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Converging evidence supports that a collection of brain regions is functionally or anatomically abnormal in autistic subjects. Structural
covariance networks (SCNs) representing patterns of coordinated regional maturation are widely used to study abnormalities
associated with neurodisorders. However, the possible developmental changes of SCNs in autistic individuals during the first 2
postnatal years, which features dynamic development and can potentially serve as biomarkers, remain unexplored. To fill this gap, for
the first time, SCNs of cortical thickness and surface area were constructed and investigated in infants at high familial risk for autism
and typically developing infants in this study. Group differences of SCNs emerge at 12 months of age in surface area. By 24 months
of age, the autism group shows significantly increased integration, decreased segregation, and decreased small-worldness, compared
with controls. The SCNs of surface area are deteriorated and shifted toward randomness in autistic infants. The abnormal brain
regions changed during development, and the group differences of the left lateral occipital cortex become more prominent with age.
These results indicate that autism has more significant influences on coordinated development of surface area than that of cortical
thickness and the occipital cortex maybe an important biomarker of autism during infancy.
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Introduction
Autism, a complex neurodevelopmental disorder, is pri-
marily characterized by core deficits in social interaction,
repetitive or stereotypic behaviors, and sensory hyper-
sensitivity (Association 2013). The age at diagnosis for
autism is usually at 3 years and older. Currently, there are
no known causes and effective cure for autism. Evidence
indicates that children with autism spectrum disorders
can benefit from early interventions (Landa 2018). Pre-
vious studies of infants at high familial risk for autism
have provided evidence that characteristic social deficits
in autism emerge in the first and second year of life
and show different developmental trajectories compared
with typically developing infants (Zwaigenbaum et al.
2005; Ozonoff et al. 2010; Estes et al. 2015). In addition,
brain volume overgrowth was also appeared at 12 and
24 months in some infants at risk for autism who were
later diagnosed with autism (Shen et al. 2013). Another
research indicated that an increased rate of brain growth
before age 2 years may associate with increased cortical
surface area (Hazlett et al. 2011). These above obser-
vations suggest that brain developmental abnormalities
in high-risk infants for autism have already occurred
within 2 years of age. Therefore, the identification of early

biomarkers within the first 2 postnatal years might be
critical in helping improve the developmental outcomes
of infants with autism.

Although neuroimaging characterizing brain develop-
ment of autistic subjects prompted an increasing num-
ber of studies to understand this complex neurodevel-
opmental disorder, no consistent early biomarkers for
autism have yet been established based on the cere-
bral cortical surfaces before an autism diagnosis. Due
to the extremely low tissue contrast and high noise in
infant brain MR images, previous studies of high-risk
infants have been limited to the volume-based morpho-
metric analyses. With the recent advance in techniques
for infant brain MRI processing (Li et al. 2014; Li, Wang,
et al. 2015; Wang et al. 2018; Li et al. 2019), we can now
accurately reconstruct infant cortical surfaces to provide
precise information of surface-related abnormal clues
in early age. Thus, in this study, we intend to explore
the early developmental cortical abnormalities associ-
ated with autism by virtue of the reconstructed cortical
surfaces and their derived features.

Previous human neuroimaging studies consistently
suggest that large-scale covariance of cortical thickness
or volume exists in distributed brain regions and
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shows systematic changes with age and disease status
(Fjell et al. 2009; Alexander-Bloch, Giedd, et al.2013).
Structural covariance network (SCN) analysis based
on a key assumption that the covariance of regional
cortical anatomy is related to synchronized maturational
changes in anatomically connected neuronal popula-
tions, which may mediate through axonal connections
(Alexander-Bloch, Raznahan, et al. 2013). It focuses on
covarying coordinated structure of the entire brain
in gray matter morphology as opposed to focus on a
specific structure. Considering the neurodevelopmental
conditions, the SCNs provide a valid way to investigate
the developmental changes of covarying structures and
it is less sensitive to noises comparing with the studies
based on functional connectivity.

