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Abstract
This work aimed to characterize the antimicrobial compounds obtained from the potential probiotic Lactiplantibacillus 
plantarum S61, isolated from traditional fermented green olive, involved in their activity against fungi and bacteria respon-
sible for food spoilage and poisonings. Their application as a biopreservative agent was also investigated. The culture of L. 
plantarum S61 showed substantial antifungal and antibacterial activity against yeasts (Rhodotorula glutinis and Candida 
pelliculosa), molds (Penicillium digitatum, Aspergillus niger, Fusarium oxysporum, and Rhizopus oryzae), and pathogenic 
bacteria (Listeria monocytogenes ATCC 19,117, Salmonella enterica subsp. enterica ATCC 14,028, Staphylococcus aureus 
subsp. aureus ATCC 6538, Pseudomonas aeruginosa ATCC 49,189), with inhibition zones > 10 mm. Likewise, the cell-
free supernatant (CFS) of L. plantarum S61 showed an essential inhibitory effect against fungi and bacteria, with inhibition 
diameters of 12.25–22.05 mm and 16.95–17.25 mm, respectively. The CFS inhibited molds’ biomass and mycelium growth, 
with inhibition ranges of 63.18–83.64% and 22.57–38.93%, respectively. The antifungal activity of the CFS was stable dur-
ing 4 weeks of storage at 25 °C, while it gradually decreased during storage at 4 °C. Several antimicrobial compounds were 
evidenced in the CFS of L. plantarum S61, including organic acids, ethanol, hydrogen peroxide, diacetyl, proteins, and fatty 
acids. The protein fraction, purified by reversed-phase high-performance liquid chromatography (RP-HPLC), demonstrated 
important antifungal activity, in relation to the fraction with molecular weight between 2 and 6 kDa. L. plantarum S61 and 
its CFS, tested in apple and orange fruit biopreservation, demonstrated their protective effect against P. digitatum spoilage. 
The CFS exhibited effectiveness in reducing Salmonella enterica subsp. enterica ATCC 14,028 in apple juice. L. plantarum 
S61 and/or its bioactive compounds CFS represent a promising strategy for biocontrol against pathogens and spoilage 
microorganisms in the agro-industry.
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Introduction

Spoilage and pathogenic microorganisms can grow in various 
agricultural products, including fruits, vegetables, and juices, 
essentials for human nutrition. However, most of these products 
are easily spoiled by microorganisms, leading to high economic 
losses and food poisoning. Among annual world food loss, esti-
mated at 13.8%, fruits and vegetables are 21.6% [1]. Further-
more, fruit juices provide an ideal environment for deterioration 
by microorganisms, due to their nutritional components [2].

The microorganisms involved in fruit and juice spoilage 
are yeasts, molds, and tolerating acid bacteria [3, 4]. Chemical 
preservatives are mainly used to achieve their control. How-
ever, because of health concerns, consumers demand biologi-
cal preservatives as an alternative to chemicals [5]. An exciting 
alternative to chemicals is biological preservatives of micro-
bial origin, including microbial cultures, cell-free supernatant, 
or purified molecules [6].

The majority of lactic acid bacteria (LAB), especially lacto-
bacilli, could be used as biopreservatives because of their anti-
microbial activity, and most of them are recognized for their 
GRAS status (generally recognized as safe) according to the 
US Food and Drug Administration (FDA) and the European 
Food Safety Authority (EFSA) [7–9]. Lactiplantibacillus spe-
cies can produce various antimicrobial molecules, including 
organic acids, carbon dioxide, reuterin, diacetyl, bacteriocin-
like substances, peptides, hydrogen peroxide, proteinaceous 
compounds, fatty acids, and cyclic dipeptides [10–15]. L. 
plantarum species, mostly isolated from fermented vegeta-
bles, is known for its genetic diversity and its variable anti-
fungal activity against yeasts and molds [8, 16, 17]. Therefore, 
selected strains of L. plantarum and/or their purified bioactive 
compounds may be used to control pathogenic bacteria and 
other microorganisms involved in food deterioration [13, 18].

In previous works, L. plantarum S61 isolated from traditional 
fermented green olive demonstrated probiotic properties and 
essential antibacterial and antifungal activities against patho-
genic and spoilage microorganisms [19, 20]. This strain, owing to 
potentially probiotic properties, GRAS status, and antimicrobial 
activity, may be used as a biopreservative in foods as an alterna-
tive to chemicals. The aim of this study was to characterize the 
antimicrobial compounds from L. plantarum S61, and to evalu-
ate their effectiveness in apple and orange fruits and apple juice 
biopreservation against fungal and bacterial spoilage.

Material and methods

Microorganisms and growth conditions

According to the new classification of Lactobacillus [21], 
the Lactiplantibacillus plantarum S61 (L. plantarum S61) 

strain was used. This strain was previously isolated from 
fermented green olives, and it was selected for its anti-
fungal activity and potential probiotic properties [19]. 
L. plantarum S61 was cultivated in de Man Rogosa and 
Sharpe Medium (MRS) broth (BIOKAR, France) for 18 h 
at 30 °C before experimental use.

