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ASYMPTOTIC POSTERIOR NORMALITY OF MULTIVARIATE LATENT TRAITS IN AN
IRT MODEL

Mia J. K. Kornely and Maria Kateri

RWTH AACHEN UNIVERSITY

The asymptotic posterior normality (APN) of the latent variable vector in an item response theory
(IRT) model is a crucial argument in IRT modeling approaches. In case of a single latent trait and under
general assumptions, Chang and Stout (Psychometrika, 58(1):37–52, 1993) proved the APN for a broad
class of latent trait models for binary items. Under the same setup, they also showed the consistency of the
latent trait’s maximum likelihood estimator (MLE). Since then, several modeling approaches have been
developed that consider multivariate latent traits and assume their APN, a conjecture which has not been
proved so far. We fill this theoretical gap by extending the results of Chang and Stout for multivariate latent
traits. Further, we discuss the existence and consistency of MLEs, maximum a-posteriori and expected
a-posteriori estimators for the latent traits under the same broad class of latent trait models.

Key words: multidimensional item response theory, empirical Bayes, posterior distribution, ability esti-
mation, consistency, normal approximation, Bernstein–von Mises theorem .

1. Introduction

In the context of item response theory (IRT) methodology, statistical inference for the exam-
inee’s ability relies often on the assumption that its posterior distribution given the test response
is a normal distribution. As this is usually hard to justify and in contradiction to common models
of the examinees abilities distribution in the population, it can assumed to be, for a long test,
well approximated by a normal distribution. This assumption of asymptotic posterior normality
(APN) is part of the famous Dutch identity conjecture of Holland (1990), who mentioned then
that he was not aware of a thorough discussion of APN of latent variables and this would be an
interesting area for future research. Shortly after, Chang and Stout (1993) proved the APN for
univariate latent traits (LTs), mentioning that APN for multivariate LTs can be proved, but without
providing further details or discussing the associated regularity conditions required.

As far as we know, APN of multivariate LTs has not been proved so far for IRT models
of a general context, although posterior normality or APN is assumed quite often under various
IRT setups (e.g., Anderson & Vermunt, 2000; Anderson & Yu, 2017; Anderson et al., 2007;
Hessen, 2012; Li, 2010; Paek, 2016). For example, Pelle et al. (2016) assume posteriormultivariate
normality for the latent variable vector of a log-linear multidimensional Rasch model for capture–
recapture analysis of registration data.

Sometimes the APN-assumption is justified by the APN in a Bayesian framework (pointing
to the “Bernstein–von Mises Theorem”) without however proceeding to further details (e.g., the
computationally efficient adaptive quadrature methods for high-dimensional item factor analysis
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(Schilling & Bock, 2005) and for generalized linear mixed models (Rabe-Hesketh et al., 2002)
are based on the APN assumption).

In this work, we study the APN for multivariate latent trait models, focusing on models for
dichotomous items and targeting at conditions that are tailored to IRT models and thus simpler to
verify.APNofLTs, univariate ormultivariate, is related toBayesian asymptotics. In the light of this
connection, we deepen in the approach ofGhosal et al. (1995), who discussed asymptotic posterior
distributions in a very general setup that includes the regular cases and some non-regular cases as
well. They also proved a general result on the asymptotic equivalence of the Bayes and maximum
likelihood estimators, a well-known result for the regular cases. In particular, we generalize the
approach and results of Chang and Stout (1993), CS hereafter, linking them to the semiproper
centering concept of Ghosal et al. (1995), GGS hereafter, and embedding them in their approach.
We provide conditions for multivariate APN that correspond one to one to the conditions of CS for
univariate LTs, which is the standard approach for IRT models, as alternatives to the conditions
imposed in Ghosal et al. (1995). Even for the case of univariate LTs, the proposed approach could
be an interesting alternative to that of CS, since it has the advantage of applying also to models
with non-monotone item response functions, which is not the case in the CS setup. Furthermore,
we discuss conditions under which the existence of the maximum likelihood estimators (MLEs)
for latent variable vectors is ensured. The consistency of MLEs under mild conditions, which
was indicated as an open issue by Sinharay (2015), follows as a natural consequence of the proof
of the APN. Finally, we prove the consistency of maximum a-posteriori (MAP) and expected
a-posteriori (EAP) estimators for multivariate LTs.

The paper is organized as follows. Basic notation and the adopted IRT framework is set in
Sect. 2, while the CS-theory for a univariate LT is briefly reviewed in Sect. 3. The approach of
Ghosal et al. (1995) is discussed and linked to the APN of LTs and the CS-results in Sect. 4.
The CS-conditions are generalized for the multivariate case and commented in Sect. 5 while they
are verified for characteristic examples in Sect. 6. The main result on APN for multivariate LTs
and properties of the MLEs, MAPs and EAPs of LTs are provided in Sect. 7 and supported by a
simulation study in Sect. 8. Finally, the results are summarized in Sect. 9. A brief version of the
proofs of the results of Sect. 7 is given in “Appendix” while their extended version can be found
in the web-appendix. For a preliminary version of these results, see also Chapter 3 in Kornely
(2021).

2. Preliminaries

Consider a test consisting of d binary response variables Yi , i ∈ [d] := {1, . . . , d}, with
Yi ∈ {0, 1} for the i-th item, where 1 (0) denotes a correct (incorrect) response, and defined
over a probability space (�,A,P). Consider further the response vector Y(d) = (Y1, . . . ,Yd)

ᵀ
,

with superscript
ᵀ
denoting the transpose of a vector. Thus, the manifest probability for a specific

response pattern y(d) is given by P(y(d)) = P(Y(d) = y(d)). In an multidimensional IRT (MIRT)
modeling framework, manifest probabilities are derived via conditioning on an absolutely contin-
uous latent variable vector η = (η1, . . . , ηq)

ᵀ ∈ � ⊆ R
q , defined over the same probability space

as the binary items with probability density function (pdf) and cumulative distribution function
(cdf) h andH, respectively. In particular, the conditional probability mass function (pmf) of Yi | η
is thus given by

P(Yi = y | η) = Pi (η)y(1 − Pi (η))1−y, y ∈ {0, 1}, i ∈ [d], (1)

with Pi (η) being known as the i-th item response function. In MIRT modeling, specific assump-
tions are usually imposed on the conditional distribution P(Y(d) = y(d) | η); namely the assump-
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tion of local independence

P(d)(y(d) | η) := P(Y(d) = y(d) | η) =
d∏

i=1

P(Yi = yi | η), y(d) ∈ {0, 1}d , (2)

and that of monotonicity for the item response functions Pi (η), i.e., for i ∈ [d]

Pi (η) is strictly monotonic in every dimension of η being measured. (3)

Note that assumption (3), which is required in the CS-approach, is relaxed in our setup. In the
sequel, we denote by {Yi }i∈N ∼ P(η) a sequence of Bernoulli random variables that fulfill (1)
and (2) for all d ∈ N.

Due to assumption (2) and using (1), the manifest probabilities are derived through the
following integral

P(y(d)) =
∫

. . .

∫ ( d∏

i=1

Pi (η)yi (1 − Pi (η))1−yi

)
h(η)dη. (4)

Remark 1. For simplicity of notation, we use η to denote the random latent variable vector as
well as a realization of it. If not clear from the context, we write explicitly η ∈ � for a realization
or η ∼ H for the random vector with values in �. In the sequel, we abbreviate the term latent
variable vector to latent vector.

The posterior density of η, given an observed response y(d) ∈ {0, 1}d , is then given by

h(η |y(d)) := h(η |Y(d) = y(d)) = P(Y(d) = y(d) | η)h(η)

P(Y(d) = y(d))
= exp(�(d)(η |y(d)))h(η)

P(y(d))
, (5)

where �(d)(· |y(d))) is the log-likelihood corresponding to (1), given by

�(d)(η |y(d))) =
d∑

i=1

(yiλi (η) − ψ(λi (η))) , (6)

with λi denoting the item logit, i.e.,

λi (η) := log

(
Pi (η)

1 − Pi (η)

)
, (7)

and the function ψ(·) being defined as ψ(x) = log (1 + exp(x)), x ∈ R.
Let η̂d = η̂(y(d)) denote the MLE of the true value of the latent vector η0, based on a test

realization y(d). Furthermore, the Fisher information matrix of the test at point η is given by

I(d)(η) := Eη

(
∇�(d)(η | Y(d)) ∇ᵀ�(d)(η | Y(d))

)
=

d∑

i=1

Ii (η), (8)
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where Ii (·) is the i-th item information matrix

Ii (η) :=Eη

(
∇ log

(
Pi (η)Yi (1 − Pi (η))1−Yi

)
∇ᵀ log

(
Pi (η)Yi (1 − Pi (η))1−Yi

))

=Pi (η)(1 − Pi (η))∇λi (η)∇λi (η)ᵀ, η ∈ �.