Autism, as a complex neurological condition, shows
dysfunctional network activity rather than specific aber-
rant separate regions (Rudie et al. 2013). Several authors
have carried out a few studies to explore the changes
of brain networks in autism, including the whole brain
networks and functional subnetworks such as salience
network and default mode network (Zielinski et al. 2012;
Rudie et al. 2013; Bernhardt et al. 2014; Zeng et al. 2017).
Even though there exist inconsistent findings, autism
associated specific abnormalities in brain network archi-
tecture have been observed (Bethlehem et al. 2017). In
addition, many prior researches have demonstrated that
autism has dynamic brain connectivity configuration
within distinct age cohorts (Nomi and Uddin 2015; Long
et al. 2016; Han et al. 2017). Long et al. (2016) explored the
topological differences between autism and controls at
different age cohorts from 6-year-olds to 18-year-olds and
claimed that different information communication pat-
terns were affected by ages. However, barely, no research
focused on the developmental changes of the integration
and segregation of SCNs in autistic infants within the
first 2 postnatal years.

SCNs have been constructed to study the covariation
patterns based on cortical thickness or gray matter
volume among anatomical structures (He et al. 2007;
Bassett et al. 2008). Other researchers have shown that
surface area and cortical thickness, which together
determine cortical volume, are confirmed to have
distinct sources of genetic effects and be modulated by
distinct cellular mechanisms (Panizzon et al. 2009). One
radial unit hypothesis of cortical development suggests
that cortical surface area is determined by the number
of neuron columns that run perpendicular to the cortical
surface, whereas cortical thickness is influenced by the
number of cells within a column (Rakic 1988). Although
other explanations such as different structural aspects
might be possible, surface area is also proved following
small-world properties and shows better topological
organization in terms of minimal axonal length principle
(Sanabria-Diaz et al. 2010). Therefore, as suitable
morphometric descriptors to study the concurrent
changes between brain structures, both surface area and
cortical thickness were employed here to construct the

group-level SCNs by correlating pairs of regions across
subjects.

In this study, we detected the developmental changes
of SCNs based on cortical thickness and surface area
using advanced image processing techniques in autistic
infants within the first 2 years after birth. The graph the-
oretical network analysis was employed to quantify the
segregation and integration of SCNs. We chose the most
classical measures, that is, clustering coefficient, local
efficiency, and modularity to quantify the network segre-
gation, which measure the strength of local connections
within networks. In addition, we chose the characteristic
path length and global efficiency to quantify network
integration, which measure the strength of long-range
connections that span discrete brain networks. Small-
world property was also studied because of its ability on
reflecting an optimal balance of integration and segre-
gation (Sporns and Honey 2006). Important brain regions,
which play key roles through interacting with many other
regions to facilitate functional integration, were detected
by regional betweenness and degree as well in our study.

Methods
Participants and Image Acquisition
The research data were obtained from Autism Centers
of Excellence Network study funded by National Insti-
tutes of Health, referred to as the Infant Brain Imag-
ing Study (IBIS). IBIS is an ongoing, longitudinal study
of infants at a familial risk for autism. Infants were
recruited, screened, and assessed at one of the four
clinical data collection sites: University of North Car-
olina at Chapel Hill, University of Washington, Children’s
Hospital of Philadelphia, and Washington University in
St. Louis (Hazlett et al. 2017). Data collection sites had
study protocols approval from their Institutional Review
Boards. Infants at high and low familial risk entered the
study at 6 months of age and were followed up at 12
and 24 months of age. Informed consents provided by
parents/legal guardians were obtained for all enrolled
subjects. Subjects were considered as high risk if they
had an older sibling with a clinical diagnosis of autism
confirmed with the Autism Diagnostic Interview-Revised
and subjects were collected as low risk if their older
siblings have no evidence of autism and no family his-
tory of a first- or second-degree relative with autism
(Hazlett et al. 2017). Exclusion criteria (Hazlett et al.
2017) include: 1) diagnosis or physical signs indicating a
genetic condition or syndrome associated with ASDs; 2)
significant medical or neurological condition influencing
growth, development, or cognition; 3) sensory impair-
ment, for example, vision or hearing loss; 4) prematurity
(<36 gestational weeks) or low birth weight (<2000 g);
5) possible perinatal brain injury from adverse exposure
(e.g., alcohol, selected prescription medications); 6) a
first-degree relative having psychosis, intellectual dis-
ability, schizophrenia, or bipolar disorder; 7) non-English-
speaking family; 8) contraindication for MRI (e.g., metal
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Table 1. Basic demographical characteristics of subjects

