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Abstract
Understanding gene expression and regulation requires insights into RNA transcription, processing, modification, and trans-
lation. However, the relationship between the epitranscriptome and the proteome under drought stress remains undeter-
mined in poplar (Populus trichocarpa). In this study, we used Nanopore direct RNA sequencing and tandem mass tag-
based proteomic analysis to examine epitranscriptomic and proteomic regulation induced by drought treatment in stem-
differentiating xylem (SDX). Our results revealed a decreased full-length read ratio under drought treatment and, especially,
a decreased association between transcriptome and proteome changes in response to drought. Epitranscriptome analysis
of cellulose- and lignin-related genes revealed an increased N6-Methyladenosine (m6A) ratio, which was accompanied by
decreased RNA abundance and translation, under drought stress. Interestingly, usage of the distal poly(A) site increased
during drought stress. Finally, we found that transcripts of highly expressed genes tend to have shorter poly(A) tail length
(PAL), and drought stress increased the percentage of transcripts with long PAL. These findings provide insights into the
interplay among m6A, polyadenylation, PAL, and translation under drought stress in P. trichocarpa SDX.
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Introduction
Plants must adapt their physiology to the variable environ-
ment. Rapid regulation of gene expression for adapting to
abiotic stresses occurs at different levels, including capping,
splicing, polyadenylation, methylation, and translation (Floris
et al., 2009; Hu et al., 2021). Drought is the major abiotic
stress affecting the growth and productivity of plants; thus,
various response mechanisms that involve reprogramming
of gene expression have evolved to cope with drought stress
(Ryan, 2011; Maud et al., 2016; Li et al., 2019; Zhang et al.,
2019a, 2019b, 2019c). It is therefore extremely important to
capture precise transcriptome and translation profiles for
understanding the molecular mechanisms underlying the
drought response.

N6-Methyladenosine (m6A) is the most extensive dynamic
RNA modification and is typically enriched near the stop co-
don and 30-untranslated region (30-UTR). Increasing evidence
shows that m6A can affect mRNA in multiple ways, such as
alternative polyadenylation (APA) and altered translation,
degradation, and nuclear export of mRNAs (Shao et al.,
2021). Epitranscriptome studies have been reported in maize
(Zea mays) (Nichols, 1979), Arabidopsis (Arabidopsis thaliana;
Zhong et al., 2008), tomato (Solanum lycopersicum; Zhou
et al., 2019), rice (Oryza sativa japonica; Zhang et al., 2019a,
2019b, 2019c), and poplar (Populus trichocarpa; Lu et al.,
2020; Gao et al., 2021). However, studies of m6A in response
to stress response are almost exclusively focused on
Arabidopsis (Mart�ınez-P�erez et al., 2017; Anderson et al.,
2018; Kramer et al., 2020; Hou et al., 2021; Song et al., 2021).
For example, a reduction in m6A was recently associated with
global changes in gene expression under salt stress conditions
(Hu et al., 2021). Therefore, epitranscriptome regulation dur-
ing abiotic stress should be further explored in plants.

APA generates mRNAs with distinct 30-UTRs, which are
implicated in stress responses (Yan et al., 2021). The key pol-
yadenylation factor of the 30-kDa subunit of the Cleavage
and Polyadenylation Stimulatory Factor (CPSF30) produces
two splice isoforms. The longer isoform (CPSF30-L) binds
m6A and functions as an m6A reader in regulating flowering
and the abscisic acid (ABA) response (Song et al., 2021). The
m6A reader CPSF30-L also modulates APA of nitrate signal-
ing-related genes, such as nitrate transporter 1.1 (Li et al.,
2017). The genome-wide profiling of APA sites using short-
read sequencing greatly expanded our insights into recogni-
tion and selection of polyadenylation signals (Wu et al.,
2011; Velten et al., 2015; Zhou et al., 2016; Hwang and
Darnell, 2017; Routh et al., 2017; West et al., 2018; Ye et al.,
2019; Chakrabarti et al., 2020). With the benefit of long-read
sequencing, Nanopore direct RNA sequencing (DRS) offers a
promising method for identifying authentic sites of mRNA
cleavage and polyadenylation (Sherstnev et al., 2012; Parker
et al., 2020), providing a great advantage for investigating
the association between polyadenylation and stress.

The poly(A) tail is a homopolymeric stretch of adenosines
at the 30-end of most eukaryotic mRNAs. Poly(A) tail length
(PAL) affects gene expression (Liu et al., 2021a, 2021b, 2021c,

2021d, 2021e), mRNA stability, translation, and nuclear ex-
port of mature mRNAs (Fuke and Ohno, 2008; Eckmann
et al., 2011; Subtelny et al., 2014; Liu et al., 2021a, 2021b,
2021c, 2021d, 2021e). In particular, a recent study reported a
connection between m6A and PAL (Liu et al., 2021a, 2021b,
2021c, 2021d, 2021e). High levels of variability in PAL are ob-
served among transcripts of plant genes during heat shock,
and PAL contributes to a swift posttranslational stress re-
sponse (Wu et al., 2020). Endoplasmic reticulum stress-in-
duced mRNAs harbor shorter poly(A) tails in RNA granules
than in the cytoplasm (Woo et al., 2018). Full-length mRNA
sequencing using Nanopore DRS allows us to estimate PAL
(Krause et al., 2019). However, the extent of PAL regulation
during stress remains largely unexplored in plants.

Transcription, mRNA degradation, translation, and protein
degradation are the four fundamental cellular processes in
gene regulation (Schwanhäusser et al., 2011). Translation is
modulated in response to environmental stimuli (Bailey-
Serres, 1999), and proteomic analysis strengthens our under-
standing of the biological processes of stress responses (Wei
et al., 2018a, 2018b; Guan et al., 2019; Xiao et al., 2020).
Tandem mass tag (TMT) labeling technology provides accu-
rate quantification of peptides and proteins (Thompson
et al., 2003). Although the association between the transcrip-
tome and proteome has been investigated previously (Ideker
et al., 2001), this association remains unknown under
drought stress in plants.

In this study, we identified differential epitranscriptome
and proteome changes under drought treatment in P. tri-
chocarpa stem-differentiating xylem (SDX) using Nanopore
DRS and TMT-based proteomic analysis, respectively. Our
results revealed a low association between transcript level
and protein abundance upon drought treatment. We inves-
tigated the dynamic profile of m6A in response to drought,
finding that the m6A ratio associated with wood-formation
genes was increased by drought stress, whereas transcript
levels and translation levels were reduced. Moreover, we
found that proximal poly(A) site usage shifted to distal
poly(A) site usage under drought stress. Finally, our results
revealed that highly expressed and well-translated transcripts
have a strong bias toward short PAL. In summary, our work
provides genome-wide profiles of the epitranscriptome and
proteome in response to drought stress in P. trichocarpa
SDX and their impact on gene regulation.

