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Abstract
Highly varied bacterial communities inhabiting the soybean rhizosphere perform important roles in its growth and produc-
tion; nevertheless, little is known about the changes that occur in these communities under disease-stress conditions. The 
present study investigated the bacterial diversity and their metabolic profile in the rhizosphere of disease-resistant (JS-20–34) 
and disease-susceptible (JS-335) soybean (Glycine max (L.) Merr.) cultivars using 16S rRNA amplicon sequencing and 
community-level physiological profiling (CLPP). In disease-resistant soybean (AKADR) samples, the most dominating 
phyla were Actinobacteria (40%) followed by Chloroflexi (24%), Proteobacteria (20%), and Firmicutes (12%), while in the 
disease-susceptible (AKADS) sample, the most dominating phyla were Proteobacteria (35%) followed by Actinobacteria 
(27%) and Bacteroidetes (17%). Functional profiling of bacterial communities was done using the METAGENassist, and 
PICRUSt2 software, which shows that AKADR samples have more ammonifying, chitin degrading, nitrogen-fixing, and 
nitrite reducing bacteria compared to AKADS rhizosphere samples. The bacterial communities present in disease-resistant 
samples were significantly enriched with genes involved in nitrogen fixation, carbon fixation, ammonification, denitrifica-
tion, and antibiotic production. Furthermore, the CLPP results show that carbohydrates and carboxylic acids were the most 
frequently utilized nutrients by the microbes. The principal component analysis (PCA) revealed that the AKADR soils had 
higher functional activity (strong association with the Shannon–Wiener index, richness index, and hydrocarbon consump-
tion) than AKADS rhizospheric soils. Overall, our findings suggested that the rhizosphere of resistant varieties of soybean 
comprises of beneficial bacterial population over susceptible varieties.
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Introduction

Plants live in an intimate relationship with microbes residing 
in the rhizosphere area. This so-called rhizosphere micro-
biome is a microbial hotspot and plays an essential role in 
maintaining plant health and productivity via the acquisi-
tion of nutrients, stress tolerance, and providing resist-
ance against plant pathogens [1, 2]. Rhizosphere microbial 

communities form the part of the complex food web that uti-
lizes the nutrients (exudates, border cells, mucilage) released 
by the plant. These nutrients function as the major driving 
forces in the recruitment and regulation of bacterial diversity 
and function in the rhizosphere [3]. Reports suggest that 
plants supply carbohydrates-derived rhizodeposition to their 
microbial counterparts [4, 5]. It has been well documented 
that around 17% of photo-assimilates are released into the 
rhizosphere via rhizodeposition, resulting in the selection 
of helpful or pathogenic soil bacteria from bulk soil [6, 7]. 
Rhizobacteria play a crucial role in maintaining plant per-
formance and enhancing plant growth in different types of 
stress conditions. Despite this, changes in the bacterial com-
munity in the rhizosphere under stressed and non-stressed 
conditions are poorly studied. Advanced next-generation and 
high throughput sequencing (HTS) allow us for an in-depth 
categorization of the functions associated with these ‘soil 
probiotics’ [8–10].
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Soybean has an important place in the world’s oilseed 
production due to its high productivity, profitability, and 
vital contribution towards maintaining soil fertility [11]. 
Soybean also has a prominent place as the world’s most 
important seed legume, which contributes 25% to the global 
vegetable oil production, about two-thirds of the world’s 
protein concentrate for livestock feeding, and is a valuable 
ingredient in formulated feeds for poultry and fish [12]. The 
major soybean-producing nations are the USA, Brazil, and 
Argentina [13]. The three countries dominate global pro-
duction, accounting for 80% of the world’s soybean supply 
[12, 13]. It flourished in various agro-climatic situations 
and became a major commercial crop in several countries 
[11]. Soybean production is constantly challenged by the 
repetitive occurrence of biotic and abiotic stresses [14, 15]. 
Various diseases, pests, and insects create biotic constraints 
for soybean plants, whereas the abiotic constraints include 
drought, salt, alkalinity, cold, and heat are detrimental to 
soybean production [16]. Environmental conditions, cul-
tivar selection, previous crop, disease history, and differ-
ent crop management practices are significant factors that 
impact the incidence of soybean diseases [17]. Soybean 
is susceptible to different diseases, including root, stem, 
and leaf blight caused by Phytophthora, Cercospora leaf 
blight, brown spot, frog eye leaf spot, and downy mildew 
root rot caused by Macrophomina phaseolina [18]. Unex-
pected heavy rainfalls and deviation in temperature create 
a favorable atmosphere for attack by dormant Rhizoctonia 
(aerial blight) and anthracnose (pod blight), one of the most 
devastating diseases that cause significant yield loss in soy-
bean reported in Madhya Pradesh, India [19]. Consequently, 
addressing these concerns is significant for soybean produc-
tivity while safeguarding global food security. Previously 
several soybean varieties have been released, some of them 
are resistant towards Rhizoctonia Aerial Blight (RAB) dis-
ease (JS 20–69, JS 20–34, JS 20–53, JS 21–17, DS 3109, JS 
20–79, EC 251,358, MACS 1620, VP 1164) [18] and some 
are susceptible (AMS-99–24, AMS-92–32, JS-335, NRC-64, 
TAMS-38, AMS-353) for root rot, collar rot, wilt, and RAB 
disease in soybean [19, 20]. Soybean variety JS 20–34 have 
shown multiple disease resistance against major diseases 
like charcoal rot, collar rot, Rhizoctonia aerial blight, Alter-
naria leaf spot, bacterial pustules, pod blight, and insect pest 
whereas, soybean variety JS 335 was found to be susceptible 
towards these diseases [19, 20].