This work studies the APN of η for d → ∞, based on a sequence of random variables
{Yi }i∈N ∼ P(η), as defined above. Particularly, we shall prove that, under certain conditions, (8)
is invertible at η̂d and η |Y(d) = y(d) is approximately normal distributed, N (η̂d , [I(d)(η̂d)]−1),
for a realization y(d) of Y(d). This enables the approximation of probabilities of the type

P
(
I(d)(η̂d)

1/2 (
η − η̂d

) ∈ B
∣∣∣ Y(d)

)
, B ∈ Bq , (9)

where Bq denotes the Borel-σ -algebra of Rq . Practically speaking, a set B can be any countable
union or intersection of q-dimensional real cubes.

Next, we define some functions that are useful for the sequel derivations. For all d ∈ N, set
Z (d) : � × � → R with

Z (d)(η, η′) :=
d∏

i=1

Zi (η, η′), (10)

where Zi : � × � → R, i ∈ N, are defined as

Zi (η, η′) := Pi (η)Yi (1 − Pi (η))1−Yi

Pi (η′)Yi (1 − Pi (η′))1−Yi
. (11)

Note that for given d and η, η′ ∈ �, (10) is the likelihood ratio of the likelihoods for η and η′.
Furthermore,

log
(
Z (d)(η, η′)

)
=

d∑

i=1

log Zi (η, η′) = �(d)(η | Y(d)) − �(d)(η′ | Y(d)), (12)

while −Eη0(log Zi (η, η0)) is the Kullback–Leibler divergence between the conditional distribu-
tions of Yi given η and η0, respectively. A basic approach for deriving APN results relies on a
quadratic approximation of (12).

3. Review of APN for Univariate Latent Traits

In case of a single latent variable (q = 1, η = η), Chang and Stout (1993) proved the APN
of the univariate latent trait, adopting the approach of Walker (1969) for binary Yi , i ∈ [d], that
are independent but not identically distributed (inid). We briefly review their results, so that we
can extend in the sequel their approach to the multivariate case (q > 1).

Additional to the general assumptions (2) and (3), they also introduced the following regularity
conditions.

(CS1) [i] Let η ∈ �, where � ⊆ (−∞,∞) is a bounded or unbounded interval.
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[ii] Let the prior density h be continuous and positive at the true value η0.
(CS2) Pi (η) is twice continuously differentiable with the first two derivatives being uniformly

bounded in absolute value with respect to both η and i in some closed interval �0 ⊂ �

around η0.
(CS3) For every fixed η 
= η0, η ∈ �, there is a c(η) > 0 such that

lim sup
d−→∞

1

d

d∑

i=1

Eη0 log Zi (η, η0) ≤ − c(η), (13)

and supi∈N |λi (η)| < ∞.
(CS4) If restricted to �0, the following sets of functions are uniformly bounded:

{∣∣∣∣
dIi
dη

∣∣∣∣ | i ∈ N

}
,

{∣∣∣∣
d2λi
dη2

∣∣∣∣ | i ∈ N

}
,

{∣∣∣∣
d3λi
dη3

∣∣∣∣ | i ∈ N

}
.

(CS5) Asymptotically, the average information at η0 is bounded away from 0, i.e.,

lim inf
d−→∞

I(d)(η0)

d
> 0.

Remark 2. With respect to the prior ofη, additional to (CS1[ii]), Chang andStout (1993) implicitly
assumed its properness, which was stated explicitly in the earlier associated technical report
(Chang & Stout, 1991, p. 15).

Remark 3. Reasonable models for applications do not depend on a specific compact interval in
� since usually η0 is unknown. For this, also the conditions depending on η0 should be satisfied
for almost all η0 ∈ � and for almost each η0 there should be some (arbitrary small) interval �0.
In the usual models these conditions are satisfied.

Chang and Stout (1993) argued convincingly that conditions (CS1)–(CS5) are realistic and non-
restrictive in practice for commonly used IRT models of well-designed tests. They particularly
commented condition (CS3) and (13), which plays an important role in the proof of their main
theorem. (CS3) is required when the item responses {Yi }i∈N are independent but not identically
distributed. If they are iid, (CS3) is automatically satisfied, which however is not necessarily the
case in IRT models. Their main results are expressed in the three theorems given below.

Theorem 1. (Chang & Stout, 1993, Theorem 1) Suppose that conditions (CS1) through (CS5)
hold for a fixed η0. Let η̂d be the MLE of η0 and σ̂d = (I(d)(η̂d))

−1/2. Then, for −∞ ≤ a <

b ≤ ∞, the posterior probability of η̂d + aσ̂d < η < η̂d + bσ̂d approaches the probability of
Z ∈ (a, b) in Pη0 for Z ∼ N (0, 1), that means

Ad ≡
∫ η̂d+bσ̂d

η̂d+aσ̂d

h(η | Y(d)) dη
Pη0−→ 1√

2π

∫ b

a
exp

(
−1

2
η2

)
dη ≡ A, d → ∞.

Theorem 2. (Chang & Stout, 1993, Theorem 2) Suppose that conditions (CS1) through (CS5)
hold for fixed η0 and let η̂d and σ̂d be defined as in Theorem 1. Then, for −∞ ≤ a < b ≤ ∞,
the posterior probability Ad approaches A Pη0 -almost surely, as d → ∞.
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Theorem 3. (Chang & Stout, 1993, Theorem 3) Assume � = �0, a finite interval. Suppose that
conditions (CS1) through (CS5) hold for all η0 ∈ �0 and let η̂d and σ̂d be defined as inTheorem 1.
Then, for −∞ ≤ a < b ≤ ∞, the posterior probability Ad approaches A in manifest probability
P, as d → ∞.

The result of Theorem3 does not depend on the true value η0 and is thus of special practical interest
for estimation and prediction purposes. As Chang and Stout (1993) comment, Theorems 1 and 3
treat sampling from a fixed ability sub-population and from thewhole population, respectively. An
important by-product of the proof of theAPNof latent variables distributionswas the establishment
of the weak and strong consistency of the MLE of η under milder conditions than Lord (1983).

Due to the theorems above, the following approximation for a large d and any observed
response pattern y ∈ {0, 1}d , i.e., the construction of asymptotic credible intervals, is justified

P(a ≤ η ≤ b | Y(d) = y) ≈ 
1(b ; η̂d , σ̂
2) − 
1(a ; η̂d , σ̂

2), (14)

for−∞ ≤ a ≤ b ≤ ∞ ∈ R, where η̂d is theMLEof η0 based on the sampley, σ̂ 2 = (I(d)(η̂d))
−1

and 
1(· ; η̂d , σ̂
2) denotes the cdf of N (η̂d , σ̂

2). Approximation (14) is of special practical
importance in the context of long tests where the exact computation of posterior probabilities
for latent variables is commonly intractable. Furthermore, (14) allows the approximation of the
posterior if the exact distribution H of η is unavailable or uncertain.

Finally, Chang and Stout (1993) noted that their theory, under suitable regularity conditions,
can be extended to prove the APN for latent vectors of general multidimensional IRT models,
without however commenting further the proving procedure or the regularity conditions required.
Next, we discuss the asymptotic posterior distribution of multivariate latent traits in the context
of MIRT.

4. APN for Multivariate Latent Traits

The theory of APN of the latent variables is naturally linked to Bayesian procedures and
results on the convergence of posterior distributions. In particular, interesting and inspiring is the
fundamental contribution by GGS (Ghosal et al., 1995), who consider asymptotic multivariate
posterior distributions (not necessarily normal) in a very general andflexible framework discussing
different types of convergence, relying on earlier works by Ghosh et al. (1994) and Ibragimov
and Has’minskii (1981), denoted as IH hereafter. In particular, they studied posterior convergence
of suitably centered and normalized posteriors. Their results provide a very general framework,
which can be adopted for the APN in the IRT setup. Next, we adjust the GGS approach for MIRT
models and discuss their conditions, embedding the CS approach in the GGS framework.

Following Ghosal et al. (1995, Definition 2), we distinguish two types of APN and link them
to the statistic used for the centering of the posterior distribution of the latent vector.

