

ν1 = ∫0
x

G u, t1 S0(u)dΛ0(u),

ν = ∫0
x

S0(u)dΛ0(u),

and G(u, t1) = P(t1 − A1 > u) = P(A1 < t1 − u) with A1 is uniformly distributed on [0, ta]. 
Thus, G(u, t1) is given as follows:

G u, t1 =
1 u ≤ t1 − ta
t1 − u /ta t1 − ta < u ≤ t1

0 u > t1

Under the null hypothesis H0, we can show that correlation between W1 and W 

is ρ0 = corr W 1, W ∣ H0 = ν1/ν. Furthermore, n1
−1∑i = 1

n1 Y i t1, u  and n−1∑i = 1
n1 Y i t2, u

uniformly converge to S0(u)G(u, t1)I(u ≤ x) and S0(u)I(u ≤ x), respectively, then, σ1
2 ν1

and σ2 ν. Thus, under the null hypothesis, (Z1, Z) is approximately bivariate normal 

distributed with mean μ = (0, 0)′ and variance matrix

Σ =
1 ρ0
ρ0 1

Under the alternative H1, we have E W 1 ∣ H1 = n1ω1 and E W ∣ H1 = nω, where ω1 and 

ω are given as follows:

ω1 = ∫0
x

G u, t1 S1(u)dΛ0(u) − ∫0
x

G u, t1 S1(u)dΛ1(u)

and
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ω = ∫0
x

S1(u)dΛ0(u) − ∫0
x

S1(u)dΛ1(u)

and the exact variance of W1 under H1 is given by σ11
2 = p1 − p1

2 + 2p00 − p0
2 − 2p01 + 2p0p1

with p0, p1, p00 and p01 given as follows:

p0 = ∫0
x

G u, t1 S1(u)dΛ0(u),

p1 = ∫0
x

G u, t1 S1(u)dΛ1(u),

p00 = ∫0
x

G u, t1 S1(u)Λ0(u)dΛ0(u),

p01 = ∫0
x

G u, t1 S1(u)Λ0(u)dΛ1(u) .

Similarly the exact variance of W under H1 is given by 

σ21
2 = v1 − v1

2 + 2v00 − v0
2 − 2v01 + 2v0v1, with v0, v1, v00 and v01 given by equations (3-6).

The correlation between W1 and W is given by ρ1 = σ11/σ21. Furthermore, it can 

be shown that σ1
2 σ01

2 = ∫0
xG u, t1 S1(u)dΛ0(u) and σ2 σ0

2 = ∫0
xS1(u)dΛ0(u). Therefore, 

under the alternative, (Z1, Z) is approximately bivariate normal distributed with a mean 

μ = n1ω1/σ01, nω/σ0 ′ and variance matrix

Σ =
σ11

2 /σ01
2 ρ1σ11σ1/σ01σ0

ρ1σ11σ1/σ01σ0 σ1
2/σ0

2

For a two-stage design, we consider stopping for futility only at the first interim analysis. We 

suppose that the stopping boundaries are c1 and c for the first stage and final analysis. At the 

first stage we stop for futility if Z1 ≤ c1. Otherwise, the trial continues to the second stage 

and we accept futility or reject futility according to Z ≤ c or Z > c, respectively, where the 

boundaries c1 and c satisfy following type I error α and power 1 − β constrains:

P Z1 > c1, Z > c ∣ H0 = α, (2)

P Z1 > c1, Z > c ∣ H1 = 1 − β . (3)
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The two-stage design parameters (n1, c1, n, c) are unknown. An iterative algorithm will be 

implemented to determine (n1, c1, n, c) under the following set up of the design parameters. 

(1) Uniform accrual with a constant accrual rate r. (2) Survival probability S0 at fixed 

time point x0 under the null hypothesis. (3) Survival distribution function under the null 

hypothesis or a shape parameter for a parametric survival distribution. (4) Hazard ratio 

δ, here a proportional hazard model is assumed under the alternative. (5) The restricted 

follow-up time x for each patient.

The procedure of an optimal two-stage can be summarized as follows.

1. Given (α, β, r, S0, x0, δ, x, dist, data), calculate sample size n0 and accrual period 

ta0 = n0/r required for a single-stage design, where r is a constant accrual rate; S0 

is the survival probability under the null hypothesis at a fixed time point x0; x is 

the follow-up duration specified for the trial; “dist” augment is used to specify 

the underlying survival distribution under the null hypothesis. In our algorithm, 

we implemented four parametric distributions: Weibull (WB), log-normal (LN), 

gamma (GM), log-logistic (LG) and a non-parametric logspline distribution 

(LS) (see Table 1). With a parametric distribution, we need only to specify 

the shape parameter; “data” augment is used to fit logspline distribution when 

user inputs data to fit logspline survival distribution under the null hypothesis; 

survival distribution under the alternative is determined by a proportional hazard 

assumption.