Several studies have been conducted in recent years to 
unravel the role of plant species in shaping the rhizosphere 
Microbiome [6, 8, 21]. These studies include soybean [4, 
22–24], Arabidopsis [25–27], rice [28–30], wheat [31–33], 
tomato [34], fox millet [35], ginger [36], strawberry [37], 
and sorghum [38]. The study conducted by Sugiyama et al. 
[39] reported changes in the bacterial community of soy-
bean rhizospheres during different growth stages in the field 

condition. A similar study was conducted by Mendes et al., 
[40] wherein they reported the selection of the rhizospheric 
microbial community under agricultural management of 
soybean in Amazon forest soils. Still, it is not well stated to 
what degree plants can select a persistent rhizosphere micro-
bial community from extremely distinct pools of microbial 
communities present in the bulk soil, especially under stress 
conditions. Microbial diversity was found to be directly 
correlated with disease-resistance [41]. Occasionally, host 
plants also apprentice specific beneficial microbiota after 
phytopathogen infections, which helps the plants to resist 
and withstand the diseases caused by these pathogens [1]. In 
animal science, dysbiosis of the defensive microbiome has 
been linked with disease prevalence however, in plants, the 
effect of rhizobacteria disruption in disease suppression is 
largely unidentified [21, 42–45].

Soil bacteria, in general, play an important role in 
healthy soil functioning, plant production, and soil health 
[46]. Culturable and unculturable bacterial and fungal 
species contribute to rhizosphere diversity, and both are 
important for agriculture. The following bacterial genera 
represent well-known rhizosphere dominants: Acetobacter, 
Bacillus, Burkholderia, Arthrobacter, Serratia, Klebsiella, 
Alcaligenes, Acinetobacter, Azotobacter, Rhodococcus, 
Stenotrophomonas, Pseudomonas, and Enterobacter [47, 
48]. The bacteria belonging to Bacillus and Pseudomonas 
are known as plant growth-promoting bacteria (PGPB). 
Other bacterial representatives with a PGP effect present 
in the rhizosphere soil include Pantoea, Flavobacterium, 
Mesorhizobium, Methylobacterium, Paenibacillus, Chro-
mobacterium, Erwinia, Caulobacter, Bradyrhizobium, Mic-
rococcus, Micromonospora, and Streptomyces [2, 49–51].

Few studies reported the changes in bacterial com-
munity composition under disease stress conditions, 
for example, the study conducted by Lee et  al. [34] 
reported that disruption of Actinobacteria and Firmi-
cutes in the rhizosphere causes the incidence of bacte-
rial wilt disease in tomato plants. The study conducted 
by Zhou et al. [9], and Kaushal et al. [1] compared the 
root-associated with Fusarium wilt-diseased and dis-
ease-free banana rhizosphere soil. They reported the 
abundance of Flavobacteriales was positively correlated 
with symptom development. The present study profile 
the changes in the rhizospheric bacterial community 
composition under diseased and healthy conditions. The 
comparative basic information of microbial diversity 
present in the disease-resistant and disease-susceptible 
soybean rhizosphere soil will help reveal the soybean-
microbe interactions and potentially select suitable 
plant growth-promoting rhizobacteria and bio-control 
agents for increasing crop production and development 
of disease-resistant crop varieties.
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We hypothesized that the diversity of rhizospheric 
bacteria and their metabolic activity depend on the soy-
bean cultivars and soil biochemistry. The study’s main 
aim was to understand the distribution and composition 
of the rhizobacterial community in disease-resistant and 
disease-susceptible soybean cultivars via 16S rRNA 
amplicon sequencing. We also aimed to analyze the func-
tional and metabolic capabilities of these rhizobacterial 
communities colonizing disease-resistant (JS-30–34) 
and disease-susceptible (JS-335) soybean cultivars 
(Fig. 1). The novelty of this article is that it combines 
two approaches (NGS and CLPP) to provide a compre-
hensive picture of bacterial diversity in the rhizosphere 
soils of two soybean varieties.

Materials and methods

Sample collection and material processing

Rhizosphere soil samples of two soybean cultivars (disease-
resistant JS-20–34) and (disease-susceptible JS-335) were 
randomly collected from 5 different locations from Krishi 
Vigyan Kendra, Bamhori Seed Farm Bhopal Road, Sagar 
(M.P.), India. This sampling method is consistent with those 
proposed by Gałązka et al. [52] and Praeg et al. [53]. All the 
collected samples were labelled correctly, sealed in plastic 
bags, and were immediately transported to the laboratory 
and stored at 4 °C until DNA extraction and community 
level physiological profiling (CLPP) analysis. Rhizosphere 

Fig. 1   Graphical representation of the present study
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soil samples were collected by digging soybean plants, and 
the roots with attached soils were gently shaken to remove 
loose soil until only firmly attached soil remained. This 
attached soil was collected as the rhizosphere soil using 
sterilized brushes. Also, the rhizosphere soil samples were 
subjected to a more precise method for collecting rhizos-
phere soils through centrifugation [25, 27]. To get the most 
representative soil material for each site, single samples 
were mixed and homogenized into one sample. Soil acid-
ity (pH) and electrical conductivity (EC) were evaluated in 
triplicate from a soil suspension (2:1) in distilled water using 
pH and EC meter, respectively [54]. All the other chemical 
properties of the soil like organic carbon (OC) were ana-
lyzed by following the standard protocol of Walkley and 
Black [55], available nitrogen (N) by Subbiah and Asija [56], 
phosphorus (P) by Dickman and Bray [57], and potassium 
(K) by Barnes et al. [58].