Definition 1. Let Z ∼ Nq(0, Iq) be a q-variate standard normal distributed random vector. A
R
q -valued statistic η̃d is called a proper centering (with limiting normal distribution) if

sup
A∈Bq

∣∣∣P
(
I(d)(η̃d)

1/2(η − η̃d) ∈ A
∣∣∣ Y(d)

)
− P(Z ∈ A)

∣∣∣
Pη0−→ 0, as d → ∞. (15)

A statistic η̃d is called semiproper centering (with limiting normal distribution) if, for all A ∈ Bq ,

P
(
I(d)(η̃d)

1/2(η − η̃d) ∈ A
∣∣∣ Y(d)

) Pη0−→ P(Z ∈ A), as d → ∞. (16)
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A statistic η̃d is called compatible (with the posterior), if

(
I(d)(η̃d)

1/2(η̃d − η0), h
∗ (

·
∣∣∣Y(d)

))
,

as a random element in R
q × L1(Rq), converges in distribution for d → ∞, where h∗( · | Y(d))

denotes the density of the posterior distribution of I(d)(η0)
1/2(η − η0) and L1(Rq) stands for the

space of all q-variate Lebesgue-integrable real functions on Rq .

Proper and semiproper centering correspond to uniform and pointwise convergence of the
posterior of the standardized latent vector I(d)(η̃d)

1/2(η − η̃d), respectively. Hence, proper cen-
tering is a stronger property than semiproper centering, and is consequently expected to require
stronger assumptions.

Under this view, one can easily recognize that Theorem 1 of Chang and Stout (1993) is the
semiproper centering of the MLE, since it can be formulated as

P
(
I(d)(η̂d)

1/2 (
η − η̂d

) ∈ [a, b]
∣∣∣ Y(d)

) Pη0−→ P
(
Z ∈ [a, b] ), d −→ ∞,

for Z ∼ N (0, 1), A = [a, b] ⊂ R and η̃d = η̂d being the MLE of η0 based on Y(d). Thus, for
the extension of the CS-theory for multivariate LTs, we focus on semiproper centering.

The asymptotic results of GGS adjusted in our setup, primarily focus on the convergence of
the posterior distribution of the standardized latent vector

η∗ = I(d)(η̃d)
1/2(η − η0), (17)

with η∗ ∈ �d := I(d)(η̃d)
1/2(� − η0). We need the likelihood ratio (10) expressed in terms of

η∗, which is denoted by

Z∗(d)(η∗) := Z (d)(η0 + I(d)(η̃d)
−1/2η∗, η0). (18)

In our setup, for binary response variables Yi , i ∈ [d], and log-likelihoods given by (6), the
likelihood ratio Z∗(d) takes the form

Z∗(d)(η∗) = exp

( d∑

i=1

(
Yi

(
λi

(
η0 + I(d)(η̃d)

−1/2η∗) − λi

(
η0

))

−
(
ψ

(
λi

(
η0 + I(d)(η̃d)

−1/2η∗))
− ψ

(
λi

(
η0

))) )
,

with the item logits λi provided in (7).
The primary conditions of GGS for APN are given as follows:

(GGS1) For some M > 0, m1 ≥ 0 and α > 0 holds

Eη0

(∣∣∣Z∗(d)(η∗
1)

1/2 − Z∗(d)(η∗
2)

1/2
∣∣∣
2
)

≤ M(1 + Rm1)‖η∗
1 − η∗

2‖α,

for all η∗
j ∈ �d , satisfying ‖η∗

j‖ ≤ R, j = 1, 2, where ‖ · ‖ is the Euclidean norm.
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(GGS2) For all η∗ ∈ �d holds

Eη0

(
Z∗(d)(η∗)1/2

)
≤ exp

(
− gd

(‖η∗‖)
)
,

where {gd}d∈N is a sequence of real-valued functions on [0,∞) satisfying the following:
(a) for a fixed d ≥ 1, limx→∞ gd(x) = ∞; (b) for any N > 0,

lim
x→∞ lim

d→∞ xN exp(−gd(x)) = lim
d→∞ lim

x→∞ xN exp(−gd(x)) = 0.

(GGS3) For all n ∈ N and η∗
1, . . . , η

∗
n ∈ R

q , the vector of the likelihood-ratios, defined in (18),
satisfies

(Z∗(d)(η∗
1), . . . , Z

∗(d)(η∗
n))

D−→ (Z(η∗
1), . . . , Z(η∗

n)),

for d −→ ∞, where
D−→ denotes convergence in distribution and Z(η∗) = exp(ξT η∗−

1
2‖η∗‖2), η∗ ∈ R

q , where ξ ∼ Nq(000, Iq).

Under these conditions, Ghosal et al. (1995) provided the following general result. Notice
that they discussed a far more general framework, allowing further distributions for the response
variable and considering cases for which the posterior may converge to another distribution than
a normal. We refer to GGS for further details regarding these cases.

Theorem 4. (Ghosal et al., 1995, Theorem 1) Assume that conditions (GGS1) through (GGS3)
hold. If either a proper centering or a semiproper compatible centering sequence {η̃d}d∈N exists,

then it exists a random vectorWWW, such that (a) I(d)(η̃d)
1/2(η̃d −η0)

D−→ WWW for d −→ ∞ and (b)
for almost all xxx ∈ R

q , Z(xxx−WWW )∫
Rq Z(xxx∗−WWW ) dxxx∗ is nonrandom, where Z is as defined in condition (GGS3).

Conversely, if (b) holds for a random vector WWW, then any Bayes estimator (with respect to a prior
and loss considered by Ghosal et al. (1995)) is a compatible proper centering.

Applying Theorem 4 for an appropriate Bayes estimator for η0, the APN of an MIRT model
under conditions (GGS1) to (GGS3) is derived. The extension of Theorem 4 for an MLE, i.e.,
for η̃d = η̂d , is based on its asymptotic equivalence to an arbitrary Bayes estimator, which has
been proved by Ghosal et al. (1995, cf. Corollary 1) under (GGS2)–(GGS3) and the following
strengthened form of (GGS1):

(GGS1’) For some M > 0, m1 ≥ 0 and m ≥ α > q holds

Eη0

(∣∣∣Z∗(d)(η∗
1)

1/m − Z∗(d)(η∗
2)

1/m
∣∣∣
m)

≤ M(1 + Rm1)‖η∗
1 − η∗

2‖α,

for all η∗
j ∈ �d , satisfying ‖η∗

j‖ ≤ R, j = 1, 2.

Remark 4. Alternatively to the GGS conditions discussed above, one could consider the condi-
tions of Ibragimov&Has’minskii (1981, Section III.4) for general regular models for independent
non-necessarily identical distributed (inid) random variables. They proved that these conditions
are sufficient for the set of conditions N1–N4 of IH, Section III.1, where N1 is the uniform asymp-
totic normality and corresponds to (GGS3), while N3 and N4 correspond to (GGS1) and (GGS2),
respectively.
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5. Regularity Conditions for Asymptotic Properties of Latent Vectors

Aiming to generalize the CS approach, we provide conditions for APN of (multivariate)
LTs that correspond one to one to the conditions of CS for univariate LTs, which is the standard
approach for IRT models, as alternatives to the conditions imposed in Ghosal et al. (1995).
Throughout,we assume that {Yi }i∈N ∼ P(η), i.e., {Yi }i∈N areBernoulli randomvariables fulfilling
(1) and (2), and that the true latent vector η0 lies in the interior of the parameter space, i.e.,
η0 ∈ � \ ∂�, where ∂� denotes the boundary of �. The asymptotic results of Sect. 7 rely on the
following regularity conditions.

(CS1’) [i] The set � is closed, convex and has non-empty interior.
[ii] The prior density h of η is proper and continuous at η0 with h(η0) > 0.

(CS2’) Pi is thrice continuously differentiable, i ∈ N. If restricted to a compact subset K ⊆ �,

all
∣∣∣ ∂Pi
∂ηk

∣∣∣ and
∣∣∣ ∂2Pi
∂ηk∂η j

∣∣∣ are uniformly bounded for all i ∈ N, 1 ≤ j, k ≤ q. Moreover,

there exist constants 0 < ζ0(K ) < ζ1(K ) < 1, which are independent of i ∈ N, such
that

ζ0(K ) ≤ inf
(i,η)∈N×K

Pi (η) ≤ sup
(i,η)∈N×K

Pi (η) ≤ ζ1(K ). (19)

(CS3’) For each η ∈ �, η 
= η0, there is a c(η) < 0 such that

lim sup
d→∞

1

d

d∑

i=1

Eη0(log Zi (η, η0)) = lim sup
d→∞

1

d
Eη0(�

(d)(η |Y(d)) − �(d)(η0 |Y(d))) ≤ c(η),

and if � is unbounded holds additionally

sup
η∈�\Bδ(η0)

c(η) < 0, for all δ > 0, (20)

where Bδ(η0) := {η ∈ R
q : ‖η − η0‖ < δ} is the open ball of radius δ and center η0.

(CS4’) If restricted to any compact set K ⊆ �, the following set of functions is uniformly
bounded

{ ∣∣∣∣
∂3Pi

∂ηk∂ηg∂ηu

∣∣∣∣ : i ∈ N, 1 ≤ k, g, u ≤ q

}
.