Characteristics Autism (n = 32) Control (n = 41) P-values

Gender (M/F) 24/8 26/15 0.29
Age (6 months) 6.19 ± 0.98 6.27 ± 0.88 0.72
Age (12 months) 12.25 ± 0.66 12.22 ± 0.84 0.87
Age (24 months) 24.06 ± 0.75 24.17 ± 0.66 0.52

implants); and 9) adoption. In this dataset, 328 infants
at high familial risk were enrolled, of which 81 met
the clinical DSM-IV-TR (diagnostic and statistical man-
ual of mental disorders, edition IV, text revision) criteria
(Cooper 2001) for autism at 24 months of age. Finally,
32 autistic subjects were included in this study because
they have the neuroimaging data at all the three time
points, that is, 6, 12, and 24 months of age. Meanwhile,
122 infants at low familial risk for autism were enrolled,
of which 41 infants have the longitudinal scans at all the
three time points and did not meet the criteria for autism.

The demographical information of the dataset about
these two groups is summarized in Table 1. Pearson
Chi-square test showed that no significant difference
in gender and two sample t-test showed no significant
difference in age between the two groups (corresponding
P-values shown in Table 1). All images were acquired
on Siemens Tim Trio 3 T scanners with 12-channel
head coils, while infants were naturally sleeping and
fitted with ear protection, with their heads secured in
a vacuum-fixation device; 3D T1 MPRAGE MR images
were acquired with 160 sagittal slices using parameters:
TR/TE = 2400/3.16 ms and voxel size = 1 × 1 × 1 mm3; 3D
T2 FSE MR images were obtained with 160 sagittal slices
using parameters: TR/TE = 3200/499 ms and voxel size
1 × 1 × 1 mm3.

Image Processing
Since both T1w and T2w images were available in the
NDAR dataset, we used both modalities for the image
processing, which provided complementary information
and led to highly accurate morphological measurements
of the cerebral cortex. All images were processed by
iBEAT V2.0 Cloud (http://www.ibeat.cloud/), an infant
dedicated pipeline (Li et al. 2014; Li, Wang, et al. 2015;
Wang et al. 2018; Li et al. 2019) for tissue segmentation
and cortical surface reconstruction. The major steps of
the processing procedures are listed below. 1) The inten-
sity inhomogeneities in the T1w and T2w images were
corrected using the nonparametric nonuniform intensity
normalization (N3) method (Sled et al. 1998). 2) The T2w
images were linearly aligned onto the corresponding T1w
images for each subject using FLIRT (Smith et al. 2004).
3) The skull, cerebellum, and brainstem of the aligned
images were removed based on a deep learning based
method (Zhang et al. 2019). 4) The brain cerebrum was
labeled into white matter, gray matter, and cerebrospinal
fluid (CSF) based on both the T1w and T2w images
using a deep learning-based segmentation method

(Wang et al. 2018). 5) The segmented cerebrum was
separated into the left and right hemispheres and the
noncortical regions were filled with the white matter.
6) The topological defects in each hemisphere were
corrected by a learning based method (Sun et al. 2019).
7) The topology-correct and geometry-accurate inner
cortical surface was first reconstructed and then further
deformed to the interface of the gray matter and CSF for
reconstructing the outer cortical surface (Li et al. 2014).
8) Cortical thickness and surface area were computed
based on the reconstructed cortical surfaces (Fischl and
Dale 2000; Li, Lin, et al. 2015). 9) The cortical parcellations
were obtained by aligning the UNC 4D Infant Cortical
Surface Atlas onto each individual surface (Wu et al.
2017; Wu et al. 2019) (https://www.nitrc.org/projects/
infantsurfatlas/). This parcellation follows the Desikan
parcellation protocol (Desikan et al. 2006) with 34
cortical regions in each hemisphere. We then constructed
the structure covariance networks based on cortical
thickness, surface area, and parcellations.

Measurement of Cortical Thickness and Surface
Area
Cortical thickness was measured in the native space
using the shortest distance between the reconstructed
inner and outer cortical surfaces at each vertex (Li et al.
2012). For each subject, regional cortical thickness was
defined as the average thickness of all vertices belonging
to the same region of interest (ROI). A linear regression
analysis was performed at each cortical region at each
age in the two groups to remove the effects of multiple
confounding variables: gender, age, and whole brain over-
all mean cortical thickness (He et al. 2007). The residual
of the regression was treated as the raw cortical thickness
value of each ROI.

