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Abstract
Epidermal growth factor receptor (EGFR) is essential for normal cellular functions. Mutations of EGFR’s kinase domain can
cause dysregulation leading to non-small cell lung cancer (NSCLC). Exon 20 insertion (ex20ins) mutations in EGFR are one
of the leading contributors to oncogenesis and confer insensitivity to most available therapeutics. Mobocertinib is a novel
tyrosine kinase inhibitor (TKI) recently approved by the US FDA as a first-in-class small molecule therapeutic for EGFR
ex20ins-positive NSCLC. When compared to osimertinib, a TKI indicated for the treatment of EGFR T790M-positive
NSCLC, mobocertinib differs only by the presence of an additional C5-carboxylate isopropyl ester group on the middle
pyrimidine core. Together with the acrylamide side chain that is responsible for irreversible inhibition, this additional C5-
substituent affords mobocertinib high anticancer potency and specificity to EGFR ex20ins-positive lung cancer that is
resistant to other EGFR TKIs. This review article provides an overview of the discovery of mobocertinib from osimertinib
including their structure-activity relationships, mechanisms of action, preclinical pharmacology, pharmacokinetics, and
clinical applications. The discovery and use of mobocertinib and other EGFR TKIs demonstrate the power of structure-based
drug design and promising therapeutic outcomes of using precision medicine approaches in the management of molecularly
defined tumors.
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Abbreviations
ADME absorption, distribution, metabolism and

excretion/elimination
DM double mutant
EGF epidermal growth factor
EGFR epidermal growth factor receptor
ex20ins exon 20 insertion mutations
ex19del exon 19 deletions
EXCLAIM the dose-escalation/expansion and

extension cohort
GSH glutathione
L858R Leu858 to arginine mutation
MOA mechanism of action
MET mesenchymal epithelial transition factor

receptor
NPG D770_N771insNPG mutation, NPG inser-

tion between D770 and N771
NSCLC non-small-cell lung cancer
PPP the platinum-pretreated patient
QTc interval QT segment corrected for heart rate interval
SAR structure-activity relationship
T790M Thr790 to methionine mutation
TKI tyrosine kinase inhibitor
TM transmembrane domain
WT wild type

Introduction

Mutations in epidermal growth factor receptor (EGFR) are
closely associated with the occurrence of non-small-cell
lung cancer (NSCLC). Approximately 10% of NSCLC
patients in the US and 35% in East Asia are reported to
harbor EGFR gene mutations associated with tumor
occurrence [1–3]. Mutations of EGFR mostly occur in
exons 18 to 21 within the tyrosine kinase domain as shown
in Fig. 1 [4]. The EGFR Exon 21 L858R point mutation and
exon 19 deletions (ex19del) are known as “common
mutations”, representing up to 90% of EGFR mutations-
related NSCLC cases [5–7]. First-generation EGFR tyrosine
kinase inhibitors (TKIs), erlotinib and gefitinib (1 and 2,
Fig. 2), and second-generation TKIs, afatinib and dacomi-
tinib (3 and 4, Fig. 2) are effective for these common
mutations [8–11] but they lose their effectiveness with the
occurrence of EGFR T790M mutation, an acquired muta-
tion that confers drug resistance [12]. EGFR exon 20
insertions (ex20ins) are the third most frequent mutations
with a prevalence rate of 4–9% out of all EGFR mutations
documented [13, 14] and are resistant to both first and

second-generation TKIs [15–17]. Third-generation irrever-
sible TKI, osimertinib (5, Fig. 2), has shown activity against
ex20ins in some studies [18, 19] but was only approved for
EGFR T790M-positive NSCLC. Patients with ex20ins-
positive NSCLC generally showed poor response rates (3 –

8%) to these previously marketed small molecule TKIs
[20–22] and therapeutic options were limited prior to the
introduction of mobocertinib (6, TAK-788, sold under
brand name Exkivity®) [23].

Mobocertinib is an indole-pyrimidine-based irreversible
EGFR inhibitor developed by Takeda Pharmaceuticals [24].
This drug received accelerated approval by the US FDA on
September 15th, 2021, for the treatment of adult patients
with locally advanced or metastatic NSCLC with EGFR
ex20ins mutations, with disease progression on or after
standard treatment with platinum-based chemotherapy [25].
Approval of mobocertinib marked the emergence of the first
oral small molecule EGFR TKI available for the treatment
of EGFR ex20ins-positive NSCLC (See New Drug High-
lights in Table 1).

This review aims to summarize the discovery and
development of mobocertinib from osimertinib, including
their structure-activity relationships (SARs) as well as
pharmacological and clinical investigations. The discovery
of mobocertinib highlights the power and application of
computer-assisted drug design, especially structure-based
approaches in new drug discovery. It also embodies the
principles and values of precision medicine [26]. Mobo-
certinib was designed to intervene NSCLCs at the molecular
level by specifically inhibiting the EGFR ex20ins mutant.
Subsequently, the subgroup of NSCLC patients identified
with this type of mutation can be effectively treated with
mobocertinib, while avoiding therapies they may not benefit
from. As such, mobocertinib is a great example in precision
oncology, the branch of precision medicine in the area of
cancer treatment [26, 27].