(CS5’) For all η ∈ � holds

lim inf
d→∞ νmin

(
1

d

d∑

i=1

∇λi (η)∇λi (η)ᵀ
)

> 0, (21)

where νmin denotes the smallest eigenvalue.
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These regularity conditions correspond one to one to conditions (CS1)–(CS5), given in Sect.
3. For the comparison of these conditions, have in mind that convexity and connectivity are
equivalent properties in R. The convexity condition in (CS1’) is at first place stronger but it
does not impose a real practical restriction, since non-convex � are only rarely needed in MIRT.
Analogue to the CS-theory (s. Remark 3), conditions involving η0, like h(η0) > 0, should be
interpreted as h > 0 almost surely. Condition (CS1’[ii]) on h seems more strict than (CS1[ii]).
However, Chang and Stout (1993) require additional a proper prior (s. Remark 2). Thus, under the
consideration that η0 is still unknown andwe considerR

q instead ofR, the requirements on proper
priors in (CS1’[ii]) are analogue to (CS1[ii]). Finally note that in the generalization of conditions
(CS3) and (CS4), some requirements have been removed as the remaining requirements on λi ,
i ∈ N, and its derivatives are implied by conditions (CS2’) and (CS4’).

A common assumption in one-dimensional IRT models (q = 1) is the strict monotonicity
assumption (3) of Pi in η, for all i ∈ N. Conceptually, this represents the notion that a more able
subject has a higher probability of responding correct in any item of an educational test. Thus,
models fulfilling this strict monotonicity assumption are easier to interpret. However, models
with non-generalized-linear latent variable effects can be more adequate in practice. For example,
Rizopoulos and Moustaki (2008) considered IRT models with possibly non-monotonic latent
variable dependencies (like polynomial effects). Due to this reason, in order to allow for more
flexible modeling options, in our semiproper centering theory, we abandon the requirement on
strict monotonicity of η �→ Pi (η), for all i ∈ N, in each component. Since the results of Chang
and Stout (1993) rely on this monotonicity assumption, the merit of the current contribution is
not only the extension of the CS-results for latent vectors (q > 1) but also for univariate latent
variables in case of a non-monotonic latent variable effect.

If all Pi , i ∈ N, are strictly monotonic in each component, then requirement (19) of condition
(CS2’) is satisfied as in the univariate case. Otherwise, the requirement in (19) is generally not
really restrictive; it is the technical formulation of the notion that the response probabilities can
(but not necessarily have to) approach zero or one only if ‖η‖ −→ ∞. Assumption (20) in (CS3’)
serves for ensuring the identifiability of the latent vector in case of ‖η‖ −→ ∞. Hence, this
condition is quite natural for a statistical model. In the univariate case, (20) of (CS3’) is implied
by the strict monotonicity, too. But in contrast to (19), (20) cannot be concluded directly from the
strict monotonicity of all Pi in each component if q > 1.Moreover, while a single item can suffice
in the univariate case for identifiability, there are always at least q needed in the q-dimensional
one. Similarly, the average test information 1

d I(d)(η) is always singular for d < q, since it is a
sum of d rank-one matrices. Condition (CS5’) ensures that 1

d I(d)(η) becomes regular for d → ∞
and can be interpreted as a condition to ensure that the asymptotic posterior of η is regular q-
dimensional distributed and does not have a lower dimensional support (cf. Lemma W.6 in the
web-appendix).

To get a better impression of the conditions, we exemplary discuss them next for model
(22), the multidimensional version of a model of Lee and Bolt (2018) and a logit model with an
interaction of the latent variables (Rizopoulos, 2006).

6. Verification of the CS Regularity Conditions for Multidimensional IRT Models

We shall verify the proposed conditions (CS1’) to (CS5’) for a multidimensional version of
a model by Lee and Bolt (2018) and discuss them also for the models of Pelle et al. (2016) and a
logit model with interaction of the latent variables (Rizopoulos, 2006).
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Consider first the IRT model by Lee and Bolt (2018) or its multidimensional version

Pi (η) = 
1

(
α

ᵀ
i η + βi√

2(1 + exp(−δ
ᵀ
i η))−1/2

)
, η ∈ �, i ∈ N. (22)

IfH is one of the usual structural models or any other regular distribution, for exampleNq(0, Iq),
a mixture of normals or a uniform distribution on some compact set, then (CS1’) is directly
satisfied. Further, considering the model parameters as random variables, we assume that the
parameter sequences {αi }i∈N and {δi }i∈N behave as they were two independent iid sequences
drawn from absolutely continuous regular distributions in some bounded region in R

q and the
sequence {βi }i∈N is in an arbitrary bounded subset of R, then conditions (CS2’) and (CS4’) are
directly satisfied. The assumption of regular distributions with a bounded support for the model
parameters is reasonable, since in IRT practice items with arbitrarily large discrimination are not
realistic and items of arbitrarily high or low difficulty are avoided. Furthermore, in almost all
cases, the latent vector is identifiable if q arbitrary items are given. Hence, (CS3’) is satisfied, too.
The gradient of the response probabilities is given by

∇Pi (η) = φ1

(
ααα

ᵀ
i η + βi√

2(1 + exp(−δδδ
ᵀ
i η))−1/2

)

×
(√

1 + exp(−δδδ
ᵀ
i η)

2
αααi − exp(−δδδ

ᵀ
i η)

2
√
2

ααα
ᵀ
i η + βi√

1 + exp(−δδδ
ᵀ
i η)

δδδi

)
,

(23)

for all i ∈ N and η ∈ �, where φq denotes the pdf of Nq(000, Iq). In particular, we see from (23),
that {∇Pi (η)}i∈N behaves in almost all cases for all η ∈ � as an iid sequence drawn from a regular
distribution with bounded support in Rq , since the parameters are iid distributed for all items and
every η ∈ � is considered separately, i.e., η is held fixed. Exceptions are pathological cases like
the one in which zero belongs to the support of the distributions of all model parameters and all
model parameters equal zero, i.e., Pi (η) = 0.5 for all η ∈ � and i ∈ N. However, the subset of
such cases is of zero probability for regular continuous distributions, i.e., is a null-set. Thus,

1

d

d∑

i=1

∇Pi (η)∇Pi (η)ᵀ

converges to the second moment of the distribution of ∇P1(η), as a random vector formed by
the multivariate transformation of the randomly selected parameter values described directly after
equation (23), and is thus positive definite.

With respect to (CS5’), note that (19) in (CS2’) implies that (21) is equivalent to

lim inf
d→∞ νmin

(
1

d

d∑

i=1

Ii (η)

)
> 0 and to lim inf

d→∞ νmin

(
1

d

d∑

i=1

∇Pi (η)∇Pi (η)ᵀ
)

> 0, (24)

which in our case ensures that (CS5’) is satisfied (cf. Lemma W.6 in the web-appendix).
For illustrative purposes, consider an example with d = 30 and q = 2 and model parameter

values, as given in Table 1, which are independently drawn from a uniform distribution on (−2, 2)
for βi , and on (−0.5, 1) for all other parameters.
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Table 1.
Hypothetical parameter values for model (22) and the first 30 items.

i βi αi1 αi2 δi1 δi2 i βi αi1 αi2 δi1 δi2

1 − 0.906 0.946 − 0.398 0.230 0.327 16 − 0.104 − 0.498 0.298 0.359 0.622
2 − 1.337 0.893 − 0.085 0.696 0.622 17 0.458 0.496 0.267 0.677 0.551
3 − 0.913 − 0.363 0.703 0.052 0.605 18 − 1.882 − 0.259 − 0.484 0.101 − 0.022
4 0.387 0.166 0.313 − 0.352 − 0.447 19 0.801 0.066 − 0.488 0.282 0.697
5 0.676 0.677 0.199 0.701 0.283 20 1.953 − 0.169 0.963 − 0.467 0.443
6 − 0.084 0.865 0.833 0.957 0.724 21 − 1.712 0.326 0.979 − 0.146 − 0.347
7 0.138 0.688 − 0.444 0.942 − 0.043 22 1.725 0.146 0.875 0.843 0.092
8 1.608 0.296 0.472 − 0.096 − 0.101 23 1.980 0.826 0.517 0.195 0.825
9 − 0.882 0.016 − 0.378 0.088 0.458 24 0.171 0.197 0.722 0.069 − 0.442
10 1.240 0.320 0.924 − 0.250 0.386 25 0.499 − 0.101 − 0.319 0.943 0.071
11 − 0.919 0.867 − 0.391 0.051 0.202 26 − 1.775 0.530 − 0.188 0.819 − 0.336
12 0.216 0.093 0.028 0.152 0.339 27 1.523 − 0.302 0.646 0.581 0.718
13 1.900 0.726 0.007 0.842 − 0.072 28 1.548 0.272 0.469 − 0.207 − 0.241
14 0.510 − 0.068 − 0.105 0.132 − 0.256 29 − 0.823 − 0.113 − 0.147 0.027 − 0.282
15 − 1.109 0.072 − 0.017 0.370 0.623 30 0.822 0.661 − 0.485 − 0.277 − 0.017

In Fig. 1 (top) visualizations of Eη0(log(Z5(η, η0))) are provided for two exemplary values
of η0 ∈ � and the parameters in Table 1. In particular, we can recognize lines in �, for which
Eη0(log(Z5(η, η0))) = 0 holds. In Fig. 1 (bottom), surfaces of 1

30

∑30
i=1 Eη0(log(Zi (η, η0))) are

illustrated for further two exemplary η0 values. The surfaces are drawn over [−1, 1]2. There is a
nearly parabolic surface, which illustrates that there is no reason to doubt for (20) in (CS3’).