2. Initial algorithm with n1 = n = n0, and c1 = 0.25, and given c, calculate α (call it 

αc) by using the following equation (see Appendix 1)

α = ∫
c

∞
ϕ(z)Φ ρ0z − c1

1 − ρ0
2 dz (4)

and iterate the expression until αc is close to the nominal type I error α.

3. Calculate the power of a given design (n1, c1, n, c) using the following equation 

(see Appendix 1)

power = ∫
c

∞
ϕ(z)Φ ρ1z − c1

1 − ρ1
2 dz (5)

where

c1 =
σ01
σ11

c1 −
n1ω1
σ01

and c =
σ0
σ1

c − nω
σ0

4. If the power is smaller than 1 − β, then (n1, c1, n, c) is left and a new triplet (n1, 
c1, n) is tested by repeating step 2 and 3, otherwise, (n1, c1, n, c) is selected.

For each selected candidate design (n1, c1, n, c), the expected sample size under H0 is 

calculated by ES = E(n|H0) = n1 + (1 − PS)(n − n1), where PS is the probability of an 
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early stop under H0, that is PS = Φ(c1) and the maximum total study length is MTSL = ta 

+ x. Thus, the optimal design is the (n1, c1, n, c) which minimizes E(n|H0). The R function 

‘Optimal.rKJ’ which implements the above optimal algorithm is given in Appendix 2, where 

‘Optimal.rKJ’ refers to optimal restricted-Kwak and Jung’s design.

4 Example

Small-cell lung cancer (SCLC) is the most aggressive type of lung cancer. Unfortunately, 

little progress has been made in improving survival rates for this malignancy over the last 30 

years. Most patients experience relapse or disease progression after first-line therapy, thus a 

second line therapy is often required. Recently immunotherapy shows some advantages for 

treating relapse or refractory SCLC disease in patients. In this example, we will illustrate a 

single-arm phase II trial design using immunotherapy as second-line treatment for patients 

with SCLC. The primary endpoint of the trial is the progression-free survival (PFS). The 

PFS distribution of a randomized phase III trial using Topotecan as second-line treatment 

for patients with SCLC [17] is used as the null distribution for the trial design. The 

Weibull distribution is fitted to the PFS distribution with a shape parameter a=1.47327 and 

median survival time m0 = 3.5 (months). Therefore, the survival distribution under the null 

hypothesis is S0(u) = e−log(2) u/m0
a
 and the cumulative hazard function is Λ0(u) = log(2)(u/

m0)a (Figure 1). Investigators expect that the immunotherapy could increase the median PFS 

from 3.5 to 5 months. Thus, the trial design is to detect a hazard ratio of (3.5/5)1.47327 = 

0.5913 under the proportional hazard model, with one-sided type I error of α = 0.05 and 

power of 1 − β = 80%. We assume that patients are uniformly recruited with a constant 

accrual rate of 2 subjects per month. We suppose the restricted follow-up period is 5 months 

(Figure 1), and no patients are lost to follow-up within the restricted follow-up period.

Using the R function ‘Optimal.rKJ’ (see Appendix 2), two-stage designs under the Weibull 

distribution with 5 months restricted follow-up are derived as follows:

Optimal.rKJ(shape=1.47327,S0=0.5,x0=3.5,hr=0.5913,x=5,rate=2,alpha=0.05, 

beta=0.2,dist=“WB”)

$param

shape S0 hr alpha beta rate x0 x 

1.47327 0.5 0.5914 0.05 0.2 2 3.5 5

$Single_stage

nsingle tasingle csingle 

42 21 1.644854

$Two_stage

n1 c1 n c t1 MTSL ES PS 

28 0.0936 45 1.6269 13.6537 27.5 35.4937 0.5373

Based on this design, we will enroll 28 patients during the first stage. After all 28 patients 

are enrolled, we will conduct an interim analysis. At the interim analysis, each patient is 

followed until an event (disease progression or death) before the end of study at 5 months, or 
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censored at the time of the interim analysis (approximately t1 = 13.7 months) if the patient 

is free of an event. If the first stage test statistic Z1 < 0.0936, we would stop the trial for 

futility. Otherwise, the trial would continue to the second stage and a total of 45 patients 

would be enrolled on the study. The final analysis would be conducted after the last patient 

on the study was followed for 5 months. If the second stage test statistic Z < 1.6269, we 

don’t reject the null hypothesis and conclude no efficacy by the treatment. If Z ≥ 1.6269, we 

conclude that the treatment is promising.

If the restricted follow-up is extended to 10 months (Figure 1), then the two-stage designs 

are given as follows:

Optimal.rKJ(shape=1.47327,S0=0.5,x0=3.5,hr=0.5913,x=10,rate=2,alpha=0.05, 

beta=0.2,dist=“WB”)

$param

shape S0 hr alpha beta rate x0 x 

1.47327 0.5 0.5913 0.05 0.2 2 3.5 10

$Single_stage

nsingle tasingle csingle 

28 14 1.644854

$Two_stage

n1 c1 n c t1 MTSL ES PS 

21 −0.2642 30 1.6354 10.2367 25 26.2294 0.3958

With a longer follow-up of 10 months, the total sample size would be reduced to 30 patients 

with 21 patients at first stage. If the first stage test statistic Z1 < −0.2642, we would stop 

the trial for futility. Otherwise, the trial would continue to the second stage with a total of 

30 patients. If the second stage test statistic Z < 1.6354, we conclude no efficacy by the 

treatment, otherwise we conclude that the treatment is promising.