Results

Nanopore DRS of SDX transcriptome under drought
treatment
To capture the diversity and dynamics of the epitranscrip-
tome in response to drought stress in P. trichocarpa SDX,
we performed DRS of RNA from control (no drought, ND),
5-day (D5), and 7-day (D7) drought treatments using
Nanopore MinION (Figure 1A). DRS libraries with two bio-
logical repeats were sequenced using the SQK-RNA002 kit
protocol. A total of 9.9 million real-time single-molecule se-
quencing reads were generated from six MinION flow cells

460 | PLANT PHYSIOLOGY 2022: 190; 459–479 Gao et al.



C D

A B

E

F

D
5 

fu
ll-

le
ng

th
 r

ea
d 

ra
tio

ND full-length read ratio

D
7 

fu
ll-

le
ng

th
 r

ea
d 

ra
tio

G H
Overlapping genes

with increased full-length read ratio
in D5/ND vs D7/ND

ND
0

10

20

30

P
er

ce
nt

ag
e 

of
 fu

ll-
le

ng
th

 r
ea

ds
 (

%
)

M
ea

n 
co

ve
ra

ge
 (

re
ad

s)

Distribution of full length

40

35
.6

33
.6

29
.5

50

D5 D7

0.0

0.2

0.4

0.6

0.8

1.0
D5 vs ND (n=571 genes) D7 vs ND (n=2020 genes)

0.0 0.2 0.4 0.6 0.8 1.0

Decreased in D5: 546
Increased in D5: 25

Decreased in D7: 2004
Increased in D7: 16

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8
D5/ND

16 9 7

D7/ND

ND D5 D7
0.00

0.05

0.10

0.15

0.20

0.25

F
ul

l-l
en

gt
h 

re
ad

 r
at

io 0.
26

4

0.
12

2

0.
13

3

0

50

100

150

200

250

CDS

Gene position5'UTR 3'UTR

Full-length reads
Non-full length reads

Potri.001G003800|Protein-of-Unknown-Function--DUF239-|AT1G55360

A
A

A
...A

A
A

3-month-old seedlings

ND

Drought day

Powdering

SDX collection

0 1 2 3 4 5 6 7

D5
D7

D
rought treatm

ent

ND D5 D7

Poly(A)+ RNA purification
Protein quantification

and SDS-PAGE,

Total RNA extraction Protein extraction
AAAAA

AAAAA

AAAAA

RT adaptor ligation,
1st strand cDNA synthesis,

Sequencing adaptor attachment 

Tryptic digestion,
TMT labeling,

Chromatographic separation

Sequencing on
MinION sequencer

DRS analysis

Protein abundance

LC-MS/MS

F
ull-length/non-full-length read

P
oly(A

) tail length
(P

A
L)

A
lternative polyadenylation

(A
P

A
)

N
6-m

ethyladenosine
(m

6A
)

In
te

ns
ity

m/z

Sampling

Processing

Epitranscriptome

Proteome

AAA...AAA

AAA...AAA

AAA...AAA

Translation

P
ro

to
m

e 
di

sc
ov

er
y

UTR
CDS

N
anom

6A

F
isher’s

exact test

P
R

A
P

I

N
anopolish

Peptide

G
up

py

CDS UTR Intron 50 bp

N
D

 fu
ll

0.0
83.0

166.0
249.0
332.0

N
D

 n
on

-f
ul

l

0.0
83.0

166.0
249.0
332.0

D
5 

fu
ll

0.0
24.5
49.0
73.5
98.0

D
5 

no
n-

fu
ll

0.0
24.5
49.0
73.5
98.0

D
7 

fu
ll

0.0
37.5
75.0

112.5
150.0

D
7 

no
n-

fu
ll

0.0
37.5
75.0

112.5
150.0

Potri.001G003800|Protein-of-Unknown-Function--DUF239-|AT1G55360

Correlation of full-length reads

ND1

ND2

D51

D52

D71

D72

ND1

ND2

D51

D52

D71

D72

1

0.94

1 0.49

0.57

1

0.49

0.57

0.94

1

0.31

0.5

0.77

0.78

1

0.51

0.6

0.93

0.98

0.82

1

1

0.95

1 0.44

0.42

1

0.44

0.44

0.93

1

0.44

0.51

0.87

0.93

1

0.47

0.47

0.91

0.97

0.95

1

Spearm
an's correlation coefficient 0.45

0.60

0.75

0.90

Spearm
an's correlation coefficient

0.5

0.6

0.7

0.8

0.9

1.0

Correlation of non-full-length readsND1

ND2

D51

D52

D71

D72

ND1

ND2

D51

D52

D71

D72

1.0

N
D D
5

N
D D
5

N
D D
7

N
D D
7

0.0

0.2

0.4

0.6

0.8

1.0

F
ul

l-l
en

gt
h 

re
ad

 r
at

io

546

genes 25

genes 2004

genes 16

genes

R
el

at
iv

e 
ex

pr
es

si
on

 r
at

io
(f

ul
l r

ea
ds

/to
ta

l r
ea

ds
)