EGFR ex20ins mutations as a target for
mobocertinib

The intracellular tyrosine kinase domain of EGFR consists
of two lobes, the N-terminal and C-terminal lobes, with the
active site cleft sandwiched in between. Important structural
features surrounding the active site cleft shown in Fig. 3
include i) M793 in the “hinge” region, ii) a phosphate-
binding loop (P-loop), iii) T790 (mutated to M790) as a
“gatekeeper” residue for ATP binding near the P-loop, iv) a
substrate recruiting activation loop (A-loop), v) a C-helix
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that regulates kinase activation by switching between the N-
lobe and the middle cleft [28], and vi) C797 at the edge of
the active site cleft, which is the most solvent exposed
cysteine in the EGFR kinase domain and is responsible for
the covalent bond formation with irreversible TKIs [29].

Upon the binding of epidermal growth factor (EGF) to
the extracellular domain, EGFR undergoes conformational
changes that induce the tyrosine kinase domain to dimerize
asymmetrically. The C-lobe of one monomer binds to the
N-lobe of the other. As such, the key element C-helix is
pushed into an inner position of the N-lobe to vacate the

active site cleft and thus enables kinase activity. Autopho-
sphorylation of tyrosine in the intracellular tail occurs as a
result and multiple pathways are enabled, modulating
essential functions in cell survival and proliferation (Fig. 4)
[30, 31].

Mutations in EGFR can cause ligand-independent acti-
vation of the tyrosine kinase domain leading to cancer (Fig.
4). EGFR ex20ins mutations mostly occur in the form of in-
frame insertion or duplication of 3–21 base pairs, corre-
sponding to 1–7 amino acids, within a sequence that
encodes amino acids 767 to 774 in exon 20. These residues

Fig. 2 Structures of first, second,
and third generation of EGFR
TKIs and their respective initial
FDA approval dates. The second
and third generation inhibitors
are irreversible inhibitors with
their responsible covalent
warheads highlighted in red. The
unique C5-substituent
responsible for mobocertinib
(6)’s specificity is highlighted
in blue

Fig. 1 Domains, exons, and related mutations of EGFR. Exon 21
L858R point mutation and exon 19 deletions (ex19del) are the
“common mutations” found in NSCLC patients while ex20ins and

T790M point mutations on exon 20 are associated with resistance to
first and second generation TKIs
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are able to form a loop structure that follows the C-helix of
EGFR kinase domain [14]. Specifically, residue insertions
between D770 and N771 account for over one fourth of
EGFR ex20ins mutations, in which the D770_N771insNPG
mutation (NPG) was extensively studied for its structure
and drug affinity [32–35]. In NPG, the three inserted resi-
dues form a fixed turn in the loop with a hydrogen bond
between the inserted G and D770 (Fig. 3A). This rigidified
loop confines the C-helix to its inward position (Fig. 3B),

which corresponds to the active conformation of EGFR and
blocks the protein from being inactivated [36]. Thus,
ex20ins induce conformational changes in EGFR creating a
structure that closely resembles the active form of the wild
type EGFR [37].

The ATP binding site conformations of EGFR ex20ins
mutants were found to be largely unaltered compared to the
wild-type EGFR [38]. Indeed, this catalytic domain is
responsible for the tyrosine kinase activity of EGFR and has

Table 1 New drug highlights

Drug Names Generic: Mobocertinib succinate Other: Exkivity®, TAK-788, AP-32788

Structure Chemical name: Isopropyl 2-[(5-acrylamido-4-{[2-(dimethylamino)ethyl](methyl)
amino}-2-methoxyanilino]-4-(1-methyl-1H-indol-3-yl)pyrimidine-5-carboxylate
succinate

Indication Treatment of locally advanced or metastatic NSCLC in adults with EGFR exon 20 insertion mutations and disease progression on
or after platinum-based therapy

MOA Irreversible inhibition of EGFR tyrosine kinase with exon 20 insertion mutations. It binds with high affinity to, and forms a
covalent bond through Michael addition with Cys797 of, EGFR that has exon 20 insertion mutations. Its binding to wild type
EGFR is about 1.5–8 folds weaker.

ADME/PK Oral bioavailability: 37%
Major metabolism: oxidative demethylation by CYP3A4 and 3A5 to form two active metabolites (AP32914 and AP32960)
t1/2 of elimination: 18 h (parent and AP32914), 24 h (AP32960)
Time to peak: 4 h

Route of Excretion: Feces: ~76% (~6% as unchanged drug; ~12% as AP32960); Urine: ~4%

Major side
effects

Cardiotoxicity: may cause QTc prolongation leading to irregular heartbeats
GI toxicity: may cause diarrhea
Pulmonary toxicity: may cause interstitial lung disease/pneumonitis

Regulatory
Approval

US FDA accelerated approval on Sept. 15, 2021
UK conditional approval in March 2022