5 Simulation

To study the operating characteristics of the proposed optimal two-stage design with 

restricted follow-up, we conducted simulation studies under various scenarios. In the 

simulations, the survival distribution under the null hypothesis is taken as the Weibull 

distribution (WB), log-normal (LN), gamma (GM) and log-logistic (LG) distributions (Table 

1) with shape parameter to be 0.5, 1 and 2. The survival probabilities under null S0 at 

fixed time point x0 = 1 is set to be 0.3. The scale parameter under the null hypothesis is 

determined by the value of S0(1) for each corresponding survival distribution. We assume 

a proportional hazard model under the alternative with a hazard ratio of δ = 0.65. The 

restricted follow-up time is set to x = 1 or 2, and assuming a constant accrual rate r = 10 per 

month, type I error of α = 0.05 and power of 80%.

The optimal two-stage designs were calculated using the R function ‘Optimal.rKJ’. Overall 

empirical type I errors and powers for the optimal two-stage designs were estimated based 

on 10,000 simulation runs (Table 2). From simulation results, we can make following 
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conclusions. The proposed optimal two-stage design preserves type I error and power well 

but was slightly conservative. The optimal two-stage design increases the maximum sample 

size from single-stage design by a small amount and the critical value (c) for the final 

test is closer to that of the single stage design (z1−α = 1.645). The two-stage designs for 

different scenarios were similar across the different survival distributions for a relatively 

short restricted follow-up period (x = 1). However more differences for the two-stage 

designs across the different parametric survival distributions were observed for a relatively 

longer restricted follow-up period (x = 2). Table 3 gives results for the comparison between 

proposed design to Belin’s design under the exponential model. The proposed design 

preserves power while Belin’s design did not preserve power for some scenarios because 

Belin’s design uses an approximate variance estimate that could either underestimate or 

overestimate the exact variance of the OSLRT [10].

6 Conclusion

An optimal two-stage design is developed for single-arm phase II trial with a time-to-

event endpoint. Four commonly used parametric survival distributions: Weibull, log-normal, 

gamma, log-logistic have been implemented in the R function ‘Optimal.rKJ’. If none of 

the four parametric survival distributions fit the null distribution, then, a non-parametric 

logspline distribution can be applied for the trial design. Simulations were conducted to 

study the operating characteristics of the proposed two-stage design with restricted follow-

up. The simulation results showed that the proposed design preserved the overall type I 

error and power well but was slightly conservative. The two-stage designs are very similar 

across the four parametric survival distributions for a relatively shorter restricted follow-

up period and more differences are expected for a relatively longer restricted follow-up 

period. Because of the flexibility, the proposed method can be routinely used for two-stage 

design for single-arm phase II trial as the counterpart of Simon’s two-stage design for TTE 

endpoint.
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Appendix 1: Derivation of equations (4) and (5).

If (X, Y) is a bivariate normal random vector with mean μ = (μ1, μ2) and variance matrix

Σ =
σ1

2 ρσ1σ2

ρσ1σ2 σ2
2

then, the conditional distribution of X given Y = y is normal with mean μ1 + (ρσ1/σ2)(y − 

μ2) and variance σ1
2 1 − ρ2 .

As under the null hypothesis H0, (Z1, Z) is approximately bivariate normal distributed with 

mean μ = (0, 0)′ and variance matrix
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Σ =
1 ρ0
ρ0 1

Thus, by conditional distribution integration, we obtain

α = P Z1 > c1, Z > c ∣ H0

= ∫−∞
∞

ϕ(z)P Z1 > c1, Z > c ∣ Z = z, H0 dz

= ∫c
∞

ϕ(z)P Z1 > c1 ∣ Z = z, H0 dz

= ∫c
∞

ϕ(z)Φ
ρ0z − c1

1 − ρ0
2 dz .

Similarly, under the alternative H1, (Z1, Z) is approximately bivariate normal distributed 

with mean μ = n1ω1/σ01, nω/σ0 ′ and variance matrix

Σ =
σ11

2 /σ01
2 ρ1σ11σ1/σ01σ0

ρ1σ11σ1/σ01σ0 σ1
2/σ0

2

Thus, after standardization, we have

power = P Z1 > c1, Z > c ∣ H1

where Z1 =
σ01
σ11

(Z1 −
n1ω1
σ01

) and c1 =
σ01
σ11

(c1 −
n1ω1
σ01

) and Z =
σ0
σ1

(Z − nω
σ0

) and 

c =
σ0
σ1

(c − nω
σ0

). Thus, (Z1, Z) is bivariate normal with zero means, unit variances and 

correlation ρ1. Again by conditional distribution integration, we have

power = P Z1 > c1, Z > c ∣ H1

= ∫−∞
∞

ϕ(z)P Z1 > c1, Z > c ∣ Z = z, H1 dz

= ∫c
∞

ϕ(z)P Z1 > c1 ∣ Z = z, H0 dz

= ∫c
∞

ϕ(z)Φ
ρ1z − c1

1 − ρ1
2 dz .