For each subject, regional surface area was the sum
of areas of all vertices belonging to the same ROI. The
confounding effects of gender, age, and total surface area
were removed at each cortical region through a linear
regression (He et al. 2007; Nie et al. 2013; Nie et al. 2014).
The residual of the regression was treated as the raw
surface area value of each ROI.

Construction of SCNs
Through the construction of structural covariance matri-
ces, we intended to characterize the brain networks of
autism and controls. The statistical similarity between
two regions was measured by computing the Pearson’s
correlation coefficient across subjects, and an interre-
gional correlation matrix (N × N, where N is the number
of brain regions, herein N is 68) was constructed from
each group at each age (He et al. 2007). Therefore, group
level SCNs (68 × 68) of cortical thickness and surface
area were constructed separately for the two groups at
6, 12, and 24 months, respectively. In order to improve
the normality of the correlation, correlation coefficients
r was then converted to z value using the Fisher trans-
formation. By binarizing the correlation matrix using a
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series of sparsity thresholds, which resulted in a certain
percentages of connections, a series of unweighted and
undirected graphs were obtained for subsequent network
analysis. Given the fact that selection of different thresh-
old values could cause the changes in small-world net-
work parameters, we thresholded the correlation matri-
ces over a wide range of sparsity (14–40%) to avoid the
uncertainty resulted from the threshold choice. The cho-
sen range of sparsity allows the small-world network
architectures to be properly estimated and the number of
spurious edges in each network minimized as indicated
in previous studies (Achard and Bullmore 2007; He et al.
2007). All the networks in this paper demonstrated small-
world architectures as they had an almost identical path
length (normalized path length ≈1) but were more locally
clustered (normalized clustering coefficient > 1), consis-
tent with previous studies. The lowest threshold was
identified as the minimum network sparsity in which
the resultant networks were fully connected and were
estimable for the small-worldness.

Graph-Based Network Analysis
Global and regional measures of SCNs were quantified
using GRETNA, a MATLAB-based toolbox for network
analysis (Wang, Wang, et al. 2015) (https://www.nitrc.
org/projects/gretna/). We computed normalized charac-
teristic path length and global efficiency as the measures
of network integration, and normalized clustering coef-
ficient, local efficiency, and modularity as the measures
of network segregation. The small-worldness, which
reflects the optimal balance of network integration and
segregation, was also computed. Nodal betweenness
and degree centrality were examined to identify group
differences in regional measures. The above measures of
brain connectivity originally introduced by Rubinov and
Sporns (Rubinov and Sporns 2010; Wang et al. 2010) are
elaborated below.

The average shortest path length between all pairs of
nodes in a network, known as characteristic path length,
is the most commonly used measure of functional
integration, which measures the extent of overall
communication efficiency of a network (Watts and
Strogatz 1998). Short path length ensures the efficient
interactions between and across remote cortical regions,
which are considered as the basis of cognitive processing
(Sporns and Zwi 2004). Efficiency as a biologically
relevant metric represents the capacity to exchange
parallel information flow at low consumption and can
be described at global and local levels (Latora and
Marchiori 2001). Higher global efficiency is indicative
of faster information transfer and better network
integration. Clustering coefficient as the most commonly
used measure of functional segregation quantifies the
extent of local interconnectivity or cliquishness. High
clustering coefficient ensures the functional overlap
of densely connected neurons, which are functionally
segregated and compose topological modules of cortical
architecture (Sporns and Zwi 2004).

Measures of node centrality assess the importance of
individual nodes, and the important nodes always play
a key role in network resilience to insult. Betweenness is
defined as the fraction of all shortest paths in the net-
work that pass through a given node, and the nodes with
high betweenness values are considered as connecting
disparate parts of a network (Rubinov and Sporns 2010).
The degree of a node indicates the number of edges con-
necting it with many other nodes in network structurally
or functionally, especially in anatomical networks.

Statistical Analysis
A nonparametric permutation test was employed to
investigate the statistical differences of network metrics
between two groups at three time points according
to previous studies (He et al. 2008; Shi et al. 2012).
First, a network measure (e.g., clustering, path length,
efficiency, modularity, betweenness, and degree) was
computed separately for the autism and controls.
Then, we randomly reallocated each subject’s set of
cortical thickness or surface area values into two groups,
resulting in the same sample size as the original groups.
SCNs were recomputed for each of the 2 groups and
new values for the network metrics were then obtained.
Each permutation test was repeated 1000 times and
significance was reached if less than 5% of between-
group difference in the permutation distribution was
greater than the observed between-group difference.
Considering various densities, we compared their area
under the curve (AUC) (density range of 0.14:0.02:0.4)
between the two groups at each of three time points.