0.0

0.5

1.0
EF1α 18S

Reference
gene

**
*

*
*

ND D5 D7
ND D5 D7

3-month-old seedlings

Po

D
rought treatm

ent
D

rought treatm
ent

N

Sampling

P i

g

SDX collection

D77

G
up

1mm

IntronExon 50 bp

Total_F
Total_R

Full_R
Full_F

N
D

 fu
ll

0.0
83.0

166.0
249.0
332.0

N
D

 n
on

-f
ul

l

0.0
83.0

166.0
249.0
332.0

D
5 

fu
ll

0.0
24.5
49.0
73.5
98.0

D
5 

no
n-

fu
ll

0.0
24.5
49.0
73.5
98.0

D
7 

fu
ll

0.0
37.5
75.0

112.5
150.0

D
7 

no
n-

fu
ll

0.0
37.5
75.0

112.5
150.0

:P value<0.05
:P value<0.01**

*

N
or

m
al

iz
ed

 D
R

S
 a

bu
nd

an
ce

N
or

m
al

iz
ed

 D
R

S
 a

bu
nd

an
ce

N
or

m
al

iz
ed

 D
R

S
 a

bu
nd

an
ce

Figure 1 Nanopore DRS of RNA from SDX subjected to drought stress. A, Flowchart for analysis of epitranscriptome and proteome changes trig-
gered by drought stress using Nanopore DRS and TMT labeling. Nanopolish, PRAPI, and Nanom6A are three pipelines for analysis of long reads. B,
Heatmap showing Spearman’s correlation among ND, D5, and D7 samples for full-length and nonfull-length reads. C, Coverage of full-length and
nonfull-length reads along transcripts. D, Histogram showing the dynamics of the full-length read ratio during drought stress. E, Wiggle plot, histo-
gram, and RT-qPCR showing decreased full-length read ratio of DUF239 upon drought treatment. Significant difference was evaluated by t test
and presented with asterisk rating system (*P 5 0.05; **P 5 0.01). Total_F/Total_R and Full_F/Full_R are the primer positions. F, Scatter plot
showing differential full-length ratios upon drought treatment. G, Venn diagram showing overlap of genes with increased full-length read ratio in
D5 versus ND and D7 versus ND comparisons. H, Boxplot showing the ratio distribution for genes with differential full-length read ratios in ND,
D5, and D7 samples. The box limits represent 25th and 75th percentiles; center line, 50th percentiles; and whiskers, 10th and 90th percentiles. The
circle represents outlier value.
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(FLO-MIN106) after basecalling with Guppy (version 3.6.1;
Supplemental Table S1). After correction using LoRDEC
(Salmela and Rivals, 2014), 99.6% DRS reads were successfully
aligned to the P. trichocarpa version 3.0 genome using mini-
map2 (Li, 2018), suggesting the reliability of DRS reads.

Ratio of full-length transcripts decreases upon
drought treatment
The ratio of full-length reads and nonfull-length reads is di-
rectly related to the balance between RNA biosynthesis and
degradation. However, there are no reports on changes in
this ratio in response to abiotic stress because it is hard to
distinguish full-length reads from nonfull-length reads using
short-read sequence platforms. Long-read sequencing tech-
nology solves this problem by reflecting features of biological
RNA decay (Parker et al., 2020). Correlation analysis of both
full-length and nonfull-length categories revealed high corre-
lation between replicates (Figure 1B). With Reverse
Transcription Adapter (RTA) ligation from the SQK-RNA002
kit protocol, DRS only detects transcripts with poly(A) tails.
Thus, truncated reads starting from downstream of anno-
tated transcription start sites and ending at the cleavage
and polyadenylation sites show extreme 30-bias and are dis-
tinct from full-length reads (Figure 1C). The full-length reads
comprised about one-third of the total DRS reads in each
sample, and the percentage of full-length reads decreased
upon drought treatment (Figure 1D). For example, the full-
length read ratio (full-length reads/total reads) of
Potri.001G003800, a homolog of tRNA-splicing ligase
(Domain of unknown function, DUF239) that shows altered
expression during seed imbibition in Arabidopsis
(Nakabayashi et al., 2005), was decreased under drought
treatment compared with that under ND, which was vali-
dated by real time quantitative PCR (RT-qPCR) (Figure 1E).

We identified 546 and 2,004 genes (P5 0.005, Fisher’s ex-
act test) with decreased full-length read ratio in D5 versus
ND and D7 versus ND, respectively (Figure 1F; Supplemental
Table S2). To our surprise, we observed few genes with in-
creased full-length read ratio after drought treatment and
only identified nine genes with increased full-length read ra-
tio in both D5 versus ND and D7 versus ND comparisons
(Figure 1G; Supplemental Table S3). For example, STAY-
GREEN 1 (SGR1) has a crucial role in chlorophyll degradation
in Arabidopsis (Ono et al., 2019; Zhang et al., 2019a, 2019b,
2019c). The full-length read ratio of SGR1 in P. trichocarpa
was significantly increased under drought stress, which was
consistent with the results of validated RT-qPCR
(Supplemental Figure S1). Alteration of SGR1 might regulate
stress-induced chlorophyll degradation. The average full-
length read ratio was 35.6% in ND. Interestingly, genes with
increased full-length read ratios in D5 versus ND and D7
versus ND had very low full-length read ratios (520%) in
ND (Figure 1H). Genes with decreased full-length read ratios
in D5 versus ND and D7 versus ND showed a high full-
length read ratios (440%) in ND (Figure 1H).

Both endonuclease decay pathways and exonuclease decay
pathways regulate mRNA decay (Schoenberg and Maquat,
2012). We did not observe obvious differential expression of
50- to 30-exoribonucleases (XRN2, XRN3, and XRN4) upon
drought treatment (Supplemental Figure S2A). We also did
not detect any differentially expressed protein (DEP) of 50-
to 30-exoribonucleases (Supplemental Figure S2B), suggesting
that the decreased full-length read ratio might not be
caused by an alteration in exoribonuclease activity.

DEPs showed significant overlap with differentially
expressed genes upon drought stress
To create proteome profiles for ND, D5, and D7, we used
TMT-labeling technology with three biological repeats
(Figure 1A). A total of 86,904 peptide fragments correspond-
ing to a total of 9,872 proteins were identified. Proteins with
significant changes in abundance (P5 0.05) and greater
than 1.5-fold change were considered DEPs (Figure 2A).
Pairwise comparisons of ND, D5, and D7 samples led to the
identification of 802 DEPs in D5 versus ND (491 upregulated
and 311 downregulated) and 821 DEPs in D7 versus ND
(467 upregulated and 354 downregulated), respectively
(Supplemental Table S4). However, there was almost no dif-
ference in the number of DEPs (3 upregulated and 2 down-
regulated) between D5 and D7 (Figure 2, A and B), revealing
that changes in protein abundance caused by drought treat-
ment were already completed by the D5 stage.

To uncover the biological processes regulated in response
to drought stress, we performed a gene ontology (GO) en-
richment analysis of DEPs. Significantly enriched GO terms
among the 491 upregulated DEPs (D5 versus ND) were
“antioxidant activity” (GO:0016209, P = 0.004), “glutathione
peroxidase activity” (GO:0004602, P = 0), and “embryo devel-
opment” (GO:0009790, P = 0) (Figure 2C, left). For the 311
downregulated DEPs, significantly enriched GO terms in-
cluded “microtubule-based movement” (GO:0007018, P = 0),
“microtubule motor activity” (GO:0003777, P = 0), “negative
regulation of catalytic activity” (GO:0043086, P = 0.001),
“cellulose synthase activity” (GO:0016760, P = 0), and
“cellulose biosynthetic process” (GO:0030244, P = 0)
(Figure 2C, right), revealing that proteins related to cellulose
biosynthesis were downregulated in response to drought
stress. Among the downregulated proteins, we identified 22
associated with secondary cell wall genes: 7 cellulose syn-
thases, 11 hemicellulose synthases, and 4 lignin synthases
(Supplemental Table S5).