The target strains used in this work were yeasts (Rhodo-
torula glutinis and C. pelliculosa) and molds (Aspergillus 
niger, Penicillium digitatum, Fusarium oxysporum, and 
Rhizopus oryzae); they were cultured in peptone dextrose 
agar (PDA, Biokar, France) at 30 °C during 2 days for 
yeasts and at 25 °C during 5 days for molds. The patho-
genic bacteria (Listeria monocytogenes ATCC 19,117, Sal-
monella enterica subsp. enterica ATCC 14,028, Staphylo-
coccus aureus subsp. aureus ATCC 6538, Pseudomonas 
aeruginosa ATCC 49,189) were cultured in Muller Hinton 
broth (MH) at 37° C for 24 h.

Antifungal and antibacterial activity of L. plantarum 
S61 by overlay method

Antifungal and antibacterial activity of L. plantarum S61 
was determined by the overlay method, according to the 
method of Cavicchioli, et al. [22], with some modifica-
tions. The activity was determined against target molds 
(Penicillium digitatum, Aspergillus niger, Fusarium 
oxysporum, and Rhizopus oryzae), yeasts (Rhodoto-
rula glutinis (ON209167.1) and Candida pelliculosa), 
and pathogenic bacteria (Listeria monocytogenes ATCC 
19,117 (ID:882,095), Salmonella enterica subsp. enter-
ica ATCC 14,028 (ID:5,618,702), Staphylococcus aureus 
subsp. aureus ATCC 6538 (ID:1,023,101), Pseudomonas 
aeruginosa ATCC 49,189 (ID: 1,916,292)). L. plantarum 
S61 was spot-inoculated on MRS agar plates and incu-
bated at 30 °C for 24 h. Then, the plates were overlaid with 
10 mL of nutrient agar containing 105 spores/mL of molds 
and 105 CFU/mL of yeasts or pathogenic bacteria. After 
24 h of incubation at 37 °C for bacteria and 2–5 days at 
25 °C for yeasts and molds, the diameter of the inhibition 
zone was measured. All the tests were done in triplicate.

Preparation of the cell‑free supernatant (CFS) 
from L. plantarum S61

The overnight culture of L. plantarum S61 was inocu-
lated at 1% in MRS broth and incubated at 30 °C for 48 h. 
Then, the bacterial suspension obtained was centrifuged at 
8000 g for 10 min. The CFS obtained was then sterilized 
using a 0.20 µm pore size filter (Minisart syringe filter, 
Sartorius, Germany) and stored at − 20 °C for further use.
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Antibacterial effect of the CFS of L. plantarum S61

The antibacterial activity of the CFS of L. plantarum S61 
was tested against pathogenic bacteria (L. monocytogenes 
ATCC 19,117, S. enterica subsp. enterica ATCC 14,028, S. 
aureus subsp. aureus ATCC 6538, and P. aeruginosa ATCC 
49,189) according to the method described by Gharbi, et al. 
[23], with some modifications. Briefly, the overnight culture 
of each pathogen was mixed with 10 mL of Mueller Hinton 
(MH) (BIOKAR, France) soft agar (0.7%, w/v) medium at 
a concentration of 105 CFU/mL. Then, 100 μL of the CFS 
was added to wells (5 mm in diameter), cut in MH agar 
previously seeded with the target pathogenic bacteria. The 
plates were incubated for 24 h at 37 °C; the inhibition zones 
were measured in millimeter (mm). Sterile MRS medium 
was used as a negative control. All the experiments were 
made in triplicate.

Antifungal activity of the CFS of L. plantarum S61

Antifungal activity of the CFS on solid medium

The antifungal activity of the CFS of L. plantarum S61 
was tested by a well diffusion assay according to Muhial-
din and Hassan [24], with some modifications. Briefly, 
100 µL of CFS were added to the wells (5 mm diameter), 
cut on Potato Dextrose Agar (PDA) (BIOKAR, France), 
previously inoculated with 105 spores/mL of P. digitatum, 
A. niger, F. oxysporum, and R. oryzae and 105 CFU/mL of 
R. glutinis and C. pelliculosa. The sterile MRS medium 
was used as a negative control. After incubation of the 
cultures at 25 °C for 2–5 days, the inhibition zones were 
measured around the wells. All the experiments were 
made in triplicate.

Fungal mycelium growth inhibition by the CFS

The inhibition of the mycelium growth by the CFS of L. 
plantarum S61 was determined in Potato Dextrose Agar 
(PDA) medium (BIOKAR, France). The CFS, sterilized 
through a 0.20 μm filter, was added at 10% (v/v) to the PDA 
medium and inoculated in the center with agar discs (5 mm) 
of colonies of P. digitatum, A. niger, F. oxysporum, and R. 
oryzae. The plates, made in triplicate, were incubated at 
25 °C for 5 days. PDA medium mixed with sterile distilled 
water (10%, v/v) was used as a control. Diameters (mm) of 
the colonies of molds were measured, and the percentage of 
mycelium growth inhibition (MI, %) was calculated using the 
formula: MI (%) = [(TC-TT)/TC] × 100, where TC is the total 
fungal colony diameter (mm) obtained with sterile distilled 
water (control), and TT is the total fungal colony diameter 
(mm) obtained with CFS.