Soil sampling and community‑level physiological 
profiling

Community-level physiological profiles (CLPP) for each 
soil sample were assessed using the Biolog EcoPlate™ 
(BIOLOG. Inc., CA, USA) assay. Each of the 96 biolog 
well plate contains 31 sole carbon sources and a blank. The 
different carbon sources are as: 10 different carbohydrates, 
9 carboxylic or acetic acids, 6 amino acids, 4 polymers, and 
2 amides/amines [59]. Estimation of CLPP for each soil 
sample was conducted as follows: 1 g of fresh soil was sus-
pended in 10 ml sterile 0.85% saline solution (NaCl), and 
the mixture was shaken vigorously for about 60 min, at 4 °C 
and 150 rpm and then allowed to stand for 30 min to allow 
the soil particles to settle down [60]. Each of the samples 
was processed in triplicate. One hundred fifty microliters 
of this soil suspension was poured into each well, and then, 
EcoPlates were incubated for 5 days at 27 °C. The substrate 
utilization rate is indicated by the reduction of tetrazolium 
dyes that reduce from colorless to purple. A well contain-
ing no carbon source was inoculated as a blank on each 
plate. The development of the purple color in each well was 
measured as a change in optical density (OD). During the 
cultivation, the OD was recorded every 24 h continuously 
for 5 days by measuring the absorbance at 595 nm using 
an automated microplate plate reader (Synergy Microplate 
Readers (BioTek, US)).

According to Sala et al. [61], the substrate categories 
were divided into different six groups representing differ-
ent substrate guilds, as follows: amino acids (l-arginine, 
l-asparagine, l-phenylalanine, l-serine, glycyl-l-glutamic 
acid, l-threonine), amines (phenylethylamine, putres-
cine), carbohydrates (glucose-1-phosphate, d-mannitol, 
d,l-alpha-glycerol phosphate, d-galactonic acid-gamma-
lactone, d-xylose, d-cellobiose, N-acetyl-d-glucosamine, 

beta-methyl-d-glucoside, i-erythritol, alpha-d-lactose), car-
boxylic acids (alpha-ketobutiryc acid, d-galacturonic acid, 
pyruvic acid methyl ester, d-glucosaminic acid, d-malic acid, 
gamma-hydroxybutyric acid, itaconic acid.

Microbial activity in each microplate was expressed as 
an average well-color development (AWCD) according to 
Eq. 1:

ODi is the optical density value from each well after cor-
recting by subtracting the OD value of the blank well [60].

After normalization, CLPP data based on 120-h reading 
was used for the analysis of substrate diversity (H′), richness 
(RI), and evenness (J′). H' was calculated based on Shan-
non–Wiener index [H′ = where Pi is OD reading of well (i)/
sum of all wells]. RI was based on Margalef’s richness index 
[RI = (S-1)/ In (n), where S is the total number of substrates 
utilized and n is the total OD reading]. J′ was based on Pie-
lou’s evenness index [J′ = H′/In S] [62].

Principal component analysis (PCA) was used to investi-
gate the relationship between the carbon sources, biodiversity 
indices, and rhizosphere soils derived from two different soy-
bean varieties was carried out by using Canoco (v 5.12) [63].

Extraction of genomic DNA and PCR purification

To profile the diversity and the predictive metabolic poten-
tial, the total metagenomic DNA was isolated from 250 mg 
rhizosphere soil sample using the MoBio Power soil DNA 
isolation kit (MoBio Laboratories, Inc. CA, USA) as per 
the manufacturer’s instructions with some modifications. 
The purity and integrity of the extracted genomic DNA 
were estimated through DNA gel electrophoresis (1%), and 
the concentration of DNA was quantified using NanoDrop 
2000 spectrophotometer (Thermo Scientific) by measuring 
the absorbance at 260/280 nm. The samples were stored 
at − 20 °C until needed for further analysis. Primer set of 
341F (5′-CCT​ACG​GGNGGC​WGC​AG-30) and 805R (5′-
GAC​TAC​HVGGG​TAT​CTA​ATC​C-30) was used to amplify 
the V3-V4 dual region. 16S rRNA amplicon sequencing of 
total genomic DNA was done by using Illumina MiSeq sys-
tem [64].