We further investigated “response to water deprivation”
terms and identified 48 DEPs, including 36 DEPs in both D5
versus ND and D7 versus ND comparisons (Supplemental
Table S6). In total, 81% of these DEPs were upregulated pro-
teins, including ABI5-binding protein, aldehyde dehydroge-
nase, NAC domain-containing protein, Late embryogenesis
abundant (LEA) family protein, CBL-interacting protein ki-
nase, lipid transfer protein, b-amylase, and raffinose synthase
family protein. NAC (Li et al., 2019) and LEA (Park et al.,
2003) are reported to be strongly induced by drought,
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consistent with our results. The eight proteins downregu-
lated during the drought response included PHE ammonia
lyase, chitinase protein, and CHASE domain-containing histi-
dine kinase protein.

PlantTFDB contains 428 annotated transcription factors
(TFs) in P. trichocarpa (Jin et al., 2017). Among these, we
identified 23 upregulated TFs and 4 downregulated TF pro-
teins under drought stress, which could be classified into 16
families including NAC, basic leucine zipper (bZIP), and ERF
(Supplemental Figures S3 and S4). A previous study revealed
that ABA-responsive element binding (AREB) protein

PtrAREB1-2 can bind to the promoter of PtrNAC genes to
enhance H3K9ac for the development of drought tolerance
(Li et al., 2019). We found that protein abundance of
PtrAREB1-2 (Potri.002G125400) and PtrAREB1-4
(Potri.014G028200) from the bZIP family was upregulated
under drought stress (Supplemental Figure S4, A and B).

ABA regulates guard cells in response to water depriva-
tion. A large number of TFs are also regulated by ABA
(Cutler et al., 2010). We identified 43 upregulated proteins
and 2 downregulated proteins associated with “abscisic acid
biosynthetic process” (GO:0009688), “abscisic acid metabolic
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Figure 2 Mass spectrometry-based proteomics of SDX during drought stress. A, Volcano plots showing DEPs for D5 versus ND, D7 versus ND, and
D5 versus D7, respectively. B, Heatmap of DEPs. Dark blue and light yellow represent high and low protein abundance, respectively. C, Pairwise
comparison of D5 versus ND showing enriched GO terms among upregulated (left) and downregulated (right) proteins, respectively. D and E,
Venn diagrams showing the overlap between DEPs and DEGs in D5 versus ND (D) and D7 versus ND (E).
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process” (GO:0009687), and “response to abscisic acid”
(GO:0009737) (Supplemental Table S7). There were more
upregulated ABA-related proteins than downregulated ABA-
related proteins in SDX, illustrating that the upregulated
ABA proteins might increase ABA levels in response to wa-
ter deprivation.

The association between mRNA and protein abundance
varies widely among different organisms, cell types, and
functions (Greenbaum et al., 2003; De Sousa Abreu et al.,
2009; Vogel et al., 2010; Schwanhäusser et al., 2011; Ponnala
et al., 2014). To investigate the consistency of the relation-
ship between protein abundance and mRNA level in re-
sponse to drought stress, we also identified differentially
expressed genes (DEGs) in different samples. We identified
2,904 upregulated genes and 2,937 downregulated genes in
D5 versus ND and 3,355 upregulated genes and 3,065 down-
regulated genes in D7 versus ND (Supplemental Table S8).
Among these DEGs, 165 and 176 DEGs were associated with
the “response to water deprivation” GO term in D5 and D7,
respectively (Supplemental Table S6). The percentage of
upregulated DEGs in this category was 74.55% (123/165)
and 76.70% (135/176) for D5 and D7, respectively.
Approximately 61.3% (301/491) and 68.2% (212/311) upre-
gulated and downregulated proteins were identified as dif-
ferentially expressed at the mRNA level in D5 versus ND
(Figure 2D). For the comparison of D7 versus ND, �64.9%
(303/467) and 62.1% (220/354) upregulated and downregu-
lated proteins were detected as differentially expressed at
the mRNA level (Figure 2E).

Association between protein abundance and mRNA
expression decreased in response to drought stress
Previous studies analyzed mRNA and protein abundance in
response to perturbation using RNA-Seq combined with pro-
teomics (Vogel and Marcotte, 2012; Ponnala et al., 2014).
Here, we took advantage of DRS and TMT-labeling technol-
ogy to investigate the Pearson’s correlation coefficient be-
tween mRNA expression and protein abundance (Rp) of full-
length and nonfull-length RNA during drought stress.
Expression of mRNA was normalized using reads per million
(RPM). TMT-labeled protein data were normalized using the
sum of the total intensity of every report ion channel be-
tween samples. The median log10(protein) was �2.9 between
samples (Supplemental Figure S5A), while the median
log2(RPM) of full-length and nonfull-length RNA was �4.4
and 4.5, respectively (Supplemental Figure S5, B and C). With
an increased threshold of normalized gene expression, the Rp
of both full-length and nonfull-length RNA decreased
(Figure 3, A and B). Our published PacBio Iso-Seq data
showed a similar trend to the DRS data from this study (Liu
et al., 2021a, 2021b, 2021c, 2021d, 2021e; Supplemental Figure
S6). Furthermore, we also observed a decreased association
between RNA and protein upon drought treatment, which
revealed divergent changes between RNA expression and pro-
tein abundance during drought stress (Figure 3, A and B).

To evaluate the Rp dynamics within different groups of
genes, we estimated the Rp of gene clusters according to
GO terms using full-length RNA (Supplemental Figure S7)
and nonfull-length RNA (Supplemental Figure S8), respec-
tively. For full-length RNA, the Rp of 83 GO terms revealed
a significant correlation (P5 0.05) between RNA reads and
protein abundance (Supplemental Figure S7; Supplemental
Table S9). For example, the “oxidoreductase activity” GO
term was associated with 206 genes in ND, and the correla-
tion between protein abundance and mRNA expression was
0.52. The “microtubule activity” GO term was associated
with 19 genes in ND, and the correlation between protein
abundance and mRNA expression was 0.53. Interestingly,
the Rp of “endoplasmic reticulum to Golgi vesicle-mediated
transport” in D5 and “structural molecule activity” in D7
was �–0.69 and –0.53, respectively. It will be interesting to
investigate whether these genes show distinct transcriptional
or translational regulation (Supplemental Figure S9). For
nonfull-length RNA, we found positive trends for Rp of 119
GO terms in the different samples (Supplemental Figure S8;
Supplemental Table S9); no GO terms showed a negative
correlation.