Fungal biomass growth inhibition by the CFS

The inhibition of the fungal biomass growth was determined 
in MRS broth, based on the method of Muhialdin and Has-
san [24], with some modifications. The sterile CFS was 
introduced at 10% (v/v) in a flask containing 50 mL of MRS 
broth (BIOKAR, France), and inoculated with 105 spores/
mL of P. digitatum, A. niger, F. oxysporum, or R. oryzae. 
The cultures were incubated at 25 °C for 5 days. Then, the 
fungal biomass was collected with Whatman N°1 filter paper 
(Whatman International, Maidstone, England) and dried in 
an oven at 100 °C for 18 h. The average fungal biomass was 
calculated for each fungus tested and compared to the fungal 
biomass of controls grown in MRS broth. The percentage of 
biomass growth inhibition (BI, %) was calculated using the 
formula: BI (%) = [(TC-TT)/TC] × 100; where TC is the total 
fungal biomass (g) obtained without CFS (control), and TT 
is the total fungal biomass (g) obtained with CFS.

Minimum inhibitory concentration of the CFS

The minimum inhibitory concentration (MIC) of the CFS of 
L. plantarum S61 against the target strains was determined 
by using the liquid dilution in tubes method according to 
Russo, et al. [25], with some modifications. For this, serial 
dilutions (2%, 4%, 6%, 8%, 10%, 15%, 20%, 25%, and 30%) 
of the CFS were prepared in tubes containing liquid culture 
medium, previously sterilized at 121 °C for 15 min, and 
inoculated with 105 CFU/mL of R. glutinis or S. enterica 
subsp. enterica ATCC 14,028, and 105 spores/mL of P. digi-
tatum. After incubation, at 37 °C for 24 h for bacteria and 
25 °C for 2–5 days for fungi, the biomass was determined 
by measuring the optical density at 600 nm for bacteria and 
yeast strains using a spectrophotometer, compared to a con-
trol inoculated with target strains without CFS addition, and 
the biomass of P. digitatum was determined as described 
above. The MIC corresponds to the concentration of the CFS 
where no growth was observed. All the experiments were 
performed in triplicate.

Minimum bactericidal concentration and minimum 
fungicidal concentration of CFS

The minimum bactericidal concentration (MBC) and mini-
mum fungicidal concentration (MFC) of the CFS of L. 
plantarum S61 were determined by pour plating 100 μL of 
the culture medium, of tubes showing no visible microbial 
growth (turbidity) (10%, 15%, 20%, 25%, and 30%), on PDA 
and MH agar for fungi and pathogenic bacteria, respectively. 
CFS concentrations where no growth of indicator strains 
was observed after incubation at 37 °C for 24 h for bacteria 
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and 25 °C for 2–5 days for fungi were recorded as MBC and 
MFC, respectively. All the tests were performed in triplicate.

Determination of antimicrobial compounds from L. 
plantarum S61

Hydrogen peroxide, diacetyl, reuterin, and proteins 
determination

The hydrogen peroxide and diacetyl concentrations in the 
CFS were determined using colorimetric methods according 
to A.O.A.C. [26]. The protein concentration was determined 
by a colorimetric assay using the Bradford method Bradford 
[27], using bovine serum albumin (Sigma-Aldrich, USA) 
as standard. The reuterin content was determined using the 
colorimetric method of Circle, et al. [28], using the concen-
tration of Acrolein (Aldrich) ranging from 0.05 to 6 mM 
prepared in an MRS broth medium, used as a standard solu-
tion. All the analyses were performed in triplicate.

HPLC analysis

The organic acids and ethanol were determined in CFS of L. 
plantarum S61 using a Waters HPLC system equipped with 
a 1525 binary pump, Breeze™ 2 Software and with both UV 
diode-array detector (Model 2998, Can) and refractive index 
(RI) detector (Model 2489), and Rezex-ROA-Organic acid 
H + column (7.8 mm × 30 cm, Phenomenex, Torrance, CA, 
USA) was used for the analysis. The elution was carried out 
at 0.6 mL min−1 using 0.005 N sulfuric acid at 40 °C. The 
CFS was filtered through a filter of 0.45 μm (Millipore, Bed-
ford, MA, USA), then injected (20 μL) into the HPLC. Cali-
bration curves were used to quantify lactic acid, acetic acid, 
citric acid, butyric acid, succinic acid, formic acid, oxalic 
acid, and ethanol. The analyses were conducted in triplicates.

Gas chromatography–mass spectrometry (GC–MS) analysis

The CFS of L. plantarum S61 was subject to extraction 
with an organic solvent, namely n-hexane 1:1 (v/v). The 
composition of n-hexane extract obtained from CFS of 
L. plantarum S61 was analyzed using Shimadzu GC–MS 
system (Kyoto, Japan) equipped with a fused-silica capil-
lary column (5% phenyl methyl siloxane, 30 m × 0:25 mm, 
0.25 μm film thickness) coupled with a mass spectrometer 
detector (GCMS-QP2010). An inlet temperature of 250 °C 
with a split ratio of 50 to 80 was employed. Helium was 
used as the carrier gas at a 1 mL/min constant flow rate. 
The sample was applied and maintained at 50 °C for 1 min. 
The temperature was then increased at a rate of 10 °C for 
a min to 250 °C, at which the temperature was held for 
5 min. For MS detection, an electron impact ionization 
mode was used with ionization energy of 70 eV, ion source 

temperature of 200 °C, and the mass scan range of 40 to 
350 Da. The components were identified based on a com-
parison of their relative retention time and fragmentation 
patterns of mass spectra compared to those reported in the 
literature and the library of the GC–MS system.