Results
The Differences of Network Segregation
and Integration Measures Based on
Cortical Thickness
Compared with the controls, statistical analysis indi-
cated that the autism group showed no significant differ-
ence at the AUC of network integration, segregation, and
small-worldness measures regarding cortical thickness
at 6, 12, and 24 months. The developmental changes
of the network integration and small-worldness at the
range of sparsity (0.14–0.4) were showed in Figure 1. The
variations of the network segregation were showed in
Figure 2. The P-values for each metric were showed in
Table 2.

The Differences of Network Segregation and
Integration Measures based on Surface Area
The network segregation and integration metrics of
surface area showed a certain degree of difference
compared with those of cortical thickness. At 6 and
12 months of age, there was no significant difference
in the network measures between the two groups. At
24 months of age, the network segregation, integration,
and small-worldness measures exhibit significantly
different AUC between the two groups. With the increase
of age, the autism group showed gradually increased

https://www.nitrc.org/projects/gretna/
https://www.nitrc.org/projects/gretna/


3790 | Cerebral Cortex, 2022, Vol. 32, No. 17

Fig. 1. The changes of “integration” (normalized path length and global efficiency) and “small-worldness” metrics of SCNs based on “cortical thickness”
at 6, 12, and 24 months of age at the range of 14–40% network sparsity. No significant differences of AUC of the integration and small-worldness metrics
between the two groups were found through statistical analysis.

integration compared with the controls, according to the
decreased AUC of the characterized path length and a
trend of increased global efficiency. Moreover, the small-
worldness of the autism group decreased significantly
at 24 months of age. The changes above were showed in
Figure 3. In addition, with the increase of age, the autism
group demonstrated gradually decreased segregation on
account of the reduced local efficiency and clustering
coefficient and a trend of decreased modularity than the
controls. The changes of the segregation measures at the
range of sparsity (0.14–0.4) were showed in Figure 4. The
P-values for these metrics were listed in Table 2.

The Differences of Network Regional Measures
of Surface Area
According to permutation tests, the betweenness and
degree showed significant differences between the two
groups at all three time points as showed in Figure 5.
At 6 months, the betweenness of the bilateral medial
orbital frontal gyri, right superior parietal cortex, and
right transverse temporal gyrus in the autism group

significantly increased, while the betweenness of the
right posterior cingulate gyrus significantly decreased.
The degree of the left superior frontal gyrus, the left
superior temporal gyrus, and the right caudal middle
frontal gyrus in the autism group significantly decreased,
while the degree of the right superior parietal gyrus and
right transverse temporal gyrus significantly increased.
At 12 months, the betweenness of the left banks supe-
rior temporal gyrus, left rostral middle frontal gyrus,
and left temporal pole significantly decreased, while the
betweenness of the left inferior temporal gyrus and right
entorhinal cortex significantly increased. The degree of
the left caudal middle frontal gyrus, left lateral occip-
ital cortex, and left posterior cingulate gyrus signifi-
cantly decreased, while the degree of the left parahip-
pocampal gyrus and right paracentral gyrus significantly
increased. At 24 months, the betweenness of the left
lateral occipital cortex and right inferior parietal cortex
significantly decreased, while the betweenness of the
right medial orbital frontal gyrus and right insula signif-
icantly increased. The degree of the left lateral occipital
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Fig. 2. The changes of “segregation” metrics (normalized clustering coefficient, local efficiency, and modularity) of SCNs based on “cortical thickness”
at 6, 12, and 24 months of age at the range of 14–40% network sparsity. No significant differences of AUC at the segregation metrics between the two
groups were found through statistical analysis.