To compare the differences in Rp between full-length
RNA and nonfull-length RNA, we used the significant GO
terms for full-length and nonfull-length RNA for down-
stream analysis. Nonfull-length RNA had a higher Rp than
full-length RNA in ND (Figure 3C), D5 (Figure 3D), and D7
(Figure 3E), respectively. To further investigate changes in Rp
during drought stress, we compared overlapping GO terms
in ND, D5, and D7, which revealed that the Rp of six GO
terms was increased while that of 17 GO terms was de-
creased in full-length RNA (Figure 3F). Rp increased for
terms involved in cysteine-type peptidase activity, and Rp
decreased for terms associated with response to oxidative
stress (Figure 3F). For nonfull-length RNA, the Rp of five GO
terms increased while that of 34 GO terms decreased during
drought stress (Figure 3G). Rp increased for terms with func-
tions in protein glycosylation, and Rp decreased for terms
with functions in the response to oxidative stress and other
stresses (Figure 3G).

Dynamics of m6A under drought stress
To investigate m6A dynamics upon drought stress, we ana-
lyzed the DRS data using our previously described method
(Gao et al., 2021), which can detect RNA modification at
single-base resolution. We detected a total of 86,313, 41,623,
and 53,983 m6A sites associated with 13,069, 9,273, and
10,839 genes in ND, D5, and D7, respectively (Supplemental
Figure S10, A and B). Transcriptome analysis of the m6A
profiles revealed that m6A peaks were mainly distributed in
the coding sequence and 30-UTR in all samples (Figure 4, A
and B). N6-adenosine methyltransferase MT-A70-like gene
(MTA) is an RNA methyltransferase that enhances drought
tolerance by regulating the development of trichomes and
roots in poplar (Lu et al., 2020). Expression of PtrMTA was
slightly increased under drought stress (Supplemental Figure
S10C), with the protein level showing a similar trend
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(Supplemental Figure S10D). In addition to MTA, we found
that m6A readers (ECT2 and ECT8) were significantly upre-
gulated (P5 0.05, fold change 41.5) and an m6A eraser
(ALBH8B) was significantly downregulated (P5 0.05, exact
test for the negative binomial distribution) upon drought

stress, which was further validated by RT-qPCR experiments
(Supplemental Figure S11).

The average m6A ratio increased under drought stress
(Figure 4C). The m6A ratio of wood-formation genes was
higher in both D5 and D7 than in ND (Figure 4D) and was
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accompanied by decreased expression of mRNA (Figure 4E)
and protein (Figure 4F), suggesting that m6A may play roles
in repressing wood formation under stress. These wood-
formation genes included CESA9 (Potri.002G066600 and
Potri.005G194200, which function as cellulose synthase A9),
HCT (Potri.003G183900, involved in the lignin biosynthetic
process), BP1 (Potri.002G113300, functioning in xylem devel-
opment), and IRX10 (Potri.001G068100, functioning in sec-
ondary cell wall biogenesis).

Furthermore, we identified differentially expressed m6A
(DE m6A) sites. In total, 1,048 sites showed decreased m6A
and 775 sites showed increased m6A in D5 versus ND
(Figure 4G, left; Supplemental Table S10) while 1,295 sites
showed decreased m6A and 717 sites showed increased m6A
in D7 versus ND (Figure 4G, right; Supplemental Table S10)
using Fisher’s exact test (P5 0.05). For example, WLIM1
(Potri.014G015600) is a TF that functions in actin bundle

formation, and the m6A ratios of two m6A sites in WLIM1
increased under drought stress (Figure 4H). Genes exhibiting
increased m6A ratios were enriched in protein-related pro-
cess, RNA polyadenylation, and membrane coat functions
(Supplemental Figure S12, A and C); genes exhibiting de-
creased m6A ratios were enriched in response to water,
protein-related process, and metabolic process functions
(Supplemental Figure S12, B and D). In particular, we found
10 DE m6A sites in eight m6A readers among the list of DE
m6A sites (Supplemental Table S10).

We also integrated our transcriptome data (D5 versus ND
and D7 versus ND) to analyze the relationship between DE
m6A sites and gene expression. We identified 457 DEGs with
DE m6A sites in D5 versus ND (Figure 4I; Supplemental Figure
S13A; Supplemental Table S11). These were grouped in four
quadrants: Quadrant I, mUP-gUP, increased m6A ratio and
gene expression (53 genes); Quadrant II, mUP-gDN, increased
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m6A ratio and decreased gene expression (123 genes);
Quadrant III, mDN-gDN, decreased m6A ratio and gene ex-
pression (39 genes); Quadrant IV, mDN-gUP, decreased m6A
ratio and increased gene expression (242 genes). Quadrants II
and IV had more genes than Quadrants I and III, which is
consistent with m6A methylation generally being negatively
associated with transcript abundance (Zhou et al., 2019). In
the mUP-gDN category (Figure 4I, Quadrant II), the expres-
sion of 13 wood-formation genes was decreased by drought
stress and the m6A ratio was increased. NAC genes present
differential expression during drought stress (Li et al., 2019).
We found that the expression of two NAC domain genes and
one WRKY gene was downregulated while m6A modification
was increased by drought stress. LEA (Potri.005G122400) and
Dehydrin (Potri.013G062300) in the mDN-gUP category
(Figure 4I, Quadrant IV) encode proteins that protect cells
from abiotic stress and reduce the formation of reactive oxy-
gen species, respectively. Senescence-associated genes
(Potri.008G075200, Potri.001G112600, and Potri.004G174100)
were also found in the mDN-gUP category.

Furthermore, we explored the connection between m6A
ratio and protein abundance, observing a trend similar to
that of gene expression (Figure 4J; Supplemental Figure 13B;
Supplemental Table S11). In the mUP-pDN category
(Figure 4J, Quadrant II), five wood-formation genes including
CELLULOSE SYNTHASE-INTERACTIVE PROTEIN 1 (CSI1,
Potri.005G080100) showed an increased m6A ratio and de-
creased protein abundance. A NAC domain protein
(Potri.017G016700) and an RNA-binding family protein
(Potri.006G015700) showed the same trend as wood-
formation proteins. In the mDN-pUP category (Figure 4J,
Quadrant IV), there were several stress-related genes, includ-
ing dehydrin (Potri.013G062300), ERD7 (Potri.004G174100),
and CIPK3 protein kinase (Potri.001G222600). ERD7
(Potri.004G174100) is an early-responsive gene to
dehydration.