Taxonomic and functional profiling 
of disease‑resistant and disease‑susceptible 
rhizosphere microbiome using MG‑RAST 
and METAGENassist sever

Illumina-generated sequence reads were analyzed through 
an open-source online server Metagenome Rapid Annotation 
using Subsystem Technology (MG-RAST) version v 4.0.3 
(http://​metag​enomi​cs.​anl.​gov/) [65]. Briefly, the raw and 

(1)AWCD =
∑

ODi∕31
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unassembled reads generated were merged by using mate-
merge pairs. The low-quality reads were trimmed by Solex-
aQA (http://​solex​aqa.​sourc​eforge.​net/) [66]. Moreover, the 
artificial and duplicated reads were removed by using k-mer 
based approach. Annotations were made against the RDP 
database [67], with default parameters, unless otherwise 
stated. Taxonomic datasets obtained from MG-RAST were 
further processed and analyzed by METAGENassist (http://​
www.​metag​enass​ist.​ca/​METAG​ENass​ist/​faces/​Home.​jsp) 
[68], to provide an overview of functional profiles between 
the two cultivars. More in-depth details of various genes 
encoding important enzymes involved in metabolic path-
ways were obtained from PICRUSt2 v2.3.0 (https://​github.​
com/​picru​st/​picru​st2/​relea​ses/​tag/​v2.3.​0-b) [69], which pre-
dicts the functional potential on the basis of marker gene 
sequencing profiles. The PICRUSt 2 obtained, gene copy 
number were summarized with KEGG Orthology (KO) and 
KEGG reference database (https://​www.​genome.​jp/​kegg/).

Diversity analysis

The statistical analyses were performed using the SPSS soft-
ware version 21 (SPSS Inc. /IBM Corp., Chicago, IL, USA). 
The collected data were subjected to analysis of variance 
(ANOVA) for comparison of means, and significant differ-
ences were calculated using Duncan’s multiple range test 
(DMRT) at a p < 0.05 significance level. A range of alpha 
diversity parameters was estimated using statistical software 
Paleontological Statistics (PAST) ver. 2.17c [70] using the 
Bray–Curtis distance measure method, ACE index, which is 
a measure of microbial richness, was estimated along with 
Shannon–Wiener index and Chao-1 indices to determine the 
taxonomic distribution and diversification within the two 
rhizosphere microbiomes.

Results

The chemical properties of AKADR and AKADS rhizo-
sphere soil samples are presented in Table 1. Chemical 
analysis of the AKADR and AKADS rhizosphere soil sam-
ples showed a change in pH, which determines the nutrient 
availability to plants. Soil pH was close to neutral in the 
AKADR (7.5 ± 0.5), whereas acidic in AKADS (5.8 ± 0.7) 
rhizospheric samples. Results showed that the EC val-
ues of AKADS (0.53 ± 0.05) were higher than AKADR 
(0.23 ± 0.075). Similarly, the two sampled soils observed a 
significant difference in all other fertility parameters (organic 
carbon percentage, nitrogen, phosphorous, potassium, sulfur, 
boron, zinc, copper, iron, and manganese).

Community‑level physiological profiling analysis

Soil functional diversity indices were determined using 31 
carbon sources in the Biolog EcoPlate technique after 120 h 
of incubation. We focused on presenting data from this time 
point since the maximum consumption of different carbon 
compounds in all examined soils was reported after 120 h 
of incubation. The functional diversity of the microbial pop-
ulation as measured as substrate utilization in the Biolog 
Ecoplate™.

Carbohydrates and carboxylic acids were the most read-
ily consumed compounds among the 31 carbon sources in 
all rhizosphere soils, but amino acids, polymers, amines, 
and amides were the least consumed. The greatest utili-
zation rates were found in the AKADR rhizospheric soil 
for l-arginine, beta-methyl-d-glucoside, alpha-d-lactose, 
gamma-hydroxybutyric acid, and phenylethylamine com-
pared to AKADS samples (Fig. 2). The Biolog assay was 
used to identify microbial isolates based on their substrate 
utilization profiles, with the degree of oxidation being pro-
portional to the metabolic capability of the corresponding 
microbial communities characterized by AWCD [71–73]. 
Color intensity was determined by calculating the average 
well color development (AWCD) on each plate. The AWCD 
of the carbon sources for the AKADR and AKADS rhizo-
sphere soil samples using the Biolog EcoPlates™ usually 
followed a sigmoidal curve with the incubation time (120 h). 
Overall, most of the substrates were highly metabolized by 
the AKADR sample (Table 2). The AWCD of the microbial 
community from AKADR was significantly higher (p < 0.05) 
than that of AKADS, indicating that the tested metabolic 

Table 1   Physiochemical characterization of rhizosphere soils of dis-
ease-resistant (AKADR) and disease-susceptible (AKADS) soybean 
cultivars

Values are the mean of three replicates ± SD (n = 3). The same letter 
within each rows indicates no significant difference between the treat-
ments (p < 0.05) as determined by Duncan’s multiple range test

Measured soil parameters AKADR AKADS

pH (KCl) 7.5 ± 0.5b 5.8 ± 0.7a

Electrical conductivity (dS/m) 0.23 ± 0.075a 0.53 ± 0.05b

Organic carbon ( kg/ha) 0.84 ± 0.03b 0.33 ± 0.045a

Nitrogen (kg/ha) 270 ± 1.4b 200 ± 1.3a

Phosphorus (kg/ha) 38.32 ± 0.05b 21.3 ± 0.04a

Potassium (kg/ha) 327 ± 1.56b 265 ± 1.2a

Sulfur (ppm) 28.8 ± 0.04b 27.9 ± 0.01a

Boron (ppm) 1.61 ± 0.056b 1.53 ± 0.05a

Zinc (ppm) 2.15 ± 0.045b 2.01 ± 0.034a

Copper (ppm) 2.19 ± 0.08b 2.12 ± 0.09a

Iron (ppm) 4.24 ± 0.03a 4.88 ± 0.071b

Manganese (ppm) 7.41 ± 0.3b 6.85 ± 0.1a
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capabilities of AKADR samples were higher than that of 
AKADS (Fig. 2). Based on the Shannon–Wiener diversity 
calculated from the community-level physiological profiling 
(CLPP) dataset, there was a significant difference in popu-
lation diversity due to the soybean genotype. The highest 
and most significant utilization of amino acids was found in 

the AKADR compared to AKADS rhizosphere soil (Fig. 2). 
Finally, bacteria found in disease-resistant rhizospheric soils 
were shown to have the most remarkable rate of polymer 
usage.