Purification of proteinaceous compounds from CFS

The CFS was precipitated by ammonium sulfate at 80% 
saturation and left in a refrigerator at 4 °C overnight. After 
centrifugation (10,000 × g, 10 min at 4 °C), the acquired 
precipitate was recovered and dissolved in phosphate-buff-
ered saline (PBS, pH = 7.4), and then dialyzed using dialy-
sis membranes with 2000, 6000–8000, and 12,000–14,000 
MWCO (molecular weight cutoff) at 4 °C for overnight 
with changes of phosphate buffer (pH 6.8). The dialyzed 
fractions obtained were then evaluated, using the agar 
diffusion method, for their antifungal activity against C. 
pelliculosa. The active dialyzed fraction was purified by 
reverse-phase high-performance liquid chromatography 
(RP-HPLC, KNAUER, Germany). The active fraction (20 
µL) was injected in a C18 (300 × 4.6 mm) reversed-phase 
semi-preparative column, which was pre-equilibrated with 
water containing 5% acetonitrile and 0.1% trifluoroacetic 
acid (TFA). The elution was performed at a flow rate of 
0.6 mL/min using a linear gradient, namely A (99.9% 
water and 0.1% TFA) and B (99.9% acetonitrile and 0.1% 
TFA), as follows: from 0 to 5 min (90% A, 10% B), from 
5 to 30 min (50% A, 50% B), from 30 to 35 min (20% A, 
80% B), from 35 to 50 min (10% A, 90% B), and from 50 
to 60 min (90% A, 10% B). The fractions were collected 
according to their absorbance at 280 nm and then evalu-
ated for their antifungal activity against C. pelliculosa, 
using the agar diffusion method.

Stability of antifungal compounds from CFS

The stability of antifungal compounds at storage tempera-
ture was evaluated by maintaining the CFS at 4 °C and 
25 °C for 4 weeks and measuring the antifungal activity 
against C. pelliculosa, using the well diffusion method. 
The test was performed in triplicate.

Applications of L. plantarum S61 and its CFS 
as biopreservative agents

Biopreservation of apple fruit

The L. plantarum S61 and its CFS were tested for 
their protective effect against P. digitatum on the apple 
fruit. The test was realized on apples purchased from a 
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supermarket in Oujda, Morocco, using the wound inocula-
tion method described by Crowley, et al. [29], with some 
modifications. The apple surface was disinfected with 
ethanol (95%), and exposed to UV for 20 min. After that, 
small wounds (3 mm wide × 5 mm deep) were made asep-
tically by pinching sterile paper pins onto apples. Fifty 
μL of the culture of L. plantarum S61 (107 CFU/mL) or 
its CFS were introduced into the wound, and then (after 
15 min) inoculated with 50 μL of a spore suspension (105 
spores/mL) of P. digitatum. The control was maintained 
using sterile distilled water instead of CFS and inoculated 
in the same conditions as the assays. The apples were 
incubated at room temperature (around 25 °C) for 15 days, 
and the growth of fungi was visually examined. All the 
treatments were performed in triplicate.

Biopreservation of orange fruit

The biopreservative effect of L. plantarum S61 was 
assessed on orange fruits purchased from a supermar-
ket in Oujda, Morocco, using a spray method described 
by Wang, et al. [30], with some modifications. The fruit 
surface was disinfected with ethanol (95%), and exposed 
to UV for 20 min. Subsequently, the fruits were sprayed 
with 105 spores/mL of P. digitatum, and after drying, the 
fruits were sprayed with 107 CFU/mL of L. plantarum S61 
or its CFS. The control was set up using sterile distilled 
water and then inoculated with P. digitatum in the same 
conditions as the assays. The fruits were incubated at room 
temperature (around 25 °C) for 15 days, and the growth 
of fungi was visually examined. All the treatments were 
performed in triplicate.

Biopreservation of apple juice

Some apple fruits (700 g), purchased from a local fruit 
supermarket (Oujda, Morocco), were washed with distilled 
water, dried with paper, and then crushed in a blender. The 
apple juice obtained was filtered using Whatman no. 1 filter 
paper and stored at − 20 °C until use. The storage apple 
juice (100 mL) with the initial pH of 4.2 was pasteurized 
at 80 °C for 15 min and then cooled at room temperature 
(around 25 °C). The MIC (10%, v/v) of sterile CFS of L. 
plantarum S61 was added to the juice, and then it was 
inoculated with a concentration of 5 log CFU/mL of the 
indicator strain (R. glutinis and Salmonella enterica subsp. 
enterica ATCC 14,028). Apple juices inoculated with 
indicator strains and not containing the CFS were used 
as controls. The incubation was done at 25 °C for 48 h 
for R. glutinis and 37 °C for 48 h for Salmonella enterica 
subsp. enterica ATCC 14,028. The count level of the indi-
cator strains was determined by pour plating 0.1 mL of 
serial dilutions, realized in sterile peptone water, on Potato 

Dextrose Agar (PDA) for R. glutinis and Salmonella-
Shigella (SS) Agar (Oxoid, UK) for Salmonella enterica 
subsp. enterica ATCC 14,028. After 48 h of incubation at 
25 °C for R. glutinis and 37 °C for Salmonella, the target 
colony-forming units (CFU/mL) were recorded. All the 
experiments were performed in triplicate.

Statistical analysis

The results obtained were presented as means ± standard 
deviation. The one-way ANOVA analysis was used to com-
pare the means with a significant difference of p < 0.05. The 
Student–Newman–Keuls (S–N-K) comparison post hoc test 
was used to identify the groups of means. The analyses were 
carried out using GraphPad Prism 8 software (San Diego, 
California USA).