Fig. 3 Aligned and superposed EGFR ex20ins mutant (light gray)
bound to osimertinib (yellow) and EGFR T790M mutant (pink) bound
to mobocertinib (light green), showing the active site cleft in two
different views (A, B) and highlighting several prominent structural
features within the EGFR tyrosine kinase domain: the phosphate-
binding P-loop (blue ribbon), the substrate-recruiting activation loop
(A-loop, violet ribbon), the C-helix (yellow ribbon), NPG insertion

mutation (red ribbon), and the hinge region (green ribbon), as well as
key residues (cyan sticks) such as M793 in the “hinge” region, the
“gatekeeper” residue mutation T790M, the exon 21 mutation site
L858, and C797 responsible for the covalent binding interactions with
irreversible TKIs. Red arrow (B) shows inward shift of C-helix due to
NPG insertion. Prepared from PDB ID: 7LGS and 7A6K [40, 46]
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the highest structural conservation [39]. Mutations occur in
areas surrounding the active site, but no amino acid sub-
stitutions were found within the active site. Therefore,
selective targeting of ex20ins mutations remains a challen-
ging task [40]. Mobocertinib was designed to effectively
exploit the ATP binding site, including a selectivity pocket
not occupied by other inhibitors (Fig. 5A), and provides
clinically significant potency and selectivity for EGFR
ex20ins mutations. Mobocertinib is the “first-in-class”
therapy to address the unmet medical need of inhibiting
EGFR ex20ins mutations in NSCLC.

Discovery and optimization of mutant-
selective irreversible EGFR inhibitors

The structure of mobocertinib was first disclosed in 2015 by
ARIAD Pharmaceuticals (later merged into Takeda Phar-
maceuticals), in a PCT patent application, WO 2015195228
A1 [41]. The structure of mobocertinib (6, Fig. 2) is closely
related to osimertinib (AZD-9291, 5), a small molecule
inhibitor of the EGFR T790M mutant, an acquired mutation

in exon 20 of EGFR that confers drug resistance [42].
Mobocertinib differs from osimertinib only by the presence
of the C5-carboxylate isopropyl ester group on the middle
pyrimidine ring (Fig. 2). Herein, we will first summarize the
structure-activity relationship (SAR) published on osi-
mertinib. Although the related studies on osimertinib did
not involve ex20ins mutations, they provide insight into the
structure and activity of mobocertinib, given that i) mobo-
certinib is a close structural analog of osimertinib, with the
only difference being the substitution on the C5-position of
the pyrimidine ring, ii) mobocertinib is active and selective
for all variants of EGFR exon 20 mutants, including T790M
[43], iii) the T790M mutation was found not to directly
impede drug binding in the active site; binding mode of an
irreversible TKI to T790M was found to be essentially the
same as that in the wild type EGFR, with the key hydrogen
bonding interactions maintained [44, 45], and iv) co-crystal
structures revealed that mobocertinib was able to bind
EGFR T790M mutant with the formation of a covalent
bond to C797 and with its isopropyl ester moiety occupying
the active site of T790M mutant similarly to that in ex20ins
[46]. Comparisons between mobocertinib and osimertinib

Fig. 4 Simplified schematic diagram of the EGFR signaling pathway depicting the normal physiological (left) and oncogenic (right) events
transduced by wild-type EGFR and EGFR ex20ins mutation, respectively. This figure was produced using BioRender
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also reveal what structural features are vital in achieving
potency against the ex20ins mutants.

Structure-based design of mutant-selective EGFR
inhibitors

Using biochemical assays against the EGFR wild type and
T790M/L858R double mutant, scientists from AstraZeneca
worked with a contract research organization to test and
identify mutant-selective templates from a library of com-
pounds that included known reversible and irreversible
EGFR inhibitors [47, 48]. From this effort, the presence of a
pyrimidine ring was recognized as a core feature of the
compounds demonstrating activity against the EGFR
T790M mutant with high selectivity over the wild-type
protein. One such hit is compound 7 (Table 2), which
contains a 3-indolyl substitution at the C4-position and an
anilino group at the C2-position of the pyrimidine core,
which exhibited an 88-fold enzyme selectivity for the
T790M/L858R double mutant over wild type EGFR.
However, the problem with 7 is that there was a larger-than-
expected drop in the cellular activity as compared to
enzyme inhibitory activity (IC50 of 0.77 vs 0.009 μM).
Based on modeling of the binding mode of 7 to EGFR
T790M mutant, an α,β–unsaturated acrylamide group was
introduced to the meta or para position of C4-anilino group
to obtain compounds 8 and 9, respectively. Notably,
β-substituted acrylamides were previously employed suc-
cessfully in afatinib (3) and dacomitinib (4). Compound 8
showed greatly improved cellular activity in double mutant
cells with an IC50 of 0.081 μM, which was comparable to its
inhibitory activity against double mutant enzyme (Table 2).
This effect was attributed to the covalent modification of
C797 resulting in irreversible inhibition of EGFR tyrosine

kinase and the high mutant-to-wild type cellular selectivity
of 43-fold [48]. Moving the acrylamide group from the meta
to the para position as was done in compound 9 did not
appear to lead to covalent bond formation and rather
resulted in loss of mutant selectivity in both enzyme and
cell-based assays [48].