CLPP result depicted that microbial communities 
colonizing the AKADR samples are metabolically more 

Fig. 2   Community-level 
physiological profiles (CLPP) of 
disease-resistant and disease-
susceptible soybean rhizosphere 
soil samples. The error bars 
indicate the standard error of 
the mean of three replicates (n 
= 3). Substrates were classi-
fied under A carbohydrates, B 
carboxylic acids, C polymers, 
D amino acids, E amines/
amides, and F overall utiliza-
tion of the above five categories 
of substrates, where AKADR 
represents disease-resistant and 
AKADS represents disease-
susceptible cultivars

Table 2   Bacterial community average well color development 
(AWCD), Shannon–Wiener index, evenness, and richness index as 
indicated from Community-level physiological profiling (CLPP) in 

the rhizosphere of disease-resistant (AKADR) and disease-suscepti-
ble (AKADS) soybean cultivars

Values are the mean of three replicates ± SD (n = 3). The same letter within each column indicates no significant difference between the treat-
ments (p = 0.05) as determined by Duncan’s multiple range test, where SD, standard deviation; AWCD, average well color development; OD, 
optical density

Samples AWCD OD 48 h−1 Shanon diversity index (H) Margalef’s richness index (RI) Pielou’s evenness (J)

AKADR 1.568 ± 0.04b 3.379 ± 0.8b 8.82 ± 0.45b 0.98 ± 0.034b

AKADS 0.967 ± 0.033a 2.780 ± 0.09a 7.89 ± 0.30a 0.809 ± 0.045a
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active than the microbes present in the AKADS sample. 
The AWCD of the microbial communities from AKADR 
(1.568) was significantly higher (p < 0.05) than the AKADS 
(0.967) soil sample. The greatest Shannon–Wiener func-
tional diversity index values were found in AKADR soils 
(H′ = 3.379), in contrast to the AKADS rhizosphere, which 
had the lowest functional diversity index (H' = 2.780). 
Based on the Shannon–Wiener diversity, Margalef’s Rich-
ness, and Pielou’s evenness calculated from the CLPP 
dataset, there was a significant difference in population 
diversity, evenness, and richness in AKADR and AKADS 
rhizosphere soil. Richness (RI) index attained maximum 
levels of 8.82 and 7.89, in AKADR and AKADS samples, 
respectively. The Pielou’s evenness index (J) was the high-
est in the rhizospheres of AKADR (J = 0.984) and AKADS 
(J = 0.809) (Table 2).

The primary component of the PCA analysis revealed a 
significant correlation between the specified Biolog Eco-
Plates variables (carboxylic acids, polymers, hydrocarbons, 
amino acids, amines, and amides, AWCD, Shannon–Wie-
ner index, evenness, and richness index) (Fig. 3). Carbon 
sources with statistically significant relationships might 
represent biochemical indicators specific to the rhizos-
pheric soil of different soybean cultivars. The PCA analysis 
revealed that soils obtained from the rhizosphere of AKADR 
had higher physiological function (strong connection with 
the Shannon–Wiener index, the richness index, amino acids, 
and carbohydrate consumption) compared to that of AKADS 
samples (Fig. 3).

Comparative taxonomic profiling of bacterial 
communities colonizing the disease‑resistant 
(AKADR) and disease‑susceptible (AKADS) 
rhizosphere soil

Total high quality of 403,891 sequences with 121,571,191 
bps (base pairs) and 356,824 sequences, with 107,404,024 
bps were obtained following sequencing through Illumina 
sequencing of soybean disease-susceptible (AKADS) and 
disease-resistant (AKADR) rhizosphere soil sample, respec-
tively. All the calculated diversity indices were found sig-
nificantly higher in AKADR compared to AKADS (Fig. 4). 
A high ACE value in AKADR indicates the predominance 
of bacterial communities in AKADR than AKADS (Fig. 4). 
Similarly, Shannon–Wiener index, which includes both 
aspects of diversity, i.e. richness and evenness, revealed a 
significantly (p < 0.01) higher diversity in AKADR than in 
AKADS. Again, the values of the Chao-1 index were signifi-
cantly (p < 0.01) higher in AKADR than in AKADS. Highly 
diverse communities of bacteria inhabiting the rhizosphere 
play pivotal roles in plant growth and crop production; how-
ever, little is known about the changes in these bacterial 
communities during stress conditions [1, 39]. This study 
analyzed bacterial communities from disease-resistant and 
disease-susceptible varieties of soybean rhizosphere by 16S 
rRNA amplicon sequencing. This total metagenomic DNA 
was extracted from the soybean rhizosphere and sequenced 
using 16S rRNA amplicon sequencing. The taxonomic pro-
filing of the soybean rhizosphere was performed against the 

Fig. 3   Principal component 
analysis (PCA) of the commu-
nity level physiological profiling 
(CLPP) at a significance of 
(p < 0.05), where AKADR 
represents disease-resistant and 
AKADS represents disease-
susceptible cultivars
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RDP database using default parameters, and the phylotypes 
were analyzed up to the genus level.