Recently, drought stress-responsive genes were shown to
exhibit differential H3K9ac (Li et al., 2019), providing
H3K9ac data for investigating the association between m6A
and H3K9ac. Thus, we integrated the m6A ratio and H3K9ac
level in SDX during drought stress (Figure 4K; Supplemental
Figure S13C; Supplemental Table S11), which presented a
similar trend to gene expression (Figure 4I) and protein
abundance (Figure 4J). Nine wood-formation genes
(Figure 4K, Quadrant II) and several translation-related genes
including ribosome protein genes L34e (Potri.017G084500)
and S8e (Potri.001G360500; Figure 4K, Quadrant IV) were
identified in the mUP-hDN and mDN-hUP groups,
respectively.

Transgenic expression of human RNA demethylase fat
mass and obesity associated gene (FTO) induces transcrip-
tional activation and increased drought tolerance in rice (O.
sativa; Yu et al., 2021). However, it remains unknown
whether m6A regulates the full-length read ratio (Figure 1D).
Therefore, we used a DRS dataset of mutants defective in
m6A writer, including vir-1 from Arabidopsis (Parker et al.,

2020) and shMETTL3 from human HEK293T cells (Lorenz
et al., 2020), to investigate the dynamics of full-length read
ratio. Both vir-1 and shMETTL3 mutants showed an in-
creased full-length read ratio (Supplemental Figure S14), sug-
gesting a preference of m6A to promote RNA degradation.
GO enrichment analysis of vir-1 genes with increased full-
length ratio showed that their functions were enriched in
photosynthesis and responses to different stresses
(Supplemental Figure S15).

Drought stress promotes the usage of distal
poly(A) sites
Recent studies showed that the m6A reader CPSF30-L affects
nitrate signaling by controlling APA (Hou et al., 2021) and
recognizes m6A-modified far-upstream element signals to
control poly(A) site choice in Arabidopsis (Song et al., 2021).
We observed an m6A peak in the 30-UTR of CPSF30-L based
on our recent MeRIP-seq data (Supplemental Figure S16; Gao
et al., 2021). APA is extensively involved in plant stress
responses (Ye et al., 2019; Chakrabarti et al., 2020). CPSF30 is
a core component of the CPSF complex and controls APA
site choices genome wide (Thomas et al., 2012). We found
that expression of Ptr-CPSF30 (Potri.001G357800) was upregu-
lated (D5 versus ND: P = 0.05, D7 versus ND: P = 0.006) dur-
ing drought stress (Figure 5A). We further investigated the
poly(A) site usage shift of Ptr-CPSF30 during drought stress;
the proximal poly(A) site usage ratio (proximal/distal and
proximal, PPR) of Ptr-CPSF30 was downregulated under
drought stress, which was further validated by RT-qPCR
(Figure 5A). A previous study showed that the most common
motif associated with preferred cleavage site is AAUAAA and
also identified another U-rich motif, UUGUUU, in Arabidopsis
(Sherstnev et al., 2012). In this study, we found that the
poly(A) signal ratio of AAUAAA and 1-nt variations was
slightly increased (from 39.52% in ND to 41.27% in D7;
Figure 5B), while that of UCGUUU and 1-nt variations was
slightly decreased, upon drought stress (Figure 5C).

To identify poly(A) site usage upon drought stress, we
quantified poly(A) site usage using Fisher’s test (P5 0.005).
We identified 163 genes with increased PPR and 483 genes
with decreased PPR in D5 versus ND (Figure 5D, left;
Supplemental Table S12) and 228 genes with increased PPR
and 461 genes with decreased PPR in D7 versus ND
(Figure 5D, right; Supplemental Table S12), revealing that
distal poly(A) site usage increased upon drought stress. For
example, Ptr-IBR5 (Potri.014G160500), a key component of
the leaf-serration regulatory machinery (Kong et al., 2019),
preferred to use the distal poly(A) site under drought stress
(Figure 5E). Among these differential APA events, we investi-
gated genes related to the “response to water deprivation”
GO term, comprising 10 genes exhibiting differential APA in
D5 versus ND (Supplemental Table S6) and 17 genes exhib-
iting differential APA in D7 versus ND. We then further ex-
plored the functions of genes with differential APA induced
by drought. Genes with increased PPR were enriched in
“cellulose synthase activity” (P-value = 0.002) and “cellulose
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Figure 5 Dynamics of poly(A) site usage in response to drought stress. A, Histogram showing increased expression and decreased PPR of CPSF30
validated by RT-qPCR under drought treatment. Significant difference was evaluated by t test and presented with asterisk rating system (*P 5
0.05; **P 5 0.01). B and C, Histograms showing the percentage of AAUAAA (and 1-nt variations) (B) and UCGUUU (and 1-nt variations) (C) hex-
amer motifs under drought stress. D, Scatter plots showing changes in PPR in response to drought stress. E, Wiggle plot and histogram showing
decreased PPR in IBR5 (Potri.014G160500). F/H, GO enrichment analysis of genes exhibiting increased PPR (F) and decreased PPR (H), respectively.
G/I, Wiggle plots, and histograms showing CESA7 and VAB2 as examples of genes with increased PPR (G) and decreased PPR (I).
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biosynthetic process” (P = 0.006; Figure 5F), such as Ptr-
CESA7 (Potri.006G181900 and Potri.018G103900) (Figure 5G;
Supplemental Figure S17). Genes with decreased PPR were
enriched in “protein dephosphorylation” (P = 0) and
“protein tyrosine/serine/threonine phosphatase activity”
(P = 0; Figure 5H), such as Ptr-IBR5 (Potri.014G160500;
Figure 5E) and Ptr-VAB2 (Potri.004G177500; Figure 5I).

APA can generate different isoforms with different 30-ter-
mini including or excluding microRNA sites (Zhang et al.,
2021). We, therefore, extracted the alternative regions from
the proximal poly(A) to the distal poly(A) sites for genes
with decreased PPR to predict miRNA targets using
psRNATarget (Dai et al., 2018). We identified 18 genes with
poly(A) switch regions including miRNA target sites
(Supplemental Table S13). For example, CesA8-B
(Potri.004G059600) preferred to use the distal poly(A) site
to create a long isoform including the miR172h-5p target
site upon drought treatment. It will be interesting to investi-
gate whether the long isoform of this cellulose synthase is
regulated by miRNA cleavage or translation inhibition of
miR172. APA can also generate different isoforms with
poly(A) switch regions including or excluding m6A sites. We
identified 465 and 158 differential poly(A) switch regions in-
cluding m6A sites in D5 versus ND and D7 versus ND, re-
spectively. m6A sites were obviously enriched upstream of
proximal poly(A) sites (Supplemental Figure S18).