Modulation of thiol reactivity

One important step in the design of irreversible inhibitors as
drugs is to optimize the chemical reactivity of the reactive
electrophiles, such as acrylamide, to avoid off-target reac-
tions which can lead to undesirable side effects. This opti-
mization requires that thiol reactivity to be low so that
covalent modification of C797 can only occur when an
irreversible inhibitor is first reversibly bound to the EGFR
mutant targets [49]. Thiol reactivity of acrylamide depends
on the electronic properties of the ring that the acrylamide
group is directly attached to [48]. For example, compound
10 showed moderate reactivity in a glutathione (GSH)-
based assay, which is used to measure the thiol reactivity of
reactive electrophiles. Removing the methoxy group as in
compound 11 and replacing the benzene with 1-methyl
pyrazole as in compound 16 would increase the thiol
reactivity as is shown by a significant increase in the
Log(kGSH) values (Fig. 6). Alterations of groups distant
from acrylamide, seen in compounds 12 – 15, exhibited
minimal effects on the thiol reactivity and could be used to
modulate target binding affinity and specificity. In addition,
acrylamide and substituted acrylamides are relatively poor
electrophiles and would react preferentially when in close
proximity to the target proteins [50]. In the design of osi-
mertinib, groups like propynamide and ethenesulfonamide

Fig. 5 The close-up views of the active site cleft (green surface)
showing the binding interactions of the EGFR ex20ins mutant
D770_N771insNPG/V948R (residues in yellow), EGFR T790M/
V948R mutant (transparent gray ribbon with residues in dark green),
and WT EGFR (residues in pink) with osimertinib (A; yellow) [40],

mobocertinib (A, B; light green) [46], and an ATP analog (B; pale
pink) in their respective co-crystal structures: 2GS6, 7A6K, and 7LGS.
The C5-carboxylate isopropyl ester of mobocertinib occupies a
selectivity pocket (red circle) that is not targeted by osimertinib. Key
interactions are indicated by red dashed lines in A and B
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were more reactive than acrylamide and therefore were not
selected.

Given the relatively low thiol reactivity of acrylamide,
covalent modification of C797 is promoted by reversible
target binding interactions. This ensures proper orientation
of binding with the EGFR mutants that facilitates more
productive covalent attack based on proximity and favor-
able entropic effects [51]. In the structure-based design of
osimertinib, starting with reversible inhibitors with known

affinity to EGFR double mutant led to the identification of
favorable hydrogen bonding interactions with the hinge
residue M793, and enabled the incorporation of less
reactive electrophiles [45, 49]. The second generation
EGFR TKIs, afatinib (3) and dacomitinib (4) are also
irreversible inhibitors of EGFR tyrosine kinase. Although
they are potent inhibitors of both wild type EGFR and
some of its mutant forms, they fail to show efficacy at
clinically achievable doses for NSCLCs with EGFR
ex20ins [14] and T790M mutations [52], possibly because
they are less likely to form specific reversible interactions
with these mutants. Afatinib and dacomitinib also fre-
quently give rise to dose-limiting side effects [53]. In
compound 10, replacing the chlorine with hydrogen,
fluorine, or methyl led to a 3-fold drop in its potency and
selectivity in T790M/L858R double mutant cells, as
shown in Fig. 7, potentially because the more lipophilic
chlorine could interact better with the nonpolar M790. In
addition to properly tuning the reactivity with cysteine SH,
adequate target binding interactions are also critical in
achieving high potency and target specificity.

Structure-activity relationships and optimization of affinity
and chemical reactivity

Compared to compounds with similar thiol reactivities
(12–15), compound 10 stood out with a balanced profile of

Table 2 Introduction of acrylamide on the 2-(anilino) substitution of pyrimidine core leading to irreversible inactivation of EGFR tyrosine kinase

IC50 (μM) DM/WT enzyme selectivity IC50 (μM) DM/WT cell selectivity

DMa enzyme WTb enzyme DM Cell WT Cell

7 0.009 0.79 88 0.77 –c –c

8 0.053 –c –c 0.081 3.5 43

9 0.32 –c –c 12.9 >30 >1.6

10 –c –c –c 0.096 23 237

aDM: T790M/L858R double mutant
bWT: wild type
c-: not available

Fig. 6 Effect of structural changes on thiol reactivity of irreversible
inhibitors as indicated by the logarithm of rate constants, Log(kGSH),
for their reactions with glutathione [48]
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cellular potency (IC50 of 96 nM in T790M/L858R double
mutant cells), high selectivity (240-fold for T790M/L858R
double mutant cells over wild type cells) and slightly
reduced lipophilicity (Log D7.4 of 3.6) in addition to sig-
nificant tumor growth inhibition in mouse models. These
properties made 10 an attractive in vivo probe for further
characterization and optimization [48].

Compound 10 underwent additional structural optimi-
zation to better mitigate deficiencies such as high lipophi-
licity (leading to off-target effects and hERG inhibition),
poor water solubility, and inhibition of insulin-like growth
factor 1 receptor (IGF1R, a kinase bearing a similar gate-
keeper residue), while further improving potency and
selectivity [54]. Several positions on compound 10 were
modified to improve its activity and drug-like properties.
These modifications led to the understanding of the SAR
and eventually the identification of osimertinib as shown in
Fig. 7.