For each sample examined, the rarefaction curves pla-
teaued, showing that the sequencing depth was suf-
ficient to acquire the whole bacterial genome (Fig. 1). 
In AKADR, at the phylum level, Actinobacteria (40%) 
predominated followed by Chloroflexi (24%), Proteobac-
teria (20%), Firmicutes (12%), and Acidobacteria (4%), 
while in the case of AKADS, the most dominating phyla 
observed were Proteobacteria (35%) followed by Actino-
bacteria (27%) Bacteroidetes (17%), Firmicutes (7%), 
Chloroflexi (7%), and Verrucomicrobia (4%) (Fig. 5A). 
In our study, we found more abundance of Actinobacteria 
in disease-resistant AKADR samples, one possible reason 
for such specific recruitment may be due to colonization 
of more plant growth-promoting bacteria in the rhizos-
phere of disease-resistant soybean varieties. Phylum to 
species level taxonomic distribution is presented in Fig. 5 
(A–D).

At the genus level, Bacillus was predominant, with a 
relative abundance of 21% in the AKADR sample, which 
has been used in many studies as a potential PGPR and 
bio-control agent, whereas in the case of AKADS, Chry-
seobacterium dominated with a relative abundance of 
(30%) (Fig. 5D) [2, 36]. Similarly, the most abundant 
bacteria at the species level were Bacillus sp. (16%) in the 
AKADR and Kaistobacter (26%) in the AKADS (Fig. 6). 
In this study, at the genus level, Streptomyces, Bacillus, 
Kaistobacter, Rhodoplanes, Clostridium, Verrucomicro-
bia, Nocardioides, Dehalogenimonas, and Frankia  were 
predominant in the AKADR sample (Fig. 6).

Functional profiling of bacterial communities 
presents in the disease‑resistant (AKADR) 
and disease‑susceptible (AKADS) rhizosphere soil

The comparative predictive functional profiling of the bac-
terial communities from the two soybean samples AKADR 
and AKADS was performed using the METAGENassist 
software. These bacterial communities were classified based 
on grams’ test, energy source, temperature, habitat, motil-
ity, oxygen requirement, spore formation, and shape of the 
bacteria. More host-associated, gram-positive, motile, spore-
forming, thermophiles, mesophiles, aerobic and anaerobic 
microbes were found in the AKADR sample. In contrast, 
AKADS consists of soil-associated, non-motile, non-sporu-
lating, and psychrophilic microbes. The functional mapping 
was carried out by taking into consideration the metabolic 
compositions. The functional profiling of the sample illus-
trated that the soybean rhizosphere could be observed as a 
micro-ecological environment, serving as an environment 
for several biogeochemical cycles. Functional profiling result 
shows AKADR sample has more ammonifying (65.10%), 
nitrite reducing (50.30%), dehalogenation (40%), sulfate 
reducers and sulfide oxidizers (39.60%), chitin degrading 
(30.7%), nitrogen-fixing (17%), and streptomycin (14.40%) 
producing microbes compared to that of microbial species 
present in AKADS sample (Fig. 7).

Although several genes were identified, we were espe-
cially interested in some microbial genes vital to microbial 
interactions, nutrient cycling, and antibiotic genes. The nifH 
gene in nitrogen-fixing microbes was abundantly present in 
the AKADR compared to the AKADS rhizosphere sample. 

Fig. 4   Microbial diversity and richness. A ACE, B Chao-1, C Shannon–Wiener index, where AKADR represents disease-resistant and AKADS 
represents disease-susceptible cultivars
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Two genes encoding enzymes responsible for ammonifica-
tion are urease (ureC), and glutamate dehydrogenase (gdh) 
were found more in the AKADR sample than the AKADS 
sample. Gdh genes are mainly found in the bacterial phy-
lum Actinobacteria, abundantly present in AKADR samples, 
whereas ureC genes were mainly distributed in the bacte-
rial phyla Actinobacteria and Proteobacteria. Two genes 
encoding enzymes hydroxylamine oxidoreductase (hao) and 
ammonia monooxygenase (amoA) responsible for nitrifica-
tion were more in the AKADR sample. These hao genes are 
primarily derived from Rhodobacteraceae, present only in 
the AKADR samples (Fig. 8). Three genes nirA, nirB, and 
nasA required to reduce nitrogen to ammonium were highly 
enriched in the AKADR samples compared to AKADS 
samples. The nirA gene was mainly found in the uncultured 
archaea, nirB gene found in Actinomycetales, Verrucomi-
crobiae, and genus Pseudomonas.

In contrast, nasA gene was mainly found in uncultured 
bacteria. Additionally, five important genes involved in the 
process of denitrification (nirS, nirK, norB, nosZ, and narG) 
were higher in the AKADR compared to AKADS. Antibi-
otic resistance, including ABC antibiotic transporters, and 
β-lactamase genes, were abundantly present in the AKADR 
sample. The ABC antibiotic transporter was abundantly pre-
sent in the rhizosphere.