Differential PAL is induced by drought stress
During nuclear pre-mRNA processing, a poly(A) tail is added
to the 30-end of mature RNA transcripts (Bardwell et al.,
1990; Eckmann et al., 2011). PAL affects mRNA stability,
translational efficiency, and transfer of RNA from the nu-
cleus to the cytoplasm, and distinguishes between stable
RNAs and unstable RNAs (Huang and Carmichael, 1996;
Meyer et al., 2004; Beilharz and Preiss, 2007; Subtelny et al.,
2014; Lima et al., 2017; Niazi et al., 2021). Taking advantage
of the full-length poly(A) tail sequences produced by DRS,
we determined that the median PAL in ND, D5, and D7
samples was 79, 80, and 75 nt, respectively (Figure 6A;
Supplemental Table S14). The 10 GO terms with the longest
median PAL possessed functions including “transcription
coregulator activity” and “response to hormone,” while the
10 GO terms with the shortest PAL functioned in transla-
tion and ribosome composition (Figure 6B; Supplemental
Figure S19). The five gene function groups showing the
greatest increase in PAL during drought stress (D54ND)
were all associated with protein process, while enzyme activ-
ity and response to hormones were the main functions in
the five groups showing the greatest decrease in PAL during
drought stress (D55ND; Figure 6C).

A positive association between intron retention (IR) and
PAL distribution is reported for Caenorhabditis elegans
(Roach et al., 2020). In this study, we also found a similar
trend of transcripts with IR possessing longer poly(A) tails
(Figure 6D), and reads with retained introns, whether full-
length or nonfull length, always had a longer PAL than fully
spliced reads (Supplemental Figure S20).

Furthermore, we investigated differential PAL in response
to drought stress. There were 150 genes with longer PAL
and 118 genes with shorter PAL in D5 versus ND (Figure 6E;
Supplemental Table S15). Genes with longer PAL in D5 were
enriched in transcription activity, RNA polyadenylation, and
translation-related events (Supplemental Figure S21), while
genes with shorter PAL functioned in gmp synthase activity
and the gmp biosynthetic process, among others
(Supplemental Figure S21). In D7 versus ND, we identified
146 genes with longer PAL and 143 genes with shorter PAL
(Figure 6F; Supplemental Table S15). Genes with longer PAL
were enriched in “NADH dehydrogenase activity,”
“translation,” and “RNA polyadenylation” GO categories
(Supplemental Figure S22). Shorter genes were associated
with transcription activator activity and ATP-dependent
chromatin remodeling (Supplemental Figure S22). For exam-
ple, the median PAL of Potri.008G102500 [encoding poly(A)
polymerase], increased by 53 and 61 nt in D5 and D7 com-
pared with ND, respectively (Figure 6G). A similar trend was
observed for Potri.001G152200, Potri.001G169900,
Potri.018G057200, and Potri.018G119200 (Supplemental
Figure S23A). Decreased PAL during drought stress was ob-
served in some genes including Potri.013G034800
(Figure 6H), Potri.016G023100, Potri.016G037400,
Potri.008G172400, and Potri.010G252000 (Supplemental
Figure S23B). Among these differential PAL events, we inves-
tigated genes related to the ‘response to water deprivation”
GO term and identified three and eight genes exhibiting dif-
ferential PAL in D5 versus ND and D7 versus ND, respec-
tively (Supplemental Table S6).

PAL is associated with transcript level and
translation
A previous study showed that the majority of highly
expressed transcripts possessed short PAL to accommodate
a single poly(A)-binding protein and undergo active degra-
dation (Lima et al., 2017). We divided genes into three cate-
gories according to transcript abundance: high, medium,
and low abundance (Figure 7, A–C; Supplemental Figure
S24). Comparison of PALs among the three categories
revealed that highly expressed genes tend to have short
PAL, while genes with low expression show a preference for
long PAL, which was in line with data for C. elegans (Lima
et al., 2017). The percentage of different PAL (long, medium,
and short) for genes highly expressed in ND did not present
an obvious change in D5 or D7 (Supplemental Figure S25).
However, for genes with medium transcript abundance in
ND, the percentage of long PAL increased in both D5 and
D7; for genes with low transcript abundance in ND, the per-
centage of long PAL only increased in D7 (Supplemental
Figure S25).

Research has revealed that PAL is associated with transla-
tion in mouse GV oocytes (Liu et al., 2019), and that tran-
scripts with optimal codons shape translational efficiency
(Presnyak et al., 2015; Bazzini et al., 2016; Radhakrishnan
et al., 2016; Lima et al., 2017). This inspired us to explore the
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association between PAL and translational efficiency in P. tri-
chocarpa. We found that highly expressed genes tended to
be enriched for optimal codons and show a strong bias to-
ward short PAL in ND, D5, and D7, respectively (Figure 7,
D–F). Using cumulative fraction analysis, we observed signifi-
cant differences in the distribution of PAL (Figure 7G),
mRNA abundance (Figure 7H), and protein abundance
(Figure 7I) for transcripts with low, medium, and high levels
of optimal codons. However, there was no substantial asso-
ciation between PAL and protein abundance in either ND
or drought treatments (Figure 7, J–L). Taken together, these

results indicate that highly expressed transcripts have a
strong bias toward short PAL.