Incorporation of a basic functional group at the C4-
position of the aniline seemed to enhance cellular potency
in addition to improving aqueous solubility of the com-
pounds. During the SAR studies around 10, substitution of
N-methylpiperazine at the C4-position of the aniline was
associated with improved cellular potency [48]. In sub-
sequent structural optimization, incorporation of N,N,N’-
trimethylethylenediamine at the C4-position of the aniline
in compound 10 led to a 150-fold enhancement in its
potency in double mutant cell lines. Therefore, this N,N,N’-
trimethylethylenediamine side chain was selected for osi-
mertinib [54]. Interestingly, this group can be viewed as an
open-ring analog of the initial piperazine, with essentially
the same connectivity but with more flexibility. The flex-
ible, charged diamine side chain adjacent to the acrylamide
group may ensure optimal interaction of osimertinib with
the solvent channel near C797 in the binding site [47] and
place the acrylamide in a favorable position to react with
C797 [48]. This has been confirmed by others in additional
SAR studies around osimertinib [55, 56].

Introduction of a pyrazolopyridine group at C4-position
of pyrimidine core led to a 10-fold higher selectivity but
lower potency for T790M/L858R double mutant cells,
compared to the corresponding indole derivative [48, 54].
The latter was eventually selected during optimization as
alkylation of indole N-H resulted in further improvement in
selectivity and safety profiles. The N-methyl indole was
incorporated in osimertinib, which provided slightly
improved double mutant selectivity and reduced off-target
effect against IGF1R by 10-fold, as compared to the analog
with an unsubstituted indole. Similar SARs were also found
for mobocertinib and its analogs [41].

Substituents at the C5-position of the pyrimidine core
may interact with areas around the T790M gatekeeper
residue and could have a positive effect on their cellular
potency [43]. Indeed, chlorine at this position as seen in
compound 10 was shown to increase potency and offer a
better selectivity profile. During structural optimization,
analogs with substituents like CN, Cl, and CH3 at this
position showed increased potencies for double mutant cells
but also inhibited the IGF1R enzyme leading to potential
off-target effects. C5-substituents on the central pyrimidine
ring were found to have limited effect on thiol reactivity.
Thus, it was left unsubstituted in osimertinib as shown in
Fig. 7.

Comparison between mobocertinib and osimertinib

In comparison to osimertinib, the C5-position of the central
pyrimidine core in mobocertinib is substituted with a car-
boxylate isopropyl ester (Figs. 2 and 3). Docking studies
comparing the two drugs in the EGFR ex20ins model
revealed that while both drugs adopt similar orientations,
the C5-carboxylate isopropyl ester side chain of mobo-
certinib targeted a selectivity pocket adjacent to T790 that
was not occupied by osimertinib (Figs. 3 and 5) [38].

This difference in structure and the additional binding
interaction of mobocertinib to the selectivity pocket

Fig. 7 Structure-activity studies and progression of lead optimization from compound 10 to osimertinib (5) to mobocertinib (6)
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adjacent to T790 provided the necessary target affinity and
selectivity. While osimertinib was reported to have potency
against some subtypes of EGFR ex20ins mutations in vitro
[57, 58] and in vivo [59], its efficacy in xenograft models
was limited [60]. Clinical data also did not support osi-
mertinib as a therapy for EGFR ex20ins-positive NSCLC
[61–63]. On the other hand, mobocertinib was found to be
efficacious and selective to EGFR ex20ins mutations with
or without T790M [64, 65].

Synthesis of mobocertinib

As shown in Scheme 1, mobocertinib was synthesized in six
steps, starting from isopropyl 2,4-dichloropyrimidine-5-
carboxylate (17) [66]. Aluminum chloride-mediated carbon-
carbon cross-coupling of 17 with 1-methylindole afforded
the 5-(3-indolyl)pyrimidine intermediate 18 in 77% yield.
Substitution of the 2-Cl in intermediate 18 with 4-fluoro-2-
methoxy-5-nitroaniline gave the 2-anilino intermediate 19
in 98% yield. 19 was further coupled with the N,N,N’-tri-
methylethylenediamine side chain followed by nitro
reduction to give intermediate 20 in 91% yield. Amide

coupling of 20 with 3-(phenylsulfonyl) propanoic acid
facilitated by propylphosphonic anhydride (T3P®) and
subsequent elimination of the phenylsulfonyl group medi-
ated by potassium trimethylsilanolate produced mobocerti-
nib with 89% yield. The overall yield of this synthesis
method was 61% over these six steps.

Pharmacology and mechanism of action of
mobocertinib

The binding modes of the first generation reversible EGFR
TKIs with the wild-type protein and L858R mutant are
essentially the same. A crystallographic study of EGFR
complexes with gefitinib indicated that the structural orien-
tations and interactions it adopts in the active site do not show
significant difference between wild-type EGFR kinase and the
L858R mutant [67]. Although EGFR common mutants have
decreased affinities for ATP [68], they induce downstream
signaling at higher levels than their wild type counterpart, and
this is attributed to the enhanced catalytic kinetics of EGFR
common mutants [69]. Kinetic studies on EGFR L858R and
ex19del found that both of these common mutations resulted