Results

Antifungal and antibacterial activity of L. plantarum 
S61

The L. plantarum S61 was examined for its antifungal and 
antibacterial activity by overlay method, and the results are 
reported in Fig. 1a. The culture of probiotic L. plantarum 
S61 demonstrated high inhibition zones (˃ 10 mm) against 
all target strains, including molds (P. digitatum, A. niger, F. 
oxysporum, R. oryzae), yeasts (C. pelliculosa, R. glutinis), 
and Gram-negative and Gram-positive pathogenic bacteria 
(S. enterica subsp. enterica ATCC 14,028, P. aeruginosa 
ATCC 49,189, S. aureus subsp. aureus ATCC 6538, L. 
monocytogenes ATCC 19,117).

Antifungal activity of CFS

The results of the antifungal activity of CFS of L. 
plantarum S61 are indicated in Figs.  1b  and 2A. 
The CFS showed antifungal activity with inhibition 

Fig. 1   Antifungal activity of culture of L. plantarum S61 (a) and its 
CFS (b) against P. digitatum 
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diameter ranges of 12.25 ± 0.38–17.3 ± 0.42  mm and 
21.75 ± 0.35–22.05 ± 0.07 mm against molds (A. niger, P. 
digitatum, F. oxysporum, Rhizopus sp.) and yeasts (C. pel-
liculosa, R. glutinis), respectively. The inhibition diameter 
values obtained against yeasts C. pelliculosa and R. glutinis 
were significantly (p < 0.05) higher, followed by P. digi-
tatum, F. oxysporum, A. niger, and finally R. oryzae.

The inhibitory effects of the CFS of L. plantarum 
S61 against mycelium and biomass growth of fungi 
are presented in Fig.  2B. The biomass growth inhibi-
tion values obtained were 83.64 ± 0.66%, 73.97 ± 0.1%, 
72.82 ± 1.63%, and 63.18 ± 0.9%, and the myce-
lium growth inhibitions values were 38.93 ± 0.66%, 
31.25 ± 0.98%, 32.73 ± 1.48%, and 22.57 ± 0.7%, respec-
tively, against P. digitatum, A. niger, F. oxysporum, and 
R. oryzae. P. digitatum showed the highest significant 
(p < 0.05) inhibition values, while R. oryzae demonstrated 

the lowest significant (p < 0.05) inhibition values both for 
mycelium and biomass growth.

Antibacterial activity of CFS

The antibacterial activity of the CFS of L. plantarum S61 
was evaluated by a well diffusion assay against patho-
genic bacteria, and the results are reported in Fig.  2A. 
The results show high antibacterial activity, with inhibi-
tion diameter ranges of 17.15 ± 0.21–17.25 ± 0.7 mm and 
16.14 ± 1.14–16.95 ± 0.07  mm against Gram-positive 
bacteria (L. monocytogenes ATCC 19,117 and S. aureus 
subsp. aureus ATCC 6538) and Gram-negative bacteria (S. 
enterica subsp. enterica ATCC 14,028 and P. aeruginosa 
ATCC 49,189), respectively. No significant (p < 0.05) dif-
ference was observed between inhibition diameters of all 
target bacteria.

Fig. 2   Antifungal and antibac-
terial activity (A) and inhibi-
tion of mold mycelium and 
biomass growth (B) of CFS 
of L. plantarum S61. Values 
are mean ± standard error of 
triplicates..a–eMeans in indicator 
strains with different lowercase 
letters differed significantly 
(p < 0.05)
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MIC, MBC, and MFC of the CFS from L. plantarum 
S61

The minimum inhibitory concentration (MIC), minimum bac-
tericidal concentration (MBC), and minimum fungicidal con-
centration (MFC) of the CFS from L. plantarum S61, against 
the most sensitive spoilage and pathogenic microorganisms (R. 
glutinis., P. digitatum, and S. enterica subsp. enterica ATCC 
14,028), were determined using a liquid culture medium (data 
not shown). The MIC values obtained were 15% against P. 
digitatum and 10% against R. glutinis and S. enterica subsp. 
enterica ATCC 14,028. The MBC value obtained against S. 
enterica subsp. enterica ATCC 14,028 was 20%; while the 
MFC values were 25% and 20%, respectively, against P. 
digitatum and R. glutinis. The MIC, MBC, and MFC values 
obtained against S. enterica subsp. enterica ATCC 14,028 
and R. glutinis were lower than the values obtained against 
P. digitatum. These results demonstrate that R. glutinis and S. 
enterica subsp. enterica ATCC 14,028 were more sensitive to 
the CFS of L. plantarum S61 than P. digitatum.

Determination of antimicrobial compounds of CFS

The results of HPLC determination of organic acids and 
ethanol in CFS of L. plantarum S61 demonstrated that the 
compounds detected were lactic acid, acetic acid, citric 
acid, oxalic acid, and ethanol, with 240.18 mM, 13.66 mM, 
1.44 mM, 9.66 mM, and 21.05 mM, respectively. Lactic acid 
was the major compound in this mixture.

On the other hand, the hydrogen peroxide, diacetyl, reu-
terin, and proteins were determined in CFS. The hydrogen 
peroxide, diacetyl, and proteins were 0.0002 µM, 0.0021 µM, 
and 198.65 µg/mL, respectively. Important content of proteins 
was obtained. However, hydrogen peroxide and diacetyl were 
detected in small quantities, while reuterin was not detected.