Table 2. Results of permutation tests for changes in the integration and segregation measures of SCNs between the two groups across
three time points within the first 2 years after birth

P-values Measures Normalized
Path Length

Global
Efficiency

Small-
Worldness

Normalized Clustering
Coefficient

Local
Efficiency

Modularity
Age

Cortical
Thickness

6 months 0.276 0.298 0.235 0.229 0.331 0.849
12 months 0.081 0.073 0.254 0.234 0.183 0.062
24 months 0.247 0.290 0.347 0.336 0.397 0.120

Surface Area 6 months 0.367 0.371 0.432 0.459 0.384 0.458
12 months 0.297 0.299 0.221 0.234 0.197 0.212
24 months ∗0.039 0.062 ∗0.004 ∗0.004 ∗≈0.05 0.055

∗Significant difference between two groups (P < 0.05)

cortex, left peri calcarine cortex, and left superior pari-
etal cortex significantly decreased, while the degree of
the left middle temporal gyrus significantly increased.

Discussion
In this article, we investigated the early developmental
organizational changes of SCNs in autistic infants in

the first 2 years after birth. Through the graph theo-
retic analysis, we showed that the developmental orga-
nizational changes of cortical thickness networks and
surface area networks were very different. According
to the results based on cortical thickness, we did not
find any significant difference on the integration and
segregation measures of SCNs at 6, 12, and 24 months
of age, while the global topological properties of SCNs
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Fig. 3. The changes of integration (normalized path length and global efficiency) and small-worldness metrics of SCNs based on “surface area” at 6,
12, and 24 months of age at the range of 14–40% network sparsity. The autism group showed gradually decreased characterized path length, small-
worldness, and increased global efficiency among the three time points. At 24 months, the characterized path length and small-worldness exhibited
significant differences between the two groups through statistical analysis.

gradually changed on surface area and then showed
significant differences in autistic infants at 24 months
of age. The detected topological organizational changes
of autistic infants revealed the increased integration and
the decreased segregation, compared with the controls.
In addition, the abnormal brain regions changed with
age and many of them were confirmed to be related
to social cognition and language processing, such as
the orbitofrontal gyrus, superior parietal cortex, superior
temporal gyrus, etc. The posterior regions, especially the
left lateral occipital cortex in terms of surface area, may
play an important role in the developmental changes of
autism.

The inconsistent changes of global topological mea-
sures in the cortical thickness networks and surface area
networks in autistic infants might be related to their dis-
tinct early developmental patterns and biological mech-
anisms. Previous studies of the developmental trajec-
tory on cortical thickness show that the average cortical

thickness increases ∼40% in the first postnatal year and
nearly keeps unchanged in the second year and reaches
peak at ∼18 months of age (Wang et al. 2019). In contrast,
surface area expands ∼80% during the first postnatal
year and 20% during the second year and continually
expands substantially thereafter (Li et al. 2013). These
findings suggest that cortical thickness is relatively more
established at term birth than surface area (Lyall et al.
2015), while surface area develops more rapidly during
the first 2 years (Li et al. 2013). Therefore, surface area is
more likely to be affected by autism mainly after birth. In
addition, existing findings indicate that autism is associ-
ated with an overgrowth of cortical volume in the first
2 years of life, which are primarily caused by increased
surface area rather than cortical thickness (Hazlett et al.
2011). Meanwhile, Ohta et al. (2016) illustrated that the
early cortex exists overgrowth associated with autism,
primarily due to the increased surface area rather than
cortical thickness in 3-year-old boys. Hazlett et al. (2017)
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Fig. 4. The changes of segregation metrics (normalized clustering coefficient, local efficiency, and modularity) of SCNs based on “surface area” at 6, 12,
and 24 months of age at the range of 14–40% network sparsity. The autism group showed gradually decreased clustering coefficient, local efficiency, and
modularity among all the three time points. At 24 months, the clustering coefficient and local efficiency significantly decreased in the autism group
compared with the control group through statistical analysis.

showed cortical surface area hyper-expansion between 6
and 12 months of age and enlargement in the total brain
volume at 24 months of age and no significant difference
in cortical thickness in high-risk autism group, compared
with low-risk control group. In conclusion, the abnor-
mal early cortical development in autism maybe asso-
ciated with the abnormally and ununiformly increased
surface area, which supports our results that the sur-
face area network in autism infants exhibited significant
changes, compared with the control group. Although no
significant difference was showed in the cortical thick-
ness networks between the two groups within the first 2
years in our study, they were observed in later childhood
(Khundrakpam et al. 2017; Nunes et al. 2020). One expla-
nation is that cortical thickness abnormalities might
not emerge yet before 24 months of age, indicating the
dynamic nature of morphological abnormalities in ASD.
However, it is also possible that the cortical thickness
difference is too subtle to be detected with the current

imaging resolution (1-mm isotropic in this study). Lever-
aging high-resolution imaging (e.g., 0.8-mm isotropic in
Baby Connectome Project or 0.5-mm isotropic in devel-
oping Human Connectome Project) and further improved
surface reconstruction results might lead to new find-
ings on cortical thickness abnormalities in autism during
infancy.