Scheme 1 Synthesis route of
mobocertinib

Scheme 2 CYP3A4-mediated
oxidative N-demethylation of
mobocertinib
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in higher KM for ATP compared to the wild-type EGFR
kinase. EGFR common mutants also exhibited higher affinity
for erlotinib (lower Ki and lower Ki/KM ratio) [68]. Therefore,
the first-generation EGFR TKIs take advantage of less intense
competition with ATP when binding to EGFR common
mutants. As a result, their affinities to the mutants and
selectivity over the wild-type protein are relatively increased
[20]. The dominance of altered relative affinity for ATP and
reversible TKIs has been discussed by others [20, 31, 36] and
is further validated by the fact that the development of the
exon 20 T790M mutation restored the affinity of EGFR for
ATP to the level of its wild-type counterpart leading to
resistance to first-generation TKIs [44]. Therefore, the abol-
ished sensitivity to the first generation EGFR TKIs for EGFR
T790M mutant was confirmed both experimentally and
clinically [31].

Resistance to reversible TKIs imparted by EGFR ex20ins
mutation may also be due to its normal affinity for ATP. An
enzyme kinetic study of the EGFR kinase domain showed
that ex20ins mutants also displayed enhanced catalytic
activity compared with its wild-type counterpart [36].
Notably, ex20ins EGFR mutants exhibited higher affinity
for ATP (much lower KM) compared to the common
mutants, suggesting that ex20ins mutations activate EGFR,
yet do not significantly compromise ATP affinity [36, 70].
This could be the main reason why EGFR ex20ins mutants
confer resistance to the first generation TKIs, rather than
other common mechanisms such as altered active site
conformations resulting in reduced binding affinity for these
TKIs. This view is partially supported by co-crystal struc-
tural studies as there is no evidence of significant changes in
binding modes and interactions within the ATP binding
cleft for either reversible or irreversible TKIs in both L858R
and NPG mutants [36, 45]. It is also possible that specific
structural differences in ex20ins do contribute to resistance
to previous TKIs. A comparison between the crystal struc-
tures of wild-type and ex20ins EGFRs revealed that T854 in
the active site took different orientations and could not form
the interactions with the TKIs as seen in the wild-type
protein [46]. In silico examination of the NPG mutant
model revealed that the insertion shifted the P-loop down-
ward and C-helix inward into the active site cleft, resulting
in a smaller drug binding pocket [70]. This may partly
explain why the first-generation reversible, noncovalent
TKIs such as erlotinib and gefitinib lack potency and clin-
ical significance to ex20ins mutations. On the other hand,
mobocertinib was designed to exploit such structural traits
and gain selectivity over the wild-type protein [40].

The α,β-unsaturated acrylamide group at the 5-position
of its aniline ring in mobocertinib acts as a Michael acceptor
that is covalently attached to the thiol group of C797 located
at the edge of the active site in EGFR ex20ins mutants via
Michael addition. The irreversible covalent bonding

interaction is further assisted by non-covalent interactions
and the specific orientation this molecule adopts when it
binds to the target EGFR tyrosine kinase. Among the
interactions are two hydrogen bonds, one formed between
N1 of the pyrimidine core and the backbone N-H of the
hinge residue M793, while the other bond formed between
the N-H at the 2-position of the pyrimidine core and the
backbone carbonyl oxygen of M793 (Figs. 3A and 5),
similar to those found in osimertinib binding to EGFR
T790M mutants [47]. Mobocertinib enables high structural
complementarity with its target because of the presence of
the C5-carboxylate isopropyl ester side chain on the pyr-
imidine core, which exploits a selectivity pocket close to the
gatekeeper T790 in ex20ins active sites that no other drugs
could occupy (Figs. 3 and 5) [40]. Mobocertinib achieved
excellent inhibitory profiles against various EGFR ex20ins
mutants with IC50 values ranging between 4.3 and 22.5 nM,
which is 1.5 to 8-fold more potent than against the wild-
type EGFR (IC50= 34.5 nM). Mobocertinib also exhibited
significantly lower IC50 for ex20ins mutants compared to
erlotinib, gefitinib, afatinib and osimertinib, indicating that
it is a selective inhibitor more potent than the previously
approved drugs. Moreover, mobocertinib was found to be
potent and selective against EGFR with common mutations
(IC50 of 2.7–3.3 nM) and the T790M resistant mutation
(IC50 of 6.3 – 21.3 nM). This suggests that mobocertinib is a
broad-spectrum inhibitor of EGFR mutants and could
potentially be used to treat NSCLC with other varying
mutations, in addition to the currently approved indication
of ex20ins.

ADME and pharmacokinetics of mobocertinib

Orally administered mobocertinib has a median time to peak
concentration in blood plasma of 4 h, a mean elimination half-
life of 18 h, volume of distribution of 3509 L, and a mean
absolute bioavailability of 37% [71, 72]. As shown in Scheme
2, two active metabolites, AP32914 (21) and AP32960 (22),
have been identified after oral administration of mobocertinib,
and their half lives are 18 and 24 h, respectively. These are the
products of oxidative N-demethylation, mediated by CYP3A4/
5 on the 1-methylindole and on the ethylenediamine side chain
of the right aniline ring, respectively. AP32914 exhibited IC50

values of 2.4–14 nM against ex20ins mutants and 22 nM
against wild type EGFR tyrosine kinase, while AP32960
exhibited IC50 values of 7.1– 41 nM against ex20ins and
51 nM against wild type EGFR tyrosine kinase. These inhibi-
tion and selectivity profiles are comparable to those of mobo-
certinib. It is believed that these two active metabolites do
contribute to the observed efficacy of mobocertinib in patients
[40]. Additionally, co-administration of mobocertinib with a
strong CYP3A inhibitor increased its AUC by 527% while co-
administration with a strong CYP3A inducer decreased its
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AUC by 95% [73]. Repeated dosing of mobocertinib was
associated with lower-than-expected accumulation due to pos-
sible auto-induction of its metabolism via the CYP3A enzymes
[74]. Food was found to have no clinically meaningful effects
on the oral bioavailability of mobocertinib [71].