Appendix 2: R code for optimal two-stage design with restricted follow-up 

and PBC data

#################### Optimal.rKJ Input parameters 
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#############################

### shape is the shape parameter for one the four parametric 

distributions;###

### S0 is the survival probability at fixed time point x0 under the null; ###

### hr is inverse of hazard ratio; x is fixed follow-up time period; ###

### rate is constant accrual rate; alpha and beta are type I and II errors 

### ### 

dist is distribution option with ‘WB’ as Weibull, ‘GM’ as Gamma,’LN’ as###

### log-normal, ‘LG’ as log-logistic, ‘SP’ as logspline; data is used for ###

### fit logspline; if dist=‘SP’, there is no need to input shape,S0, x0 ###

#############################################################################

## 

library(survival) 

library(logspline)

Optimal.rKJ<-function(shape,S0,x0,hr,x,rate,alpha,beta,dist,data)

{ 

calculate_alpha<-function(c2, c1, rho0){ 

fun1<-function(z, c1, rho0){ 

f<-dnorm(z)*pnorm((rho0*z-c1)/sqrt(1-rho0^2)) 

return(f) 

} 

alpha<-integrate(fun1, lower= c2, upper= Inf, c1, rho0)$value 

return(alpha)

}

calculate_power<-function(cb, cb1, rho1){ 

fun2<-function(z, cb1, rho1){ 

f<-dnorm(z)*pnorm((rho1*z-cb1)/sqrt(1-rho1^2)) 

return(f) 

} 

pwr<-integrate(fun2,lower=cb,upper=Inf,cb1=cb1,rho1=rho1)$value 

return(pwr)

}

fct<-function(zi, ceps=0.0001,alphaeps=0.0001,nbmaxiter=100,dist){ 

ta<-as.numeric(zi[1]) 

t1<-as.numeric(zi[2]) 

c1<-as.numeric(zi[3])

if (dist==“WB”){ 

s0=function(u){1-pweibull(u,shape,scale0)} 

f0=function(u){dweibull(u,shape,scale0)} 

h0=function(u){f0(u)/s0(u)} 

H0=function(u){-log(s0(u))} 

s=function(b,u) {s0(u)^b} 

h=function(b,u){b*f0(u)/s0(u)} 

H=function(b,u){-b*log(s0(u))} 
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scale0=x0/(−log(S0))^(1/shape) 

scale1=hr 

}

if (dist==“LN”){ 

s0=function(u){1-plnorm(u,scale0,shape)} 

f0=function(u){dlnorm(u,scale0,shape)} 

h0=function(u){f0(u)/s0(u)} 

H0=function(u){-log(s0(u))} 

s=function(b,u) {s0(u)^b} 

h=function(b,u){b*f0(u)/s0(u)} 

H=function(b,u){-b*log(s0(u))} 

scale0=log(x0)-shape*qnorm(1-S0) 

scale1=hr 

}

if (dist==“LG”){ 

s0=function(u){1/(1+(u/scale0)ŝhape)} 

f0=function(u){(shape/scale0)*(u/scale0)^(shape-1)/(1+(u/scale0)ŝhape)^2} 

h0=function(u){f0(u)/s0(u)} 

H0=function(u){-log(s0(u))} 

s=function(b,u) {s0(u)^b} 

h=function(b,u){b*f0(u)/s0(u)} 

H=function(b,u){-b*log(s0(u))} 

scale0=x0/(1/S0–1)^(1/shape) 

scale1=hr 

}

if (dist==“GM”){ 

s0=function(u){1-pgamma(u,shape,scale0)} 

f0=function(u){dgamma(u,shape,scale0)} 

h0=function(u){f0(u)/s0(u)} 

H0=function(u){-log(s0(u))} 

s=function(b,u) {s0(u)^b} 

h=function(b,u){b*f0(u)/s0(u)} 

H=function(b,u){-b*log(s0(u))} 

root0=function(t){1-pgamma(x0,shape,t)-S0} 

scale0=uniroot(root0,c(0,10))$root 

scale1=hr 

}

if (dist==“SP”){ 

time=data$time 

status=data$status 

fitSP=oldlogspline(time[status==1],time[status==0],lbound=0) 

s0=function(u){1-poldlogspline(u, fitSP)} 

f0=function(u){doldlogspline(u, fitSP)} 

h0=function(u){f0(u)/s0(u)} 
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H0=function(u){-log(s0(u))} 