Figure 2 provides the minimal smallest eigenvalue of 1
d

∑d
i=1 ∇λi (η)∇λi (η)ᵀ on [−1, 1]2

for d ∈ {1, . . . , 30}, cf. (CS5’). Overall, in this case, the regularity conditions can be considered
as justified to apply the APN for arbitrary response patterns on the illustrated 30 items.

Conditions (CS1’) to (CS5’) for other models can be verified similarly. For example, the
multidimensional Rasch model implemented in Pelle et al. (2016) is the logit model

logit(P(Yi = 1 | η)) := log

(
P(Yi = 1 | η)

1 − P(Yi = 1 | η)

)
= αi0 + ααα

ᵀ
i η, η ∈ R

q , i = 1, . . . , d,

(25)

where P(Yi = 1 | η) is the probability of inclusion in registration i , given the vector of latent
variables. In this case,

∇λi (η) = αααi , i = 1, . . . , d,

would replace (23) for η ∈ �, while the subsequent arguments are the same as above.
Another example is the two-dimensional model

λi (η) = αi0 + αi1η1 + αi2η2 + αi3η1η2, i = 1, . . . , d,

which is a logit model that contains an interaction term between the two latent variables and
was considered by Rizopoulos (2006) (see Section 4). While it is still logit-linear in the model
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parameters αi j , i ∈ [d], j ∈ [4], it is no longer linear in the latent variables. However, with

∇λi (η) =
(

αi1 + αi3η2
αi2 + αi3η1

)
, η ∈ R

2, i = 1, . . . , d,

the same arguments still apply (compare also to Rizopoulos and Moustaki (2008), who discuss
MIRT models within a more general form of the generalized latent variable model, allowing
nonlinear effects of latent variables).

7. Main Results

Our main contribution is the generalization of Theorems 1 and 3 of Chang and Stout (1993)
for q > 1, under the assumptions (CS1’) to (CS5’). Furthermore, we embed the CS-approach in
the GGS framework (see Theorem 5 (iii)). Similarly to Chang and Stout (1993), the consistency
of the MLE is received as a by-product, along with an assertion on its existence. Additionally, the
consistency of a penalized MLE is derived. The results are provided in the next theorem, while
their proofs along with some preliminary required lemmas are given in appendix.

Theorem 5. Let Z ∼ Nq(0, Iq) be a q-variate standard normal distributed random vector and
{Yi }i∈N ∼ P(η0) is a sequence of binary response variables for a sequence of item response
functions {Yi }i∈N satisfying (CS1’[i]), (CS2’) and (CS3’) for η0 ∈ � \ ∂�. Then, the following
statements holds:

(i) There is a sequence {η̂d}d∈N of measurable mappings so that

lim
d→∞Pη0

(
∇�(d)(η̂d |Y(d)) = 000

)
= 1,

lim
d→∞Pη0

(
�(d)(η̂d | Y(d)) = max

η∈�
�(d)(η | Y(d))

)
= 1

and η̂d
Pη0−→ η0 for d → ∞.

(ii) Statement (i) remains valid if �(d) is replaced by the penalized log-likelihood

�̃(d)(η | Y(d))) = �(d)(η | Y(d)) + log(W(η)), η ∈ �, d ∈ N,

for some continuously differentiable, positive and bounded function W .

(iii) If additional (CS1’[ii]), (CS4’) and (CS5’) are satisfied, then the following statement
holds: If η0 is held fix, then, for all B ∈ Bq ,

P
(
I(d)(η̂d)

1/2 (
η − η̂d

) ∈ B
∣∣∣ Y(d)

) Pη0−→ P(Z ∈ B). (26)

That is, the MLE η̂d is a semiproper centering (cf. Definition 1). If η0 ∼ G, where G is
an absolutely continuous proper distribution with supp(G) ⊆ �, then furthermore

P
(
I(d)(η̂d)

1/2 (
η − η̂d

) ∈ B
∣∣∣ Y(d)

)
P−→ P(Z ∈ B), (27)

for all B ∈ Bq .
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Remark 5. For W = h, the penalized MLE in part Theorem 5 (ii) becomes the maximum a-
posteriori estimator (MAP), which is an important estimator for η in IRT, also because it ensures
the existence of estimates in cases the MLE becomes infinite (for example when

∑d
i=1 yi = 0 or

d). The restriction on h in part (ii) is stronger than (CS1’[ii]), but still mild.
As already noted in Sect. 3, Theorem 5 (iii) can be used for the construction of credible

regions for η. Additionally, it allows the interpretation of the MLE as a Bayesian estimator of η0
and thus enables the use of η̂d to derive some kind of objective posterior, in the sense that it is
prior-free constructed.

An important concept in the asymptotic analysis of Bayesian procedures is the consistency of
the posterior distribution, which forms a basis for the asymptotic validity of inferential methods,
and is proved in Theorem 6 (i). The consistency of the EAP is stated in Theorem 6 (ii).

Theorem 6. Consider the setup and the assumptions of Theorem 5(iii), the following statements
hold:

(i) If η0 is held fix, then

P(η ∈ B | Y(d))
Pη0−→ δη0(B) :=

{
1, η0 ∈ B
0, η0 
∈ B

, d → ∞,

for all Borel-sets B ∈ Bq with η0 
∈ ∂B.
(ii) Suppose that η0 is held fix and that there is a continuous mapping f : � → R so that∫

�
f (η)h(η) d(η) exists. Then, the posterior expected value E( f (η) | Y(d)) exists for

all d ∈ N and is weakly consistent for f (η0), i.e.,

E( f (η) | Y(d))
Pη0−→ f (η0), for d → ∞.

If in particular E(η) exists, then the posterior expected value E(η | Y(d)) exists for all
d ∈ N and is weakly consistent for η0.

8. Simulation Study

The simulation study that follows examines the convergence to zero of the error for the
approximation of the MLE-centered normalized posterior by a standard normal distribution and
its relation to the convergence of the MLE, for the case of a bivariate latent variable vector
(q = 2). Convergences are evaluated based on the following measures. For the MLE, we use the
root-mean-square error

RMSE(η̂d , η0) =
√
1

2

(
(η̂d1 − η01)2 + (η̂d2 − η02)2

)
.

For the approximation of the normalized posterior density h∗ by a bivariate normal pdf φ2, we
compute the density approximation error (also known as L1-distance)

DAE(h∗, φ2) =
∫

R2

∣∣h∗(η) − φ2(η)
∣∣ dη,
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the Hellinger-distance

HD(h∗, φ2) =
√
1

2

∫

R2

(√
h∗(η) − √

φ2(η)
)2

dη,

and the Kullback–Leibler divergence

KLD(h∗, φ2) =
∫

R2
log

(
φ2(η)

h∗(η)

)
φ2(η) dη.

The simulation study is based onmodel (22) with the same item parameters across all replica-
tions, tomimic the situation that different persons respond on the same test. These are generated as
in Sect. 6. For the structural model we assumeH = N2(000, I2), resulting in � = R

2. The number
of items d varies from 10 to 70 in steps of ten items, to mimic the asymptotic behavior with test
lengthening. All involved integrals are approximated using an importance sampling Monte Carlo
(MC) approximation with N2(000, I2) being the importance distribution.

We replicate 1000 times (� = 1, . . . , 1000) the following procedure.

1. Draw η
(�)
0 ∼ H.

2. Draw y(70,�) = (y(�)
1 , . . . , y(�)

70 ) from model (22) with underlying true latent variable

vector η
(�)
0 and item parameter values as described above (setting y(�)

i = 1 if y∗(�)
i <

Pi (η
(�)
0 ) and yi = 0 otherwise, where y∗(�)

i is drawn from iid U(0, 1), i = 1, . . . , 70).

Then set y(d,�) = (y(�)
1 , . . . , y(�)

d ), for d = 10, 20, . . . , 70.