Gas chromatography–mass spectrometry (GC–MS) 
analysis of CFS

The fatty acids profile of the n-hexane fraction of CFS of 
L. plantarum S61 was determined by GC–MS analysis, 

and the results are reported in Fig. 3. The analysis per-
mitted the identification of 6 fatty acids of C16 and C18 
carbon chain lengths. They are composed of saturated 
(palmitic acid (C16:0) and stearic acid (C18:0)), mono-
unsaturated (11-hexadecanoic acid (C16:1), 9-octadece-
noic acid (C18:1), and oleic acid (C18:1)), and di-unsat-
urated (linoleic acid (C18:2)) fatty acids. The sequential 
order of major fatty acids was palmitic acid (47.25%) 
at 23.012 min, linoleic acid (19.35%) at 23.78 min, and 
oleic acid (10.43%) at 24.075 min. The other fatty acids, 
detected at lower levels, included 11-hexadecanoic acid 
(6.26%), 9-octadecenoic acid (8.78%), and stearic acid 
(2.99%).

Stability of antifungal compounds from CFS

The effect of storage time at 25 °C and 4 °C on the antifungal 
activity of the CFS of L. plantarum S61 against C. pellicu-
losa was evaluated, and the results are reported in Table 1. 
The inhibition diameter values obtained during 4 weeks of 
storage of the CFS at 25 °C varied, but not significantly 
(p < 0.05), between 20.63 and 20.1 mm. Differently, during 
storage at 4 °C, the inhibition diameter values decreased 
significantly (p < 0.05) from the first week (20.63 mm) to 
the 4th week (19.2 mm).

Fig. 3   GC–MS analysis of 
n-hexane fraction of L. plan-
tarum S61 showing fatty acids 
profile. (1) 11-Hexadecanoic 
acid (C16:1) (22.647 min); (2) 
9-octadecenoic acid (C18:1) 
(22.767 min); (3) palmitic acid 
(C16:0) (23.012 min); (4) lin-
oleic acid (C18:2) (23.78 min); 
(5) oleic acid (C18:1) 
(24.075 min); (6) stearic acid 
(C18:0) (24.383 min)

Table 1   Effect of storage time at 25 °C and 4 °C on antifungal com-
pounds from L. plantarum S61

Values are mean ± standard error of triplicates
a,b,c Means in same column with different lower case letters differed 
significantly (p < 0.05)

Storage time Inhibition diameter (mm)

25 °C 4 °C

Week 1 20.63a ± 0.50 20.63a ± 0.52
Week 2 20.6a ± 0.42 20.3a ± 0.14
Week 3 20.5a ± 0.28 19.8b ± 0.28
Week 4 20.1a ± 0.07 19.2c ± 0.14
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Purification of antifungal compounds from CFS

The CFS of L. plantarum S61 was precipitated with ammo-
nium sulfate at 80% saturation followed by dialysis. The 
precipitated and dialyzed fractions were tested for their anti-
fungal activity against C. pelliculosa. The results obtained 
showed the antifungal activity of the precipitated and the 
dialyzed fraction of 2 KDa MWCO, with inhibition diam-
eters of 14.25 mm and 13 mm, respectively. However, no 
antifungal activity was obtained with dialyzed fractions of 
6–8 KDa and 12–14 KDa.

The active 2 KDa dialyzed fraction was further puri-
fied using RP-HPLC, and a major peak was observed 
at 39.65 min (Fig. 4), indicating the high purity of the 
dialyzed fraction. In addition, the fraction obtained from 
semi-preparative RP-HPLC exhibited antifungal activ-
ity against C. pelliculosa, with an inhibition diameter of 
12.65 mm.

Biopreservation of apple and orange fruits by L. 
plantarum S61

The results of the antifungal activity of L. plantarum S61 
and its CFS on apple fruits are shown in Fig. 5. The apple 
fruits were treated with L. plantarum S61 and its CFS and 
then inoculated with P. digitatum, while the control was 
inoculated with P. digitatum only. In the control, the attack 
on apples by P. digitatum was visible from the 3rd day of 
incubation, and on the 15th day, the apple fruit was totally 
infected. However, the apple fruits treated with the CFS 
showed a delay and lower attack by P. digitatum. The apples 
inoculated with L. plantarum S61 showed a strong inhibition 
of P. digitatum, associated with a limited zone of spoilage 

up to 15 days of the incubation at room temperature (around 
25 °C).

The biopreservative effect of L. plantarum S61 and its 
CFS on orange fruits was evaluated, and the results are 
reported in Fig. 6. In the absence of L. plantarum S61 and 
its CFS (control), the attack of orange fruits by P. digitatum 
was visible from the 3rd day of incubation, and the surface 
spoilage of fruits increased substantially on the 15th day of 
incubation. However, in the presence of L. plantarum S61 
and its CFS, total inhibition of P. digitatum was observed 
on the surface of orange fruits after 15 days of incubation at 
room temperature (around 25 °C).