s=function(b,u) {s0(u)^b} 

f=function(b,u){b*f0(u)/s0(u)^(1-b)} 

h=function(b,u){b*f0(u)/s0(u)} 

H=function(b,u){-b*log(s0(u))} 

scale1=hr 

}

g0=function(t){s(scale1,t)*h0(t)} 

g1=function(t){s(scale1,t)*h(scale1,t)} 

g00=function(t){s(scale1,t)*H0(t)*h0(t)} 

g01=function(t){s(scale1,t)*H0(t)*h(scale1,t)} 

p0=integrate(g0, 0, x)$value 

p1=integrate(g1, 0, x)$value 

p00=integrate(g00, 0, x)$value 

p01=integrate(g01, 0, x)$value 

sigma2.1=p1-p1^2+2*p00-p0^2–2*p01+2*p0*p1 

sigma2.0=p0 

om=p0-p1

G1=function(t){1-punif(t, t1-ta, t1)} 

g0=function(t){s(scale1,t)*h0(t)*G1(t)} 

g1=function(t){s(scale1,t)*h(scale1,t)*G1(t)} 

g00=function(t){s(scale1,t)*H0(t)*h0(t)*G1(t)} 

g01=function(t){s(scale1,t)*H0(t)*h(scale1,t)*G1(t)} 

p0=integrate(g0, 0, x)$value 

p1=integrate(g1, 0, x)$value 

p00=integrate(g00, 0, x)$value 

p01=integrate(g01, 0, x)$value 

sigma2.11=p1-p1^2+2*p00-p0^2–2*p01+2*p0*p1 

sigma2.01=p0 

om1=p0-p1

q1=function(t){s0(t)*h0(t)*G1(t)} 

q=function(t){s0(t)*h0(t)} 

v1=integrate(q1, 0, x)$value 

v=integrate(q, 0, x)$value 

rho0=sqrt(v1/v) 

rho1<-sqrt(sigma2.11/sigma2.1)

cL<-(−10) 

cU<-(10) 

alphac<−100 

iter<−0 

while ((abs(alphac-alpha)>alphaeps|cU-cL>ceps)&iter<nbmaxiter){ 

iter<-iter+1 

c<-(cL+cU)/2 

alphac<-calculate_alpha(c, c1, rho0) 
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if (alphac>alpha) { 

cL<-c

} else {

cU<-c

} 

}

cb1<-sqrt((sigma2.01/sigma2.11))*(c1-(om1*sqrt(rate*t1)/sqrt(sigma2.01)))

cb<-sqrt((sigma2.0/sigma2.1))*(c-(om*sqrt(rate*ta))/sqrt(sigma2.0)) 

pwrc<-calculate_power(cb=cb, cb1=cb1, rho1=rho1) 

res<-c(cL, cU, alphac, 1-pwrc, rho0, rho1, cb1, cb) 

return(res)

}

c1<−0 ; rho0<−0; cb1<−0; rho1<−0 ; hz<-c(0,0); 

ceps<−0.001;alphaeps<−0.001;nbmaxiter<−100

if (dist==“WB”){ 

s0=function(u){1-pweibull(u,shape,scale0)} 

f0=function(u){dweibull(u,shape,scale0)} 

h0=function(u){f0(u)/s0(u)} 

H0=function(u){-log(s0(u))} 

s=function(b,u) {s0(u)^b} 

h=function(b,u){b*f0(u)/s0(u)} 

H=function(b,u){-b*log(s0(u))} 

scale0=x0/(−log(S0))^(1/shape) 

scale1=hr 

}

if (dist==“LN”){ 

s0=function(u){1-plnorm(u,scale0,shape)} 

f0=function(u){dlnorm(u,scale0,shape)} 

h0=function(u){f0(u)/s0(u)} 

H0=function(u){-log(s0(u))} 

s=function(b,u) {s0(u)^b} 

h=function(b,u){b*f0(u)/s0(u)} 

H=function(b,u){-b*log(s0(u))} 

scale0=log(x0)-shape*qnorm(1-S0) 

scale1=hr 

}

if (dist==“LG”){ 

s0=function(u){1/(1+(u/scale0)ŝhape)} 

f0=function(u){(shape/scale0)*(u/scale0)^(shape-1)/(1+(u/scale0)ŝhape)^2}

h0=function(u){f0(u)/s0(u)} 

H0=function(u){-log(s0(u))} 

s=function(b,u) {s0(u)^b} 

h=function(b,u){b*f0(u)/s0(u)} 

H=function(b,u){-b*log(s0(u))} 
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scale0=x0/(1/S0–1)^(1/shape) 

scale1=hr 

}

if (dist==“GM”){

s0=function(u){1-pgamma(u,shape,scale0)} 

f0=function(u){dgamma(u,shape,scale0)} 

h0=function(u){f0(u)/s0(u)} 

H0=function(u){-log(s0(u))} 

s=function(b,u) {s0(u)^b} 

h=function(b,u){b*f0(u)/s0(u)} 

H=function(b,u){-b*log(s0(u))} 

root0=function(t){1-pgamma(x0,shape,t)-S0} 

scale0=uniroot(root0,c(0,10))$root 

scale1=hr 

}

if (dist==“SP”){ 

time=data$time 

status=data$status 

fitSP=oldlogspline(time[status==1],time[status==0],lbound=0) 