Previous studies have indicated that optimized topo-
logical organization of brain anatomical networks have
been established during early brain development to
support rapid synchronization and information transfer
and to balance between specialized processing and
global integration of information (Fan et al. 2011). In
this study, compared with the controls based on surface
area network, we find that autism showed decreased
segregation according to the decreased clustering
coefficient, local efficiency, and modularity, indicating
weaker regional connectivity and local information pro-
cessing capacity. Based on previous studies, large-scale
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Fig. 5. Differences between autism and control participants in regional SCN topological metrics (betweenness and degree) at the three time points of 6,
12, and 24 months of age. Regions that showed significant differences of AUC at the range from 14% to 40% network sparsity in regional betweenness
and degree between autism and controls were colored. The color bar represents log(1/P), where P is the statistical differences between the two groups.
Hot/cold colors denote regions that have significantly higher/lower nodal betweenness or degree in autism than in controls, respectively. The red circles
indicate the left lateral occipital cortex with changed P-values in nodal betweenness or degree between the two groups from 6 to 24 months of age.

disruption of inter- and intrahemispheric covariance in
the left frontal SCNs for language in autism and early
attentional dysfunction related to attentional networks
may contribute to the weaker regional connectivity
(Keehn et al. 2013; Sharda et al. 2016). The decreased path
length indicates higher efficiency and less cost of mes-
sage transmission along the global network of autism.
The decreased segregation and increased integration
reflect that the network configuration shifts toward a
random network organization, which is consistent with
previous results in autism based on functional brain
networks (Rudie et al. 2013; Itahashi et al. 2014). Another
research also showed a significant shift to randomness
of brain oscillations in participants with autism by
fractal analysis (Lai et al. 2010). The abnormal shift may
affect the behaviors in autism through impacting the
balance between local processing and global integration
of information.

We employed betweenness and degree centrality the
two regional network properties to identify the group
differences between the autism and control infants.
Nodes with high degree and betweenness suggest regions
that highly interact with many other regions, facilitate
functional integration, and play a key role in topological
network (Rubinov and Sporns 2010). In present results,
there were different sets of abnormal regions during
development at 6, 12, and 24 months of age in autistic
infants compared with the controls. At 6 months of age,
the betweenness of the bilateral medial orbitofrontal
gyri significantly increased. The functional signal of
medial orbitofrontal cortex, which is involved in the
cognitive process of decision-making, displayed neural
hyperresponsivity to sensory stimuli and the activity
was positively correlated with the level of sensory over-
responsivity severity in youth with autism (Green et al.
2013). This finding is consistent with our result of
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increased betweenness in this region. In addition, the
betweenness and degree of the right superior parietal
cortex also increased. The superior parietal cortex
was confirmed to be related to visual processing and
subjects with autism also showed greater functional
activation in the superior parietal lobule during visual
pursuit than typically developing individuals (Takarae
et al. 2014), which is in line with our results. The
increased interaction of the superior parietal cortex
with other regions may serve as a compensatory effect
in children with autism. Moreover, we did not find
significant group difference in this region at 12 and
24 months of age, which may support this speculation.
The left superior temporal gyrus involved in language
processing and social cognition showed significant
decreased degree in autism group in our results. A
separate study demonstrated a reduced activation in
response to auditory processing in left superior temporal
gyrus in both children and adults with autism (Boddaert
et al. 2004). Another study showed a failure to activate
the superior temporal region in a functional MRI of
voice processing in autism (Gervais et al. 2004). Taken
together, the superior temporal gyrus may play a key
role in language-related impairment in autism.