3. Compute the MLE η̂
(�)
d and the test information matrix I(d)(η̂

(�)
d ), based on y(d,�), for

d = 10, 20, . . . , 70.
4. Derive the posterior pdf h∗(�) of the normalized latent vector I(d)(η̂d)

(
η− η̂d

)
, estimating

its normalization constant by a MC quadrature.
5. Compute RMSE(d)

� = RMSE(η̂
(�)
d , η

(�)
0 ), DAE(d)

� = DAE(h∗(�), φ2), HD(d)
� =

HD(h∗(�), φ2) and KLD(d)
� = KLD(h∗(�), φ2), for d = 10, 20, . . . , 70.

Our results are visualized in Fig. 3, where the box-plots of the RMS, DAE, HD and KLD
values computed above are pictured, for all d values considered. As expected, all evaluation
measures and their range are decreasing in d.

Table 2 provides the average values of the evaluation measures, i.e., RMSE
(d) =

∑
� RMSE(d)

�

1000 ,

andDAE
(d)

,HD
(d)

, andKLD
(d)

, defined analogously.Notice that in our simulation study in case of
relatively small number of items (d ≤ 30), we observed simulation cycles for which theKullback–
Leibler divergence was numerically infinite (due to floating point arithmetics), indicating that
the divergence between the two compared distributions for these cases was extremely large. In
particular, this occurred in 112 cases for d = 10, 20 cases for d = 20 and one case for d = 30
(out of 1000). These cases were excluded from the calculation of the corresponding average
KLD-values reported in Table 2.

Figure 4 visualizes the relation of the divergence measures of the normalized posterior from
the standardized normal distribution to the RMSE of the MLE for the values of Table 2, pictured

for d ≥ 30.Observe that as d increases, DAE
(d)

andHD
(d)

are linear in RMSE
(d)

, whileKLD
(d)

is
linear in RMSE

(d)
/
√
d. This is an indication that DAE and HD have the same rate of convergence

to zero as RMSE while that of KLD is scaled by d−1/2.
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Figure 3.
Box-Plots of the RMSE, DAE, HD and KLD simulated values for d = 10, 20, . . . , 70. Under every d value on the
horizontal axis, the percentage of points located outside the corresponding whiskers is given.

Table 2.
Average values of the root-mean-square error (RMSE) for theMLE along with the density approximation error (DAE), the
Hellinger distance (HD) and theKullback–Leibler divergence (KLD) between the density of theMLE-centered normalized
posterior distribution and a bivariate standard normal density, based on 1000 simulations of model (19) with q = 2, for
different numbers of items d.

d RMSE
(d)

DAE
(d)

HD
(d)

KLD
(d)

10 1.4105 1.1416 0.1330 3.0803
20 0.8206 0.8267 0.0885 1.2698
30 0.6730 0.7272 0.0750 0.8601
40 0.5658 0.6314 0.0634 0.5922
50 0.4552 0.5222 0.0515 0.3850
60 0.3859 0.4510 0.0439 0.2776
70 0.3530 0.4184 0.0403 0.2303
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Figure 4.
Linear regression of DAE

(d)
and HD

(d)
on RMSE

(d)
and of KLD

(d)
on RMSE

(d)
/
√
d for d ≥ 30 (s. Table 2).

Notice that the convergence of theDAE to zero in probability is equivalent to proper centering.
Thus, our simulation results suggest that theMLE is a proper centering for themultivariate version
of the model of Lee and Bolt (2018) with the parameters we consider.

Simulation studies for other IRT models can be conducted similarly, expecting analogous
results.

9. Discussion

In this work, we proved the APN of LTs under mild conditions that are fulfilled by a broad
class of MIRT models for binary items. Furthermore, we obtained as by-products the existence
and consistency of the MLE and the MAP estimator. Note that though the MLE is commonly
known as consistent in IRT and MIRT settings, Sinharay (2015) indicated the lack of asymptotic
results under milder conditions than some of the usual ones (such as test lengthening by strictly
parallel forms). Thus, Theorem 5 (i) is a contribution toward this direction.

The distribution G in Theorem 5 (iii) can be different from H used in the model. Hence, the
asymptotic result above is robust to misspecifications of H as long as the support is sufficiently
large. An interesting task for further investigation, pointed out by one of the reviewers, is the
study of the effect of misspecified item response functions.

Under similar mild conditions we provided results on the weak consistency of posterior
distributions. In Theorem 6 (ii), we get the existence and consistency of the expected a-posteriori
estimator (EAP) for estimating η0 as well as for estimating f (η0). To the best of our knowledge, a
proof of these properties in such a general setup and under comparably mild or milder conditions
on the MIRT model does not exist in the related literature.

Our results are under the assumption of a proper prior h. This is appropriate in IRT settings,
where the prior is a model of the population distribution of the latent traits. However, in a Bayesian
framework, improper priors can also be considered. If this is the case, the proper prior assumption
in (CS1’[ii]) can be replaced by the following condition if the posterior is still proper

1

P(d)(Y(d) | η0)

∫

�\Bδ(η0)

P(d)(Y(d) | η)h(η) dη = oPη0

(
d−q/2), for all δ > 0. (28)
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Condition (28) is sufficient for the derivation of the results stated here and is satisfied by a proper
prior.

The APN for a univariate LT for polytomous items was discussed by Chang (1996). The
extension of the results for MIRT models with polytomous items is the subject of our current
research.

Here, we derived conditions for APN of LTs by generalizing the contribution of Chang and
Stout (1993) to q > 1. The methodology of GGS/IH, discussed in Sect. 4, provides a general
framework for APN in various contexts, including MIRT. The results of Ghosal (1997, 1999) are
helpful in deriving alternative conditions for APN tailored for MIRT models.
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Appendix: Proofs of Theorems in Section 7

Here,weprove themain resultsTheorem5and6andprovide required lemmas for their proof.More
detailed versions of all proofs including preliminary results are provided in the web-appendix.
For the proof of Theorem 5 (i) the following lemma is required. This lemma ensures that for
d → ∞, a global maximum of the log-likelihood has to be in an arbitrarily small area around η0,
thus being the main step to prove the consistency of the MLE.

Lemma 1. Consider {Yi }i∈N ∼ P(η) and assume that conditions (CS1’[i]), (CS2’) and (CS3’)
are satisfied for a fixed η0 ∈ �. Then, for any δ > 0 there is a k(δ) < 0 so that

lim
d→∞Pη0

(
sup

η∈�\Bδ(η0)

1

d

(
�(d)(η |Y(d)) − �(d)(η0 |Y(d))

)
< k(δ)

)
= 1.

Proof. A more detailed version of the proof can be found in the web-appendix (p. 3).
Consider an arbitrary δ > 0. One can show that the associated sequence of item response functions
{Pi }i∈N is equicontinuous on each compact set (compare LemmaW.1 in the web-appendix). This
implies, applying the strong law of large numbers, that

lim
d→∞Pη0

(
sup
η∈K

1

d

(
�(d)(η |Y(d)) − �(d)(η0 |Y(d))

)
< cK

)
= 1,

http://creativecommons.org/licenses/by/4.0/
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for each compact K ⊂ � for which a δ > 0 exists such that Bδ(η0) 
⊂ K with a constant
cK ≤ supη∈K c(η)/2 < 0 (compare the more detailed version of the proof in the web-appendix).
This is in particular true for

K = � j :=
{
η ∈ � : δ + j ≤ ‖η − η0‖ ≤ δ + j + 1

}

for each j ∈ N0 and δ > 0. Finally, we get with probability tending to one for d → ∞ that

sup
η∈�\Bδ(η0)

1

d

(
�(d)(η |Y(d)) − �(d)(η0 |Y(d))

)

= sup
j∈N0

(
sup
η∈� j

1

d

(
�(d)(η |Y(d)) − �(d)(η0 |Y(d))

) )

≤ sup
j∈N0

c j ≤ sup
η∈�\Bδ(η0)

c(η)/2 =: 2 · k(δ).

��
Proof of Theorem 5(i)–(ii). Amore detailed version of the proof can be found in theweb-appendix
(p. 7).
Analogously to the proof of Corollary 3.1 of Chang and Stout (1991), notice that

�(d)(η̂d |Y(d)) − �(d)(η0 |Y(d)) = log

(
P(d)(Y(d) | η̂d)
P(d)(Y(d) | η0)

)
≥ 0, (A1)

if the MLE exists due to its definition as global maximum. From Lemma 1 follows, that every
global maximum of the log-likelihood has to be in every arbitrary small region around η0 with
probability tending to one for d → ∞, which implies consistency. The existence of the MLE and
further its derivation as solution of the likelihood equations can be shown completely analogous
to classical iid cases (e.g., Lehmann & Casella, 1998, Chapter 6, Theorem 5.1, p. 463).
Considering the modified log-likelihood function

�̃(d)(η | Y(d))) = �(d)(η | Y(d)) + log(W(η)), η ∈ �, d ∈ N,

of part (ii), the consistency is obtained by replacing � by �̃ in Lemma 1 and part (i) of this theorem.
��
The following lemma ensures the log-likelihood-ratio can be well approximated by a quadratic
form of the test information matrix, which is an essential part for the proof of Theorem 5(iii).
Lemma3 andCorollary 1 provided in the sequel, are additionally required for the proof ofTheorem
5(iii) and Theorem 6.