s0=function(u){1-poldlogspline(u, fitSP)} 

f0=function(u){doldlogspline(u, fitSP)} 

h0=function(u){f0(u)/s0(u)} 

H0=function(u){-log(s0(u))} 

s=function(b,u) {s0(u)^b} 

f=function(b,u){b*f0(u)/s0(u)^(1-b)} 

h=function(b,u){b*f0(u)/s0(u)} 

H=function(b,u){-b*log(s0(u))} 

scale1=hr 

}

g0=function(t){s(scale1,t)*h0(t)} 

g1=function(t){s(scale1,t)*h(scale1,t)} 

g00=function(t){s(scale1,t)*H0(t)*h0(t)} 

g01=function(t){s(scale1,t)*H0(t)*h(scale1,t)} 

p0=integrate(g0, 0, x)$value 

p1=integrate(g1, 0, x)$value 

p00=integrate(g00, 0, x)$value 

p01=integrate(g01, 0, x)$value 

s1=sqrt(p1-p1^2+2*p00-p0^2–2*p01+2*p0*p1) 

s0=sqrt(p0) 

om=p0-p1 

nsingle<-(s0*qnorm(1-alpha)+s1*qnorm(1-beta))^2/om^2 

nsingle<-ceiling(nsingle) 

tasingle<-nsingle/rate

Single_stage<-data.frame(nsingle=nsingle,tasingle=tasingle, csingle=qnorm(1-
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alpha))

atc0<-data.frame(n=nsingle, t1=tasingle, c1=0.25) 

nbpt<−11 

pascote<−1.26 

cote<−1*pascote 

c1.lim<-nbpt*c(−1,1) 

EnH0<−10000 

iter<−0

while (iter<nbmaxiter & diff(c1.lim)/nbpt>0.001){

iter<-iter+1 

cat(“iter=“,iter,”&EnH0=“,round(EnH0, 2),”& Dc1/nbpt=“, round(diff(c1.lim)/

nbpt,5),”\n”,sep=““)

if (iter%%2==0) nbpt<-nbpt+1 

cote<-cote/pascote

n.lim<-atc0$n+c(−1, 1)*nsingle*cote 

t1.lim<-atc0$t1+c(−1, 1)*tasingle*cote 

c1.lim<-atc0$c1+c(−1, 1)*cote 

ta.lim<-n.lim/rate 

t1.lim<-pmax(0, t1.lim) 

n<-seq(n.lim[1], n.lim[2], l=nbpt) 

n<-ceiling(n)

n<-unique(n) 

ta<-n/rate 

t1<-seq(t1.lim[1], t1.lim[2], l=nbpt) 

c1<-seq(c1.lim[1], c1.lim[2], l=nbpt) 

ta<-ta[ta>0] 

t1<-t1[t1>=0.2*tasingle & t1<=1.2*tasingle] 

z<-expand.grid(list(ta=ta, t1=t1, c1=c1)) 

z<-z[z$ta>z$t1,] 

nz<-dim(z)[1] 

z$pap<-pnorm(z$c1) 

z$eta<-z$ta-pmax(0, z$ta-z$t1)*z$pap 

z$enh0<-z$eta*rate 

z<-z[z$enh0<=EnH0,] 

nz1<-dim(z)[1]

resz<-t(apply(z,1,fct,ceps=ceps,alphaeps=alphaeps,nbmaxiter=nbmaxiter, 

dist=dist)) 

resz<-as.data.frame(resz) 

names(resz)<-c(“cL”,”cU”,”alphac”,”betac”,”rho0”,”rho1”,”cb1”,”cb”) 

r<-cbind(z, resz) 

r$pap<-pnorm(r$c1) 

r$eta<-r$ta-pmax(0, r$ta-r$t1)*r$pap 

r$etar<-r$eta*rate 

r$tar<-r$ta*rate 
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r$c<-r$cL+(r$cU-resz$cL)/2 

r$diffc<-r$cU-r$cL 

r$diffc<-ifelse(r$diffc<=ceps, 1, 0) 

r<-r[1-r$betac>=1-beta,] 

r<-r[order(r$enh0),] 

r$n<-r$ta*rate

if (dim(r)[1]>0) { 

atc<-r[, c(“ta”, “t1”, “c1”, “n”)][1,] 

r1<-r[1,] 

if (r1$enh0<EnH0) { 

EnH0<-r1$enh0 

atc0<-atc

}

} else {

atc<-data.frame(ta=NA, t1=NA, c1=NA, n=NA)