After a single oral dose of radiolabeled mobocertinib
(160 mg), about 76% of the radioactivity was recovered in
feces with ~6% as unchanged mobocertinib while about 4%
was recovered in urine with ~1% as unchanged mobo-
certinib [72, 73]. The amount of metabolites recovered in
urine was low or below the limit of detection, suggesting
that renal excretion is a minor pathway for its elimination
[71, 73].

Clinical application and comparison with other EGFR
TKIs

On September 15, 2021, mobocertinib received accelerated
FDA approval for use in adults with locally advanced or
metastatic NSCLC patients with EGFR ex20ins mutations,
as detected by an FDA-approved test, who are on or have
had platinum therapy. Mobocertinib’s approval was based
on a non-randomized, open-label, multicohort phase
1/2 study (NCT02716116), that included 114 patients with
these disease conditions from 2 cohorts: the dose-escalation/
expansion and extension cohort (EXCLAIM) and the
platinum-pretreated patient cohort (PPP) [75]. Across both
cohorts, mobocertinib demonstrated consistent clinical
benefit. An independent review committee found mobo-
certinib had an overall response rate of 25–28%, a disease
control rate of 76–78%, and a median progression free
survival of 7.3 months. In the EXCLAIM cohort, median
duration of response was not estimable, and the overall
survival was not reached at data cutoff for the study
reported. In the PPP cohort, the median duration of response
was 17.5 months, and a median overall survival of
24.0 months [75]. These findings are consistent with a
durable substantial tumoricidal effect and an even higher
tumoristatic effect of mobocertinib.

Retrospective studies have shown that earlier first and
second generation EGFR TKIs such as erlotinib, gefitinib,
afatinib, and dacomitinib have little or rare clinical benefit
in patients with NSCLC harboring EGFR ex20ins
[14, 16, 17, 76]. Granted, these TKIs are only indicated in
patients with NSCLC harboring EFGR exon 19 deletions or
exon 21 substitution (L858R). Clinical data regarding the
effectiveness of osimertinib, a third-generation EGFR, on
exon20ins is still limited. So far, two retrospective case
studies demonstrated that osimertinib has limited efficacy in
patients with NSCLC harboring EGFR ex20ins [77, 78].
Osimertinib has similar indications to the first and second
generation EGFR TKIs, as well as being indicated for use in
patients with EGFR T790M mutation-positive NSCLC.

Mobocertinib’s overall response rates, progression free
survival time, and overall survival metrics in treating
NSCLC patients with EGFR ex20ins are demonstrably
greater and longer in duration than these prior EGFR TKIs.

Safety profile and adverse effects of mobocertinib

The safety profile of mobocertinib is characterized by
manageable gastrointestinal and cutaneous adverse events,
which is consistent with the known profile for EGFR TKIs.
Diarrhea and rash were the most reported treatment-related
adverse events in the trial, with diarrhea being the only
grade 3+ treatment-related adverse effect reported in
greater than 10% of patients. Overall, various different
grade 3+ treatment-related adverse events occurred
between 42–47% of the patients [75]. Dose reduction was
required in 22–25% of patients and mobocertinib treatment
was discontinued in 10–17% of the patients mainly due to
diarrhea and nausea [75]. Common lower grade adverse
events that occurred in at least 30% of the patients included
paronychia, decreased appetite, dry skin, and vomiting [75].

Toxicities related to adverse effects of mobocertinib
include cardiotoxicity, pulmonary toxicity, gastrointestinal
toxicity, and fetal-embryo toxicity. Mobocertinib may cause
QTc prolongation, including Torsades de Pointes which can
be fatal. Out of 250 patients receiving scheduled and
unscheduled electrocardiograms, 1.2% of patients had pro-
longed QTc interval >500 msec, and 11% of patients had a
change-from-baseline QTc interval >60 msec [72]. Fol-
lowing the normal dosage of 160 mg mobocertinib once
daily, the largest mean increase in QTc was 23.0 msec, with
the increase in QTc being concentration dependent [72].
Concomitant use of drugs that are known to prolong QTc
intervals and strong or moderate CYP3A inhibitors should
be avoided. Mobocertinib’s use may also lead to heart
failure which can be fatal. Heart failure occurred in 2.7% of
patients, including 1.2% of grade 3 reactions, 0.4% grade 4
reactions, and 0.4% fatal cause of heart failure. Interstitial
lung disease/pneumonitis occurred in 4.3% of patients,
0.8% grade 3 events, and 1.2% fatal events [72]. Diarrhea
occurred in 93% of patients, including 20% grade 3 and
0.4% grade 4 events, which may lead to dehydration or
electrolyte imbalance [72]. Lastly, in vitro studies on
pregnant rats suggest that mobocertinib may cause fetal
harm when administered to a pregnant woman. It is
recommended to monitor for signs and progression of these
conditions and either reduce dosage or discontinue mobo-
certinib based on toxicity severity [72, 75].