At 12 months of age, the betweenness of the left infe-
rior temporal gyrus significantly increased in autism
subjects. The left inferior temporal gyrus is considered to
be related to transmitting large amounts of information
back and forth and play a key role in learning language
at early ages (Dehaene et al. 2005; Vinckier et al. 2007).
A separate research confirmed increased gray matter
volume in the left inferior temporal gyrus in children
with autism and showed significant negative correlation
between the left inferior temporal gyrus and the score
of repetitive behavior in autism (Cai et al. 2018). The
abnormal structure of the left inferior temporal gyrus
may partially explain increased interaction with other
regions in our results. In addition, the left middle frontal
gyrus showed decreased betweenness and degree in our
results. This region was confirmed to have decreased
cerebral blood flow in childhood autism (Ohnishi et al.
2000), which was considered to be related to cognitive
impairments. The functional abnormality of this region
may reflect structural changes emerged in our results.

Considering the group differences of global network
metrics mainly happened at 24 months, the regions
with abnormal betweenness and degree centralities at
24 months may enhance the occurrence of autism. The
betweenness of the right inferior parietal cortex, and the
degree of the left pericalcarine and left superior parietal
cortex decreased at 24 months may be disrupted with
age. One previous study demonstrated that Gamma-
aminobutyric acid receptors are reduced in the parietal
cortex in subjects with autism, which may contribute
to the disruption of the parietal cortex (Fatemi et al.
2009). Meanwhile, the nodal betweenness of the right
medial orbital frontal gyrus and right insula and the
degree of the left middle temporal gyrus increased

at 24 months. Children with high functioning autism
also showed increased functional activity in the insula,
medial prefrontal cortex, and temporal cortex (Goldberg
et al. 2011). These regions with increased information
transfer may play an important role in maintaining or
adapting to autism pathology. Considering the gradually
decreased nodal betweenness and degree centralities
among the three time points compared with controls,
the left lateral occipital cortex may play an important
role in the pathophysiology of autism. A previous study
suggested that the occipital cortex showed a significantly
enlarged volume in autism (Piven et al. 1996), which may
serve as a compensation of abnormal local information
transfer. In addition, another research also found
decreased structural connectivity, resting-state brain
activity, and surface area in the lateral occipital cortex in
boys with autism spectrum disorder and the abnormal
brain activity, and surface area in the occipital cortex
was correlated with their social development (Jung et al.
2019). Therefore, the disruption of the lateral occipital
cortex may be related with autism. These results were
consistent with ours, which indicated that the detection
of topological properties may discover some abnormal
regions at the early age of autism.

Our results showed bilateral differences associated
with autism. Numerous studies have confirmed lan-
guage lateralization to the left hemisphere (Gaillard et al.
2003), while the behaviors caused by autism are mainly
related to language processing and social cognition,
which could partially explain the observed hemispheric
asymmetry in autism-related abnormal regions. For
example, a previous study exploring the relationships
between the volume of the superior temporal gyrus
and the intellectual ability confirmed no correlation
in autism group, which indicated a failure in the left
hemisphere lateralization of language function in autism
(Bigler et al. 2007) and improved our understanding
on the asymmetry of abnormal regions in autism. In
addition, our relatively small sample size may influence
bilateral results.

Certain limitations in this study should be noted.
First, even though we revealed the regional topological
alterations at three time points during infancy, we
cannot verify the indicators that surely affect the autism
development without behavioral measures. Further
relationship between the abnormal regions and behav-
ioral/cognitive data needs to be explored. Second, as a
preliminary exploration, a larger sample size is needed
to further assure the stability of our results. Third,
exploration of multimodal neuroimaging, for example,
diffusion and functional MR images, which can provide
rich complementary information on brain connectivity,
may further deepen our understanding on autism. Brain
networks based on fiber connection, functional signal
correlation, and structural covariance have already been
employed to detect changes in topological properties
in autism (Lewis et al. 2014; Kazeminejad and Sotero
2019). And researches have confirmed a tight coupling
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between structural connectivity and functional connec-
tivity, including interregional connectivity strength and
network topologic organizations (Wang, Dai, et al. 2015).
Combining abnormal metrics derived from different
modalities may thus lead to a more comprehensive
understanding of autism-related impairment during
infancy.

Conclusion
In this study, we revealed the developmental abnormali-
ties of the topological properties in SCNs of surface area
in the first 2 postnatal years of autistic infants. Decreased
segregation and increased integration reflect that the
network configuration shifts toward a random network
organization associated with autism during infancy. The
changed nodal topologies of regional surface area pro-
vide us an important reference likely related to early
autism development. Taken together, the above results
provide important developmental information in unrav-
eling the biological basis of autism.
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