Lemma 2. Suppose that conditions (CS1’) through (CS5’) hold. Denote by Hd( · ) the Hes-
sian matrix of �(d)(· |Y(d)). Set �d := I(d)(η0)

−1, which is estimated by �̂d = I(d)(η̂d)
−1,

if I(d)(η̂d)
−1 exists, and by �̂d = Iq otherwise, where Iq is the q × q identity matrix, d ∈ N.

Then, we have the following.
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1. There is a sequence {ad}d∈N, ai ∈ [0, 1], such that for

Rd(η) := �̂d

(
I(d)(η̂d) + Hd(η

∗
d)

)
= Iq + I(d)(η̂d)

−1Hd(η
∗
d)

where η∗
d := ad η̂d + (1 − ad)η, it holds with probability tending to 1 for d → ∞, that

�(d)(η |Y(d)) − �(d)(η̂d |Y(d)) = 1

2
(η − η̂d)

ᵀHd(η
∗
d)(η − η̂d) (A2)

= −1

2
(η − η̂d)

ᵀI(d)(η̂d)(Iq − Rd(η))(η − η̂d), (A3)

η ∈ �.
2. For any ε > 0, there is a δ > 0 such that

lim
d→∞Pη0

(
sup

η∈Bδ(η0)

‖Rd(η)‖ < ε

)
= 1, (A4)

where ‖AAA‖ denotes the spectral norm for a matrix AAA.
3. For any ε > 0, there is a δ > 0 so that for all η ∈ Bδ(η0)

lim
d→∞Pη0

(
(1 + ε)Qd(η) ≤ −1

2
(η − η̂d)

ᵀI(d)(η̂d)(Iq − Rd(η))(η − η̂d)

≤ (1 − ε)Qd(η)

)
= 1,

where

Qd(η) := −1

2
(η − η̂d)

ᵀI(d)(η̂d)(η − η̂d), η ∈ Bδ(η0), d ∈ N.

Recall that if a matrix AAA is symmetric and positive definite, then ‖AAA‖ = νmax(AAA) and ‖AAA−1‖ =
νmin(AAA)−1 hold, where νmax and νmin denote the largest and smallest eigenvalues of a matrix.

Proof. An extended proof is provided in the web-appendix (p. 14).
Equation (A2) follows directly from a second-order Taylor expansion of �(d)(η |Y(d)) at η̂d .
Theorem5(i) and conditions (CS2’) and (CS5’) imply the existence of I(d)(η̂d)

−1 with probability
tending to one for d → ∞ (compare Lemma W.6 in the web-appendix) and, therefore, (A3).
Condition (CS5’) further implies for some constant C0 > 0 and d → ∞ that

‖Rd(η)‖ =
∥∥∥∥

(
1

d
I(d)(η̂d)

)−1 1

d

(
I(d)(η̂d) + Hd(η

∗
d)

)∥∥∥∥

≤
∥∥∥∥

(
1

d
I(d)(η̂d)

)−1∥∥∥∥ ·
∥∥∥∥
1

d

(
I(d)(η̂d) + Hd(η

∗
d)

)∥∥∥∥

≤ 1

C0

∥∥∥∥
1

d

(
I(d)(η̂d) + Hd(η

∗
d)

)∥∥∥∥.
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One can show that the conditions imposed imply that

{
1

d
I(d)( · )

}

d∈N
,

{
1

d
Hd( · )

}

d∈N

are equicontinuous in every compact and convex region in � (compare Lemma W.4 in the web-
appendix on p. 11). Kolmogorov’s strong law of large numbers leads then to

‖Rd(η)‖ ≤ C1‖η0 − η∗
d‖ + C2‖η0 − η̂d‖ + oPη

(1),

for d → ∞ and some appropriate constants C1,C2 > 0. Since the MLE is consistent and for
every η ∈ Bδ(η0) it holds

‖η∗
d − η0‖ ≤ ‖η0 − η̂d‖ + ‖η − η0‖,

(recall η∗
d lies between η and η̂d ), we get for ε := 2C1δ

sup
η∈Bδ(η0)

‖Rd(η)‖ < ε + oPη
(1).

Notice that

∣∣∣xxxᵀAAABBBxxx
∣∣∣ ≤

√
νmax(AAA)

νmin(AAA)
‖BBB‖xxxᵀAAAxxx,

for every xxx ∈ R
q , symmetric and positive definite AAA ∈ R

q×q and any further matrix BBB ∈ R
q×q .

The final part follows by selecting AAA = I(d)(η̂d) and BBB = Rd(η
∗
d) for d → ∞. ��

Lemma 3. Let 
̃(B) := P(Z ∈ B) for all B ∈ Bq with Z ∼ Nq(0, Iq). Consider a sequence
{Yi }i∈N for a fixed η0 ∈ �, for which conditions (CS1’ [i]), (CS2’) through (CS5’), and either
(CS1’ [ii]) or (28) are satisfied. Then, the following holds.

1. For every function f that is either absolutely bounded by a constant c > 0 or for which
the integral

∫
Rq f (η)h(η)dη exists, and for every δ > 0, it holds

∫
Rq\Bδ(η0)

f (η)P(d)(Y(d) | η)h(η) dη

P(d)(Y(d) | η̂d) det(�̂
1/2
d )

Pη0−→ 0, d −→ ∞. (A5)

2. Consider a sequence {Gd}d∈N with Gd : (�,B(�)) → (�,B(�)) satisfying either

lim
d→∞Pη0

(
Gd(B) ⊂ Bδ(η0)

) = 1, for all δ > 0, (A6)

or

lim
d→∞Pη0

(
Gd(B) ⊃ Bδ(η0)

) = 1, for one δ > 0, (A7)
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for all bounded B ∈ Bq . Then, for d −→ ∞, it holds

∫
Gd (B)

P(d)(Y(d) | η)h(η) dη

P(d)(Y(d) | η̂d) det(�̂
1/2
d )

− 
̃
(
I(d)(η̂d)

1/2(Gd(B) − η̂d)
)
h(η0)(2π)q/2 = oPη0

(1).

In particular, in case of (A7), it holds


̃
(
I(d)(η̂d)

1/2(Gd(B) − η̂d)
)

= P
(
Z ∈ I(d)(η̂d)

1/2(Gd(B) − η̂d)
) Pη0−→ 1.

Proof. A more detailed version of the proof can be found in the web-appendix (p. 17). 1. With
regard to the left-hand side of (A5), note that, in terms of the log-likelihood function, it can be
written as

∫
Rq\Bδ(η0)

f (η)P(d)(Y(d) | η)h(η) dη

P(d)(Y(d) | η̂d) det(�̂
1/2
d )

= exp

(
�(d)(η0 |Y(d)) − �(d)(η̂d |Y(d))

)
Td

det
(
�̂

1/2
d

) ,

(A8)

where

Td :=
∫

Rq\Bδ(η0)

f (η) exp

(
�(d)(η |Y(d)) − �(d)(η0 |Y(d))

)
h(η) dη,

while it always fulfills

∣∣∣∣∣

∫
Rq\Bδ(η0)

f (η)P(d)(Y(d) | η)h(η) dη

P(d)(Y(d) | η̂d) det(�̂
1/2
d )

∣∣∣∣∣ ≤
∣∣∣∣∣

Td

det
(
�̂

1/2
d

)

∣∣∣∣∣ .

IfH is improper and f is bounded by a constant, (28) directly implies

∣∣∣∣∣
Td

det
(
�̂

1/2
d

)

∣∣∣∣∣ = oPη0
(1).

In any other case, Lemma 1 leads to

lim
d→∞Pη0

(
|Td | ≤ E(| f (η)|) exp(dc(δ))

)
= 1.

Finally, from the polynomial grows of det
(
�̂

1/2
d

)−1 , it follows

E(| f (η)|) exp(dc(δ))
det

(
�̂

1/2
d

)
Pη0−→ 0.
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2. Let B ∈ Bq be an arbitrary bounded Borel set and define for δ > 0 and d ∈ N the set

Mδ,d := Bδ(η0) ∩ Gd(B)

and the integral

Vd :=
∫

Mδ,d

P(d)(Y(d) | η)h(η) dη.