Future directions and challenges

Patients with NSCLC have been found to develop resistance
to treatment with osimertinib [79] and mobocertinib [80]
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resulting in disease progression. Co-occurrence of the
EGFR C797S mutation is the most common mechanism of
osimertinib resistance in EGFR T790M-positive NSCLC
patients and has been well characterized clinically [81, 82].
On the other hand, the understanding of mobocertinib
resistance is still limited [80, 83], and whether EGFR
C797S mutation occurs simultaneously in EGFR ex20ins-
positve NSCLC patients has yet to be determined [20, 80].
It is feasible that EGFR C797S mutation could lead to
resistance to mobocertinib in NSCLC patients [80, 83, 84].
Several preclinical studies have confirmed that EGFR
L858R/C797S and T790M/C797S mutants were insensitive
to mobocertinib [40, 84]. In the EGFR C797S mutant, the
hydroxyl group in serine is much less nucleophilic than the
sulfhydryl group in cysteine. Therefore, the electrophilic
attacks on the reactive acrylamide group of osimertinib and
mobocertinib are not likely to happen in the C797S mutant,
resulting in compromised sensitivity of this mutant to these
third generation irreversible EGFR TKIs.

Another alternative therapeutic for the treatment of
patients with locally advanced or metastatic NSCLC with
EFGR ex20ins, whose disease progressed with platinum-
based chemotherapy is amivantamab-vmjw (Rybrevant®),
approved by the US FDA in May 2021, which is a bispe-
cific human IgG antibody that downregulates both EGFR
and MET receptor. As compared to mobocertinib, ami-
vantamab has a different mechanism of action: it binds to
the extracellular domain of EGFR leading to endocytosis of
receptor-antibody complex and Fc-dependent macrophage-
mediated trogocytosis that result in degradation of EGFR
and antitumor effects [85]. This different mechanism of
action targeting the EGFR extracellular domain potentially
overcomes the resistance due to point mutations in the
intracellular kinase domain that are associated with TKI
resistance. Clinical trials using amivantamab demonstrated

robust and durable responses in tumors with mutations that
are resistant to EGFR TKIs [86]. Comparing the clinical
trial results that led to the approval of amivantamab and
mobocertinib, amivantamab had a higher response rate than
mobocertinib, but they both demonstrated similar overall
survival rates with similar patient populations [75, 86, 87].

Development of fourth generation allosteric EGFR TKIs
(Fig. 8A) could be a strategy to overcome resistance to third
generation TKIs caused by the EGFR C797S mutation.
Fourth generation TKIs differ from the first to third gen-
erations in that the former do not bind to the active site cleft
of EGFR tyrosine kinase domain and do not depend on
C797 for drug actions [88]. Instead, this class of TKIs binds
to the allosteric site of the inactive form of EGFR (Fig. 8B)
[89, 90]. Several allosteric EGFR TKIs were discovered
with structure-based drug design techniques (Fig. 8A). They
showed synergistic inhibition of EGFR mutants when used
in combination with the third generation TKI osimertinib or
the monoclonal antibody cetuximab, and have shown
encouraging efficacy and selectivity profiles in in vitro and
in vivo NSCLC models, including those harboring EGFR
C797 mutation [89, 91, 92].

Conclusion

Non-small cell lung cancer (NSCLC) is a serious threat to
human health and wellbeing and is mainly driven by EGFR
mutations. Ex20ins mutations of EGFR are the third most
common type of EGFR mutations and lead to abnormal
activation of its tyrosine kinase domain, which favors tumor
survival and confers resistance to most EGFR TKIs.
Treatment options for NSCLCs harboring EGFR ex20ins
mutations were limited before the approval of mobocertinib.
The discovery of mobocertinib started from osimertinib, the

Fig. 8 Structures of representative fourth generation allosteric EGFR TKIs (A) and the 3-D structure of EGFR T790M/C797S mutant bound with
EAI045 showing the location of allosteric site and the unoccupied active site cleft for ATP binding (B). Prepared from PDB ID: 5ZWJ [87]
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first drug for EGFR T790M mutation, and involved the use
of computer-assisted, structure-based drug design and
careful modulation of thiol reactivity and binding affinity
with EGFR ex20ins mutants. Mobocertinib potently and
selectively targets EGFR ex20ins mutants and demonstrated
excellent profiles of efficacy and safety in a phase 1 & 2
clinical study. Mobocertinib’s targeted approach to inter-
vene NSCLCs at the molecular level and the significant
clinical benefits it provides for EGFR ex20ins-positive
NSCLC patients have highlighted its role in precision
medicine. The discovery and use of mobocertinib and other
EGFR TKIs clearly demonstrate the power of structure-
based drug design and the promising utility of precision
medicine in the management of molecularly defined tumors.
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