Biopreservation of apple juice by CFS of L. 
plantarum S61

The effect of CFS from L. plantarum S61 as a biocontrol 
agent of apple juice against S. enterica subsp. enterica 
ATCC 14,028 and R. glutinis was evaluated, and the results 
are reported in Fig. 7. At the MIC value (10%, v/v) obtained 
against the target strains, the CFS led during 48 h of incuba-
tion to an important reduction of the biomass of R. glutinis 
and S. enterica subsp. enterica ATCC 14,028, from 5 to 
2.84 log CFU/mL and from 5 to 3.53 log/mL, respectively. 
As expected, in the control samples (without CFS addition), 
the biomass of the target strains increased from 5 to 11.75 
log CFU/mL and from 5 to 8.83 log CFU/mL for R. glutinis 
and S. enterica subsp. enterica ATCC 14,028, respectively. 
Compared to the control, the biomass of spoilage microor-
ganisms (R. glutinis and S. enterica subsp. enterica ATCC 
14,028) was significantly (p < 0.05) reduced in apple juice 
treated with CFS at 10% (v/v).

Fig. 4   RP-HPLC chromato-
gram of the dialyzed fraction 
(MWCO 2KDa) of CFS of L. 
plantarum S61
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Discussion

In this study, L. plantarum S61 and its CFS showed a high 
and wide inhibitory effect against bacteria, yeasts, and 
molds used as targets. These results confirmed the results 
obtained by previous studies [11, 31, 32]. The antibacterial 
and antifungal activity values obtained with CFS were lower 
than that obtained with its microbial culture, indicating the 

continuous release of antimicrobial metabolites in the extra-
cellular compartment by L. plantarum S61. These properties 
indicate that L. plantarum S61 is an excellent candidate to 
be studied for food biopreservation purposes.

The inhibition values obtained, against Gram-positive and 
Gram-negative bacteria, were important and not significantly 
different. This important and non-selective inhibitory effect 
should be due to the mixture of antimicrobial compounds in 

Fig. 5   Biopreservative effect of 
L. plantarum S61 and its CFS 
against P. digitatum on apple 
fruit

Fig. 6   Biopreservative effect of 
L. plantarum S61 and its CFS 
against P. digitatum on orange 
fruit

Day 3 Day 7 Day 10 Day 15

Inoculation with 

P. digitatum

Inoculation with 

P.digitatum
and CFS of 

L.plantarum S61

Inoculation with 

P. digitatum and

L. plantarum S61
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CFS, including organic acids, ethanol, hydrogen peroxide, 
diacetyl, fatty acids, and proteins highlighted in this work. 
Stanojević‐Nikolić et al. [33] demonstrated that lactic acid 
and acetic acid inhibition was higher against pathogenic bac-
teria (Gram-positive and Gram-negative) more than yeasts 
(R. glutinis and C. albicans). It was demonstrated that lactic 
acid, dominating the organic acids in CFS of L. plantarum 
S61, has a strong and wide inhibitory effect against Gram-
positive and Gram-negative bacteria. Consequently, other 
compounds than organic acids may be responsible for the 
high antifungal activity against fungi.

The CFS of L. plantarum S61 exerted an important 
antifungal activity, with inhibition diameter values against 
yeasts higher than that obtained against molds. Among 
bacteria and fungi tested as targets, C. pelliculosa and R. 
glutinis showed the highest susceptibility to the CFS of L. 
plantarum S61, which may be due to the synergistic effect 
between multiple compounds in the mixture in CFS. These 
targets (C. pelliculosa and R. glutinis) strains are reported 
as emerging pathogens involved in fungemia, particularly 
for immunocompromised patients [34, 35]. These findings 
indicate that the probiotic L. plantarum S61 can be used to 
develop therapeutic agents.

The CFS demonstrated variable inhibition values of mold 
biomass and mycelium growth, and the highest inhibition 
values were obtained against P. digitatum. Mold species 
of Aspergillus, Penicillium, and Fusarium are considered 
the primary cause of post-harvest spoilage and toxins/food-
borne diseases [3]. Moreover, the studies of Deepthi et al. 
[36] and Gerez et al. [37] demonstrated the ability of CFS 
from L. plantarum to inhibit the biomass and mycelium 
growth of fungi. Thus, the bioactive compounds of the CFS 
of L. plantarum S61 could be used to control post-harvest 
spoilages of fungi origin, particularly those related to P. digi-
tatum. This funding indicates the possibility of using this 
strain and its bioactive compounds as a biopesticide.

Various molecules were determined in the CFS of L. 
plantarum S61. LAB are known for their production capac-
ity of different compounds involved in their antimicrobial 
activity [38, 39]. Lactic acid was the major organic acid 

present in CFS, but other organic acids, ethanol, hydrogen 
peroxide, and diacetyl were detected even in lower amounts. 
The hydrogen peroxide, diacetyl, and ethanol were demon-
strated for their higher inhibitory effect against bacteria than 
fungi [13]. The important antifungal activity of CFS of L. 
plantarum S61 obtained against R. glutinis and C. pellicu-
losa may be due to the synergistic effect between these com-
pounds and antifungal proteins and peptides.

The proteinaceous nature of antifungal compounds from L. 
plantarum S61 was demonstrated in previous work by the dis-
appearance of antifungal activity in CFS of L. plantarum S61 
after the treatment with proteinase K [20]. In the present work, 
the important content of proteins (198.65 µg mL−1) was deter-
mined in the CFS of this strain, and its 2 KDa dialyzed frac-
tion, purified by RP-HPLC, showed antifungal activity against 
C. pelliculosa, while no antifungal activity was obtained with 
the other fractions (6–8KDa and 12–14 KDa). These findings 
indicate that the molecular weight of proteinaceous antifungal 
compounds from L. plantarum S61 is between 2 and 6 kDa. 
Higher antifungal activity was previously reported in pep-
tides with low molecular weight (< 10KDa) than that of high 
molecular weight (> 10KDa) [40], confirming the essential 
inhibitory effect of the proteinaceous compounds of L. plan-
tarum S61 obtained in this work.