Using the definition of Rd(η) in Lemma 2, it holds

Vd

P(d)(Y(d) | η̂d) det
(
�̂

1/2
d

)

= h(η0)

det
(
�̂

1/2
d

)
∫

Mδ,d

h(η)

h(η0)
exp

(
− 1

2
(η − η̂d)

ᵀI(d)(η̂d)(I − Rd(η))(η − η̂d)

)
dη.

(A9)

By (CS1’), i.e., the continuity of h and h(η0) > 0, it follows that for every ε1 > 0, it exists a
δ1 > 0, such that

1 − ε1 ≤ inf
η∈Mδ1,d

h(η)

h(η0)
≤ sup

η∈Mδ1,d

h(η)

h(η0)
≤ 1 + ε1. (A10)

Furthermore, by Lemma 2 we get for any ε2 > 0 and appropriate δ2 = δ2(ε2) > 0:

(1 − oPη0
(1))

∫

Mδ2,d

exp

(
− 1 + ε2

2
(η − η̂d)

ᵀI(d)(η̂d)(η − η̂d)

)
dη

≤
∫

Mδ2,d

exp

(
− 1

2
(η − η̂d)

ᵀI(d)(η̂d)(I − Rd(η
∗
d))(η − η̂d)

)
dη (A11)

≤ (1 + oPη0
(1))

∫

Mδ2,d

exp

(
− 1 − ε2

2
(η − η̂d)

ᵀI(d)(η̂d)(η − η̂d)

)
dη.

Next, (A10) and (A11) imply


̃

(√
1 + ε2I(d)(η̂d)

1/2(Mδ2,d − η̂d
))

h(η0)(2π)q/2 1 − ε1

(1 + ε2)q/2

(
1 − oPη0

(1)
)

≤ Vd

P(d)(Y(d) | η̂d) det
(
�̂

1/2
d

) (A12)

≤ 
̃

(√
1 − ε2I(d)(η̂d)

1/2(Mδ2,d − η̂d
))

h(η0)(2π)q/2 1 + ε1

(1 − ε2)q/2

(
1 + oPη0

(1)
)
.

In the case of (A6), it holds limd→∞ Pη0

(
Gd(B) = Mδ2,d

) = 1. Selecting ε1 and ε2 arbitrarily
small leads to

∫
Gd (B)

P(d)(Y(d) | η)h(η) dη

P(d)(Y(d) | η̂d) det(�̂
1/2
d )

= 
̃(I(d)(η̂d)
1/2(Gd(B) − η̂d))h(η0)(2π)q/2 + oPη0

(1).
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In the case of equation (A7), we get for each δ2 < δ: limd→∞ Pη0

(
Bδ2(η0) = Mδ2,d

) = 1.
Condition (CS5’) implies


̃

(√
1 + ε2I(d)(η̂d)

1/2(Bδ2(η0) − η̂d
)) Pη0−→ 1.

Finally, the further valid selection of arbitrary small ε1, ε2 > 0 in (A12) and the application of
Lemma 3(1.) on f = 11Gd (B)\Bδ2 (η0) completes the proof. ��
For Gd(B) := R

q , Lemma 3(2.) leads directly to the following Corollary.

Corollary 1. Suppose a sequence {Yi }i∈N for a fixed η0 ∈ �, for which conditions (CS1’) through
(CS5’) hold. Then holds for d → ∞

(
P(Y(d))

P(d)(Y(d) | η̂d) det
(
�̂

1/2
d

)
)−1 Pη0−→ 1

h(η0)(2π)q/2 .

Proof of Theorem 5(iii). An extended proof can be found in the web-appendix (p. 21).
Analogously to the proof of Lemma 2, we can assume without loss of generality that I(d)(η̂d)

−1/2

exists. Set

Gd(B) :=
{
�̂

1/2
d xxx + η̂d : xxx ∈ B

}
≡ I(d)(η̂d)

−1/2B + η̂d , B ∈ Bq , d ∈ N.

Then, (26) for bounded B follows directly from the reformulation

P
(
I(d)(η̂d)

1/2 (
η − η̂d

) ∈ B
∣∣∣ Y(d)

)

=
∫
Gd (B)

P(d)(Y(d) | η)h(η) dη

P(d)(Y(d) | η̂d) det
(
�̂

1/2
d

)
(

P(Y(d))

P(d)(Y(d) | η̂d) det
(
�̂

1/2
d

)
)−1

due to Lemma 3 part 2 and Corollary 1. The case of unbounded B can be shown by considering
a decomposition B = ⋃

m∈N Bm for bounded and pairwise disjoint {Bm}m∈N (compare to the
web-appendix, p. 21–22). Next, set for all d ∈ N, ε > 0 and η′ ∈ �

Hd,ε(η
′) := P

(∣∣∣
∫

Gd (B)

h(η |Y(d)) dη −
∫

B
φ(xxx) d(xxx)

∣∣∣ > ε

∣∣∣∣ η0 = η′
)

,

where φ is the pdf of Nq(0, Iq). Then, (27) follows from

lim
d→∞P

(∣∣∣
∫

Gd (B)

h(η |Y(d)) dη −
∫

B
φ(xxx) d(xxx)

∣∣∣ > ε

)
= lim

d→∞

∫

�

Hd,ε dG

=
∫

�

lim
d→∞ Hd,ε dG = 0,

for each ε > 0, which is valid due to (26) and Lebesgue’s theorem of dominated convergence. ��
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Proof of Theorem 6. A more detailed proof is provided in the web-appendix (p. 23).
Part (i) follows directly from Lemma 3 and Corollary 1 by using the reformulation

H(B|Y(d)) =
∫
B P(d)(Y(d) | η)h(η) dη

P(d)(Y(d) | η̂d) det
(
�̂

1/2
d

)
(

P(Y(d))

P(d)(Y(d) | η̂d) det
(
�̂

1/2
d

)
)−1

, (A13)

for an arbitrary B ∈ Bq with η0 
∈ ∂B.
Next, we prove part (ii). In a first step, the existence ofE( f (η) | Y(d)) for all functions f : � → R,
which are continuous and for which the integral

∫
�

f (η)h(η) dη exists, will be proved. In a second
step its consistency for f (η0) will be discussed.
For every d ∈ N, it holds

∫

�

| f (η)|H(dη | y(d)) =
∫
�

| f (η)|P(d)(y(d) | η)h(η) dη

P(d)(y(d))
≤

∫
�

| f (η)|h(η) dη

P(d)(y(d))
< ∞,

for all y(d) ∈ {0, 1}d , since P(d)(y(d) | η) ∈ (0, 1), P(d)(y(d)) is positive and independent of
η ∈ �, and

∫
�

f (η)h(η) dη exists if and only if
∫
�

f (η)h(η) dη exists. Hence, E( f (η) | Y(d))

exists. Furthermore, it remains integrable for d → ∞, as shown next. Notice that the last statement
does not follow directly, since P(d)(y(d)) −→ 0 for any sequence {yi }i∈N and d −→ ∞.
Adjusting representation (A13), we have

∫

�

| f (η)|H(dη | Y(d)) =
∫
�

| f (η)|P(d)(Y(d) | η)h(η) dη

P(d)(Y(d) | η̂d) det(�̂d)1/2

(
P(d)(Y(d))

P(d)(Y(d) | η̂d) det
(
�̂d

)1/2

)−1

.

Lemma 3 and Corollary 1 imply

lim
d→∞Pη0

(∫

�

| f (η)|H(dη | Y(d)) < C1

)
= 1,

with supη∈Bδ(η0)
| f (η)| =: C1 < ∞ for an arbitrary δ > 0.

Further, for every δ > 0 it holds

∣∣∣∣
∫

�

f (η)H(dη | Y(d)) − f (η0)

∣∣∣∣ =
∣∣∣∣
∫

�

f (η)H(dη | Y(d)) − f (η0)H(� | Y(d))

∣∣∣∣

≤
∣∣∣∣
∫

Bδ(η0)

(
f (η) − f (η0)

)H(dη | Y(d))

∣∣∣∣ +
∣∣∣∣
∫

�\Bδ(η0)

f (η)H(dη | Y(d))

∣∣∣∣

+ | f (η0)| · H(� \ Bδ(η0) | Y(d)),

where the last two terms converge to zero in probability by Lemma 3, Corollary 1 and part (i).
Last, the continuity of f implies for each ε > 0 and appropriate δ′ = δ′(ε):

∣∣∣∣
∫

Bδ′ (η0)

(
f (η) − f (η0)

)H(dη | Y(d))

∣∣∣∣ ≤ ε · H(Bδ′(η0) | Y(d)) ≤ ε.

The second part follows directly by considering the mappings η �→ η j , j ∈ {1, . . . , q}, in the
first part, which are continuous and by assumption integrable. ��
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