} 

atc$iter<-iter 

atc$enh0<-r$enh0[1] 

atc$EnH0<-EnH0 

atc$tai<-ta.lim[1] 

atc$tas<-ta.lim[2] 

atc$ti<-t1.lim[1] 

atc$ts<-t1.lim[2] 

atc$ci<-c1.lim[1] 

atc$cs<-c1.lim[2] 

atc$cote<-cote

if (iter==1) { 

atcs<-atc

} else {

atcs<-rbind(atcs, atc)

} 

} 

atcs$i<−1:dim(atcs)[1] 

a<-atcs[!is.na(atcs$n),]

p<-t(apply(a,1,fct,ceps=ceps,alphaeps=alphaeps,nbmaxiter=nbmaxiter, 

dist=dist)) 

p<-as.data.frame(p) 

names(p)<-c(“cL”,”cU”,”alphac”,”betac”,”rho0”,”rho1”,”cb1”,”cb”) 

p$i<-a$i

res<-merge(atcs, p, by=“i”, all=T) 

res$pap<-round(pnorm(res$c1),4) ## stopping prob of stage 1 ##

res$ta<-res$n/rate 

res$Enh0<-(res$ta-pmax(0, res$ta-res$t1)*res$pap)*rate 

res$diffc<-res$cU-res$cL

Wu et al. Page 18

Pharm Stat. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



res$c<-round(res$cL+(res$cU-res$cL)/2,4) 

res$diffc<-ifelse(res$diffc<=ceps, 1, 0) 

res<-res[order(res$enh0),]

des<-round(res[1,],4)

if (dist==“SP”){ 

param<-data.frame(hr=hr, alpha=alpha, beta=beta, rate=rate, x=x)} 

else { 

param<-data.frame(shape=shape,S0=S0,hr=hr,alpha=alpha,beta=beta, rate=rate, 

x0=x0, x=x) }

Two_stage<- data.frame(n1= ceiling(des$t1*param$rate), c1=des$c1, 

n=ceiling(des$ta*param$rate), c=des$c, t1=des$t1, MTSL=des$ta+param$x, 

ES=des$Enh0, PS=des$pap) 

DESIGN<-list(param=param,Single_stage=Single_stage,Two_stage=Two_stage) 

return(DESIGN)}
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Figure 1: 
The solid curve is the fitted Weibull distribution under the null hypothesis. The dash curve 

is the hypothetic survival distribution under the proportional hazard alternative. The two dot 

lines are the restricted follow-up for 5 and 10 months, respectively.
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Table 1:

Four parametric distributions: Weibull (WB), log-normal (LN), gamma (GM) and log-logistic (LG) with shape 

parameter a and scale parameter b.

Surv. function Density Cumu. hazard Hazard

Dist. S(t) f(t) Λ(t) h(t)

WB e−(t/b)a a
b

t
b

a − 1
e−(t/b)a − 1 (t/b)a a

b
t
b

a − 1

LN 1 − Φ( logt − b
a ) 1

2πate− (logt − b)
2a2

−log S(t) f(t)
S(t)

GM 1 − Ia(t/b) (t/b)a − 1e−t/b
Γ(a)b

−log S(t) f(t)
S(t)

LG 1
1 + (t/b)a

(a/b)(t/b)a − 1

1 + (t/b)a 2
log(1 + (t/b)a) (a/b)(t/b)a − 1

1 + (t/b)a

Ia(·) is the incomplete gamma function and Φ(·) is the cumulative standard normal distribution function. Abbreviations: Dist.: distribution; Cumu.: 

cumulative.

Pharm Stat. Author manuscript; available in PMC 2022 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wu et al. Page 23

Table 2:

The characteristics for optimal two-stage design with restricted follow-up x = 1, 2 under Weibull (WB), 

log-normal (LN), gamma (GM) and log-logistic (LG) distributions with nominal type I error 5%, power of 

80%, accrual rate r = 10. Overall empirical type I error and power for the two-stage designs were estimated 

from 10,000 simulated trials.