The GC–MS analysis of CFS demonstrated the capacity 
of L. plantarum S61 to produce fatty acids (di-, mono- and 
unsaturated) with a chain length of C16 and C18 dominated 
by palmitic acid. Palmitic acid has higher antifungal activity 
than unsaturated fatty acids (i.e., oleic and linoleic acids) 
[41]. The fatty acids (i.e., linoleic acid) are known for their 
important pharmacological activities, such as anticarcino-
genic, anti-obese, antidiabetic, and antihypertensive proper-
ties [42]. This finding indicates the possible use of this strain 
in the production and formulation of health benefits of food 
products, rich in linoleic acid.

This work demonstrates the capacity of L. plantarum S61 
to produce several antimicrobial compounds of hydrophobic 
(fatty acids, diacetyl), hydrophilic (organic acids, hydrogen 
peroxide), and hydrophilic/hydrophobic (proteins) nature. 
The high antimicrobial activity, obtained with the mixture 

Fig. 7   Biopreservation of apple 
juice with addition of 10% CFS 
of L. plantarum S61 ( ) and 
without CFS ( ), against S. 
enterica subsp. enterica ATCC 
14,028 (a) and R. glutinis (b)
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of these different compounds in CFS, may be achieved by 
the presence of biosurfactants, demonstrated in previous 
work in L. plantarum S61 [19]. Biosurfactants are amphi-
philic molecules allowing the contact between target cells 
and water-immiscible compounds, and those of lactic acid 
bacteria are known for their non-toxicity and antimicrobial 
activity [43–46].

The antifungal compounds from L. plantarum S61 
showed their stability at 25 °C for 4 weeks; however, their 
activity was significantly reduced from the third week at 
4 °C onwards, which may be due to the destabilization of 
the emulsion during storage of CFS. The emulsion desta-
bilization at low temperatures, leading to the separation of 
aqueous and lipid phases, was reported in foods [47]. The 
separation of phases in CFS, during storage at 4 °C, should 
prevent the contact between microbial cells and lipophilic 
antimicrobials.

The biopreservative effect of L. plantarum S61 and its 
CFS was further evaluated on apple and orange fruit models 
against P. digitatum at room temperature (around 25 °C) for 
15 days. A strong inhibitory effect of L. plantarum S61 was 
obtained against P. digitatum on orange fruits, and it was 
higher than that obtained on apple fruits. This may be due 
to the synergistic effect of antifungal essential oils of orange 
peel with antifungal metabolites of the CFS of L. plantarum 
S61. This study confirms the essential antifungal activity of 
L. plantarum S61 against fungal attack due to P. digitatum 
in the apple and pear fruits, and tomato puree, as evaluated 
in previous works [20]. Moreover, the LAB strains presented 
a protective effect against spoilage molds in different food 
models [16, 29, 48]. These findings demonstrate the possi-
bility of using the probiotic L. plantarum S61 and/or its CFS 
as bioprotective agents in controlling post-harvest spoilage 
of fruits and vegetables, mainly of fungal origin.

The CFS of L. plantarum S61 demonstrated its effec-
tiveness in reducing the microbial load in contaminated 
apple juice by R. glutinis and S. enterica subsp. enterica 
ATCC 14,028, which are reported to be involved in fruit 
juice spoilages [2]. These results indicate the possible use 
of CFS of L. plantarum S61 as a decontaminating agent 
in foods. Lactic acid bacteria (LAB) and their bioactive 
compounds can exert a broad antibacterial and antifungal 
activity spectrum; thus, they are important candidates for 
preserving fruits against pathogens and spoilage microor-
ganisms [8, 49]. Walker and Phillips [50] demonstrated 
that the addition of bacteriocins inhibited the growth of 
Alicyclobacillus acidoterrestris spores in apple, grape, and 
orange juices. Also, LAB strains can remove up to 80% of 
patulin added to apple juice, without altering the quality 
of juice [51]. The concentration of CFS used in this study 
(10% equal to the MIC), although high, was effective in 
counteracting microbial growth. It, therefore, encourages 

further investigation aimed at the identification and subse-
quent concentration of the most active compounds.

In conclusion, the probiotic L. plantarum S61, isolated 
from naturally fermented olive brine (extreme environ-
ment), and its CFS possess high and wide antifungal and 
antibacterial activity against fungi and pathogenic bacteria. 
L. plantarum S61 produces serval antibacterial and anti-
fungal compounds, and the molecular weight of active anti-
fungal proteinaceous compounds was found to be between 
2 and 6 kDa. L. plantarum S61 and its CFS showed their 
bioprotective effect against spoilage dues to P. digitatum 
on apples and oranges and their decontaminating capability 
against R. glutinis and S. enterica subsp. enterica ATCC 
14,028 in apple juice. Further investigation is needed to 
identify all active compounds produced by L. plantarum 
S61 and the culture conditions that allow maximum pro-
duction of these compounds. The best way to apply the 
bacterium or its CFS or the active fraction should also be 
investigated, considering the treatment’s cost.
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