Discussions

The present study investigated the richness and metabolic 
profile of the bacterial community found in the rhizosphere 
of disease-resistant (JS-20–34) soybean varieties and dis-
ease-susceptible (JS-335). Initially, the chemical properties 
of the soil were assessed to see if there were any differ-
ences in soil chemistry between the rhizospheric soils of 
two soybean cultivars. Soil chemical conditions have long 
been important drivers of soil microbial composition [71, 
74–76]. The pH of AKADR was more or less neutral, while 
that of AKADS was slightly acidic (Table 1), leading to 
phosphorus deficiencies. The pH of the soil should be more 
or less towards the neutral side to avoid nutrient deficien-
cies, which in turn will weaken the plants and make them 
more susceptible to disease and pest attacks [8]. The elec-
trical conductivity (EC) of soil is a measure of salinity and 
is considered an important indicator of soil health [77, 78]. 
An increase in soil EC may disrupt the microbial popula-
tion present in soil and may impact vital soil processes such 
as nitrification, denitrification, respiration, and decomposi-
tion, as suggested by Corwin et al. [77]. In addition, the 
AKADS rhizosphere had the least functional diversity index 
(Table 2), which might be related to the low pH. This study 
discovered that pH has a substantial impact on the structure 

Fig. 5   Comparative taxonomic 
profiles of the bacterial ampli-
cons from AKADR (disease-
resistant) and AKADS (disease-
susceptible) at A phylum level, 
B class, C family, D genus
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of the rhizosphere Microbiome. Phosphorus (P) is a life-
sustaining component commonly used in fertilizers, and its 
replenishment in the soil is critical for increasing agricul-
tural productivity [71, 79]. In the AKADR rhizosphere, the 
concentration of P in the soils ranged around 38.32 kg/hc 
(Table 1). However, the considerable effect of P on rhizos-
pheric soil was exclusively connected to the abundance of 
Actinobacteria in AKADR samples.

The community-level physiological profile (CLPP), a 
quick screening method for finding differences between 
treatments, was used to characterize the bacterial diversity 
in the two different soybean rhizospheric environments [35, 
59, 80]. The selection of these bacterial communities in the 
rhizosphere is due to the supply of various nutrients and 
the platform supplied by host plants [3, 38, 59]. Carbohy-
drates, carboxylic, and acetic acid sources were utilized 

significantly faster than other substrates such as amino acids, 
amides/amines, and polymers. Carbohydrate sources are 
essential in the culture media; several reports showed that 
the optimum antimicrobial agent production depends upon 
the type and concentration of carbon sources used in culture 
media such as glycerol, maltose, fructose, and glucose [81]. 
This illuminated that pathogenicity has a noticeable effect 
on the metabolic activity of microorganisms inhabiting the 
rhizosphere. Biolog substrate utilization assays community-
level physiological profiles (CLPP) were used in this study 
to test the metabolic capabilities of the microbes present 
in the rhizosphere of disease-resistant soybean were higher 
than that of microbes colonizing the disease-susceptible one 
(Fig. 3). We found a high number of bacteria flourishes in 
the disease-resistant variety compared to disease-susceptible 
ones. Higher diversity indices in AKADR may be due to 

Fig. 6   Heat map showing the 
taxonomic profiles of the bacte-
rial amplicons from AKADR 
(disease-resistant) and AKADS 
(disease-susceptible) at the 
genus level. The dendrogram 
depicts the weighted Euclidean 
distance analysis of bacterial 
community similarity between 
the two cultivars
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higher nutrient availability in AKADR as shown in (Fig. 4). 
Similar findings were reported by Zhou et al. [82]. The 
study conducted by Donn et al. [83] and Rascovan et al. 
[84] demonstrated the maximum metabolic activity in terms 
of glucose consumption in rhizospheric soils of four differ-
ent wheat varieties [85]. It is often thought that agricultural 
management techniques and seasons influence soil microbial 
populations. Furthermore, wheat cultivars alter the microbial 
structure and the catabolic activity in the rhizosphere [85, 
86].

NGS methods were used to determine genetic finger-
printing in AKADR and AKADS rhizospheric soil samples 
of soybean. The NGS approach revealed new information 
on a rhizospheric bacterial group known as viable but not 
cultivable (VBNC), defined as those with extremely low 
metabolic activity and are not dividing but are alive and 
can become culturable if revived [87]. However, it should 
be noted that, in addition to its benefits, NGS has several 
drawbacks, including the fact that certain culturable bac-
teria cannot be identified solely on primer mismatches, 
and diversity is sometimes exaggerated. This investigation 
employed well-known universal and suggested primers for 
bacterial identification in rhizosphere soil [88]. However, 
the NGS data reported the Actinobacteria, Firmicutes, and 
Proteobacteria were consistently enriched in the rhizosphere 
of both healthy and diseased samples, regardless of differ-
ent cultivars, as observed by other researchers in banana, 
tomato, maize, rice, and wheat which are commonly known 

for their good response to labile carbon sources and plant 
growth promotion [1, 9, 34, 39, 89, 90].