Dist. Shape S 0 δ x t 1 c 1 c n 1 n α 1 − β

WB 0.5 .3 .65 1 3.71 0.169 1.631 38 63 .039 .796

.3 .65 2 3.25 0.109 1.632 33 53 .038 .803

1 .3 .65 1 3.76 0.141 1.629 38 63 .039 .796

.3 .65 2 3.01 −0.042 1.635 31 46 .038 .813

2 .3 .65 1 3.74 0.068 1.629 38 63 .039 .797

.3 .65 2 2.88 −0.180 1.639 29 41 .037 .821

LN 0.5 .3 .65 1 3.84 0.110 1.628 39 63 .040 .801

.3 .65 2 2.93 −0.160 1.638 30 42 .038 .818

1 .3 .65 1 3.78 0.143 1.629 38 63 .040 .800

.3 .65 2 3.12 0.046 1.632 32 48 .038 .810

2 .3 .65 1 3.74 0.178 1.631 38 63 .040 .799

.3 .65 2 3.25 0.098 1.631 33 54 .038 .804

GM 0.5 .3 .65 1 3.71 0.151 1.631 38 63 .040 .801

.3 .65 2 3.13 0.055 1.633 32 50 .038 .808

1 .3 .65 1 3.76 0.141 1.629 38 63 .040 .800

.3 .65 2 3.01 −0.042 1.635 31 46 .037 .813

2 .3 .65 1 3.72 0.084 1.629 38 63 .040 .801

.3 .65 2 2.96 −0.109 1.637 30 43 .038 .815

LG 0.5 .3 .65 1 3.71 0.196 1.631 38 63 .040 .800

.3 .65 2 3.33 0.102 1.632 34 57 .039 .803

1 .3 .65 1 3.75 0.165 1.630 38 63 .040 .800

.3 .65 2 3.29 0.084 1.633 33 52 .038 .805

2 .3 .65 1 3.86 0.168 1.628 39 63 .040 .800

.3 .65 2 3.12 0.045 1.632 32 47 .037 .810

S0 is the survival probability at x0 under the null hypothesis; δ is the hazard ratio; x is the restricted follow-up period; t1 is the calendar time for 

the first-stage interim analysis; c1 and c are the boundaries for the first-stage and final analysis; n1 and n are the sample sizes for the first-stage and 

final analysis; Abbreviations: Dist.: distribution.

Pharm Stat. Author manuscript; available in PMC 2022 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wu et al. Page 24

Table 3:

Comparison between the proposed optimal two-stage and Belin’s design under the exponential distribution 

with nominal type I error 5% and power of 80%, a constant accrual rate r = 10, a restricted follow-up x = 1 

and x0 = 1. Overall empirical type I error (α) and power (1 − β) for the two-stage designs were estimated from 

10,000 simulated trials.

(S0, S1) t 1 c 1 c ES ETSL n 1 n PS α 1 − β

Belin’s two-stage design under exponential model

(.1, .3) 1.11 0.068 1.615 14.8 2.9 12 19 0.53 .033 .727

(.1, .25) 1.67 0.097 1.673 22.9 4.0 17 30 0.54 .035 .722

(.2, .4) 1.72 0.082 1.621 23.2 4.0 18 30 0.53 .036 .748

(.2, .35) 2.84 0.150 1.623 37.9 6.0 29 50 0.56 .037 .750

(.3, .5) 2.16 0.107 1.621 29.1 4.8 22 38 0.54 .037 .764

(.3, .45) 3.68 0.358 1.627 49.0 7.4 37 64 0.55 .039 .765

(.4, .6) 2.50 0.167 1.622 32.4 5.2 25 42 0.57 .039 .780

(.4, .55) 4.11 0.137 1.626 55.3 8.3 42 73 0.55 .040 .777

(.5, .7) 2.44 0.114 1.621 32.9 5.3 25 43 0.55 .038 .797

(.5, .65) 4.27 0.149 1.626 56.9 8.5 43 75 0.56 .039 .789

(.6, .8) 2.28 0.106 1.620 30.7 5.0 23 40 0.54 .037 .814

(.6, .75) 3.93 0.122 1.624 53.6 8.1 40 71 0.55 .039 .802

(.7, .85) 3.42 0.191 1.618 45.6 7.1 35 61 0.58 .040 .827

Proposed two-stage design under exponential model

(.1, .3) 1.48 −0.106 1.638 18.7 3.2 15 22 0.46 .032 .786

(.1, .25) 2.21 0.054 1.634 28.3 4.5 23 35 0.52 .038 .810

(.2, .4) 2.12 0.052 1.633 26.8 4.3 22 33 0.52 .036 .784

(.2, .35) 3.33 0.110 1.632 43.2 6.5 34 55 0.54 .038 .801

(.3, .5) 2.48 0.082 1.631 31.9 5.0 26 40 0.53 .038 .800

(.3, .45) 4.12 0.130 1.632 53.2 7.8 42 68 0.55 .039 .798

(.4, .6) 2.56 0.129 1.623 33.9 5.4 26 44 0.55 .039 .797

(.4, .55) 4.46 0.185 1.627 58.0 8.6 45 76 0.57 .040 .797

(.5, .7) 2.54 0.184 1.620 32.9 5.3 26 43 0.57 .038 .798

(.5, .65) 4.45 0.202 1.625 57.7 8.6 45 76 0.58 .039 .797

(.6, .8) 2.14 0.121 1.616 28.9 4.8 22 38 0.55 .038 .795

(.6, .75) 3.87 0.135 1.617 52.2 7.9 39 69 0.55 .039 .793

(.7, .85) 2.98 0.126 1.682 41.6 6.6 30 56 0.55 .040 .791

S0 and S1 are the survival probabilities at x0 under the null hypothesis and alternative, respectively; t1 is the calendar time for the first-stage 

interim analysis; c1 and c are the boundaries for the first-stage and final analysis; n1 and n are the sample sizes for the first-stage and final analysis; 

PS is the stopping probability of first stage under the null hypothesis; ES is the expected sample size under the null hypothesis; ETSL is expected 
total study duration.
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