The abundance of Actinobacteria can change carbon 
utilization and rhizodeposition, affecting carbon sequestra-
tion and storage. Considering their role in biogeochemical 
cycling, any change in their abundance will affect micro-
bial function and structure, and consequently, plant growth. 
Results from the present study are supported with that of 
Alvarez et al. [91] and Rizzatti et al. [92], where the authors 
describe Actinobacteria as a potential candidate for promot-
ing plant growth promoters [91, 93]. The members belong-
ing to Bacillus sp. include potential PGPRs and biocontrol 
agents. For example, various species of Bacillus have been 
associated with phosphorus solubilization [89, 94–96], sys-
temic resistance to pathogens, and by producing antifungal 
compounds [97–102] and antibiotics [103, 104]. Among 

Fig. 7   Expression of functional genes in the rhizosphere soils of 
AKADR (disease-resistant) and AKADS (disease-susceptible) based 
on cluster of orthologous groups

Fig. 8   Heatmap of unigenes identified in the rhizosphere soils of 
AKADR (disease-resistant) and AKADS (disease-susceptible) cal-
culated using relative abundances of KEGG orthologies (KOs) pre-
dicted by PICRUSt 2
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all Kaistobacter and Rhodoplanes were identified atrazine 
degraders and helpful in atrazine bioremediation [105]. Other 
highly abundant genera in AKADR samples include potential 
PGPRs and biocontrol agents. The existence of these bacte-
rial networks gives clues to the operation of the nitrogen and 
sulfur cycles within this micro-environment. The dominance 
of Acidobacteria at the phylum level includes the group of 
nitrogen-fixing bacteria like Frankia that fixes about 15% 
of the world’s total nitrogen [91, 93, 106]. Members of the 
phylum Actinobacteria are also recognized for producing 
enzymes like chitinase, urease, catalase [107].

Moreover, these bacterial groups can degrade a broad 
range of pesticides and hydrocarbons, and their metabolic 
potential offers a substantial area for future research [81, 
106]. The functional analysis results showed that most 
genes were abundantly present in the AKADR samples than 
AKADS rhizosphere soil samples (Fig. 8). Some microbes 
release antimicrobial compounds harmful to other microbes, 
allowing them to colonize and grow on plant surfaces when 
other microbial populations are present. Our study reported 
that more antibiotic resistance, including ABC antibiotic 
transporters, and β-lactamase genes, were abundantly pre-
sent in the AKADR sample. The results of our study have 
collaborated with the study conducted by Li et al., [108] and 
Yu et al. [109] on maize rhizosphere. The increased incidence 
of antibiotic resistance genes also serves as the first line of 
defence for root system attacks by soil-borne microbes [110]. 
Microbes that degrade or detoxify these compounds via par-
ticular functional genes have a competitive advantage [3].

Conclusions

The combination of the two approaches, NGS and CLPP, 
enabled the identification of bacterial diversity in the 
rhizospheric soil of the two soybean cultivars in a complete 
(genetic and catabolic) manner. The new knowledge gained 
in this study might help in improving soil health, agricultural 
practices, food production, and food security. The alterations 
seen in the soil microbial community were demonstrated 
to result from a combined effect of both the soybean cul-
tivar and rhizospheric soil biochemistry. This study unrav-
els the changes in the selection of bacterial communities 
by the disease-resistant and disease-susceptible soybeans 
rhizosphere. However, at the genus level Streptomyces, 
Bacillus, Kaistobacter, Rhodoplanes, Clostridium, Verru-
comicrobia, Nocardioides, Dehalogenimonas, and Frankia 
were predominant in the AKADR sample. The members 
belonging to these genera are recognized as potential PGPRs 
and biocontrol agents. The results obtained from this study 
showed that the microbiomes of plants that both survived 
infection and remained healthy were linked to host-specific 
plant growth-promoting pathogen-suppressing Bacillus and 

antibiotic-producing Streptomyces bacterial species. By pro-
moting helpful bacteria in the field soil, it may be possible to 
enhance plant resistance to specific diseases by utilizing eco-
friendly tools like biofertilizers. This, in turn, will reduce 
the requirement for intensive chemical fertilizers treatments 
to control disease outbreaks as the damaging effects of the 
plant pathogens present in the soil would be reduced.

The physiological profile studied at the community 
level revealed microbial preferences for carbon substrate 
utilization (catabolic fingerprinting). CLPP demonstrated 
that metabolic activity was affected by the type of soy-
bean cultivars and the substrate utilized. The most easily 
metabolized group of substrates for all rhizospheric soils 
was carbohydrates > carboxylic acids > amino acids > pol-
ymers > amines and amides. The metabolic capabilities of 
disease-resistant (AKADR) were 2–threefold higher than 
that of disease–susceptible (AKADS) soybean rhizosphere 
soil. Additional studies on both metabolic activities of soy-
bean, such as root exudation and the physiological func-
tions of these rhizobacteria on plant growth, are necessary 
to explain the mutual interactions between rhizosphere 
microbes and their host plants in the fields for better utili-
zation of rhizosphere bacteria for sustainable agriculture 
production.

Functional profiling of the disease-resistant (AKADR) 
soybean rhizosphere showed a higher amount of antibiotic 
resistance genes in the disease-resistant samples. This pro-
vides evidence that these bacterial communities in AKADR 
samples can provide the frontline defence against soil-
borne pathogens. These bacterial genera that can detoxify 
or degrade these metabolites via definite functional genes 
gain a competitive advantage. The data support the concept 
that the disease-resistant soybean rhizosphere is a hotspot 
of functional genes for converting labile and recalcitrant 
organic compounds like carbon, nitrogen, phosphorus, and 
sulfur. Future research will focus on exploring microbial 
communities associated with root pathogenesis, including 
functions and actions of the microbiome, for understanding 
intricate microbe-plant-pathogen dealings. This will offer 
new prospects to recognize how the microbiome maintains 
plant health and open new avenues to increase crop produc-
tion. To summarize, combining the CLPP approach with the 
16S rRNA amplicon sequencing revealed new information 
on the taxonomic and physiological bacterial fingerprinting 
of rhizospheric soils of selected soybean cultivars.
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