Exonuclease-mediated poly(A) + RNA degradation begins
with removal of the poly(A) tail by deadenylase complexes
and a decapping complex (Dave and Chao, 2020). In this
study, we observed that the PAL of full-length reads was
longer than that of nonfull-length reads (Supplemental
Figure S26). Interestingly, transcripts exhibiting IR also had
longer PAL, consistent with results in humans and C. elegans
(Workman et al., 2019; Roach et al., 2020). Recent studies
found that the majority of nuclear transcripts have longer
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Figure 6 Differential PAL in response to drought stress. A, Violin plot showing median PAL in ND, D5, and D7. Dashed horizontal lines presenting
PAL of 80 nt. B, Box plot showing 10 GO terms with the longest PAL (orange) and 10 GO terms with the shortest PAL (blue) in ND. The box limits
represent 25th and 75th percentiles; center line, 50th percentiles; and whiskers, 10th and 90th percentiles. Dashed horizontal lines presenting PAL
of 80 nt. C, Box plot showing gene function groups presenting the greatest increase (left) and decrease in PAL (right) in D5 versus ND (top) and
D7 versus ND (bottom). A, represents “kinase activity”; B, “nucleotide-excision repair”; C, “protein deubiquitination”; D, “protein metabolic proc-
ess”; E, “G protein-coupled receptor signaling pathway”; F, “response to hormone”; G, “N-acetyltransferase activity”; H, “isoprenoid biosynthetic
process”; I, “protein serine/threonine kinase activity”; J, “nucleobase-containing compound metabolic process”; K, “metal ion transmembrane trans-
porter activity”; L, “large ribosomal subunit”; M, “protein phosphatase type 2A regulator activity”; N, “protein phosphatase type 2A complex”; O
represents “microtubule-based movement”; P, “microtubule motor activity”; Q, “kinesin complex”. Dashed horizontal lines presenting PAL of 80
nt. D, Box plot showing PAL distribution for fully spliced (no_IR) and IR transcripts. The dash lines representing the median PAL in no_IR and IR
transcripts. E and F, Scatter plots showing differential PAL for D5 versus ND (E) and D7 versus ND (F). G and H, Box plots showing drought stress-
induced longer PAL (G) and shorter PAL (H) for Potri.008G102500 and Potri.013G034800, respectively.
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Figure 7 Highly expressed transcripts tend to have a short PAL. A–C, PAL distribution of genes in pools with different expression levels in ND (A),
D5 (B), and D7 (C). Highest, medium, and lowest represent the 500 most highly expressed genes, the 500 genes with closest to median expression,
and the 500 genes with lowest expression, respectively. P-value was calculated by Mann–Whitney U rank test. D–F, Heat maps representing the
association between the frequency of optimal codons (Fop) and PAL in ND (D), D5 (E), and D7 (F). G–I, Cumulative sum plots showing association
of translational efficiency (codon optimization) with PAL (G), mRNA abundance (H), and protein abundance (I). J–L, PAL distribution of genes in
pools with different protein levels in ND (J), D5 (K), and D7 (L). P-value was calculated by Mann–Whitney U rank test.
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poly(A) tails than cytoplasmic transcripts (Liu et al., 2021a,
2021b, 2021c, 2021d, 2021e). Thus, IR or incompletely
spliced RNAs might contribute to longer poly(A) tails in nu-
clear RNAs. Finally, we investigated the relationship between
PAL dynamics and m6A modification. We classified tran-
scripts into m6A-modified and unmodified transcripts for
comparison of median PAL between these two categories.
The number of genes exhibiting PALmod4 PALunmod was
approximately twice that displaying PALmod5 PALunmod

(Supplemental Figure S27), illustrating that m6A-modified
transcripts tend to have longer PAL, which is consistent
with MePAIso-seq2 results in mouse (Liu et al., 2021a,
2021b, 2021c, 2021d, 2021e).

Discussion
DRS sequencing technology has been used for predicting
microRNA cleavage sites, suggesting that DRS reads can re-
flect RNA decay (Parker et al., 2020). In this study, we found
that the full-length read ratio decreased in response to
drought (Figure 8, Module I; Figure 1D). We did not observe
differentially expressed exoribonucleases involved in either
50–30 or 30–50 decay upon drought treatment. PAL is related
to mRNA stability (Eckmann et al., 2011; Weill et al., 2012;
Liu et al., 2021a, 2021b, 2021c, 2021d, 2021e). Here, we ob-
served that the PAL of full-length reads was longer than
that of nonfull-length reads (Supplemental Figure S26).
Future work should focus on other ribonucleolytic activities
influencing mRNA decay, such as shortening of the poly(A)
tail through deadenylation (Figure 8, Module IV). RNA decay
is triggered by deadenylation, which is directed by adenine/
uridine-rich elements (AREs) in the 30-UTR (Chen and Shyu,
2011). It will be interesting to investigate whether ARE-
mediated decay is regulated by APA (Figure 8, Module III),
generating isoforms with distinct AREs.

In addition to deadenylation followed by 50–30 and 30–50

decay, several studies have revealed that m6A regulates
steady-state levels of mRNA. A study in Arabidopsis demon-
strates that m6A sites act as a mark to affect the stability of
transcripts encoding salt response proteins (Anderson et al.,
2018). Disruption of m6A methyltransferase FIONA1 reduces
m6A, leading to slower degradation of PIF4, CRY2, and CO
transcripts (Wang et al., 2022). Loss-of-function of m6A
demethylase ALKBH10B affects floral transition because in-
creased m6A of FT, SP3, and SPL9 accelerates mRNA decay
of these transcripts in Arabidopsis (Duan et al., 2017). We
also observed increased full-length read ratios in mutants of
m6A writer components including shMETTL3 and vir-1
(Supplemental Figure S14), suggesting that m6A promotes
mRNA decay. Interestingly, three m6A readers,
Potri.008G100200, Potri.003G222700, and Potri.014G001000,
showed significantly (P5 0.05, exact test) decreased full-
length read ratios under drought stress (Figure 8, Module II;
Supplemental Table S2). However, we did not observe this
trend for m6A methyltransferase or demethylase.

In this study, we found that the average m6A ratio and
that of wood-formation genes increased under drought stress

(Figure 4, C and D), which was accompanied by reduced
mRNA and abundance of proteins including 7 cellulose syn-
thases, 11 hemicellulose synthases, and 4 lignin synthases
(Figures 4, E, F, and 8; Supplemental Table S5). Thus, we infer
that alteration of m6A methylation regulatory factors, such as
PtrMTA (Supplemental Figure S10C) and PtrALKBH8B
(Supplemental Figure S11), cause an increase in m6A, which
promotes mRNA degradation and represses protein produc-
tion from secondary cell wall genes to reduce ATP consump-
tion for better survival under drought stress (Figure 8,
Module I versus Module II). Downregulation of wood-
formation genes upon drought is in sharp contrast to
upregulation of 43 ABA-related proteins involved in the ABA
biosynthetic process, ABA metabolic process, and response to
ABA (Figure 8; Supplemental Table S7). As expected, ABA-
related proteins were upregulated because of the expression
of stress-responsive genes is regulated by ABA during plant
abiotic and biotic stress (Cutler et al., 2010).

mRNA–protein associations have revealed that �60% of
variation in protein concentration cannot be explained by
mRNA abundance alone (Vogel and Marcotte, 2012). In this
study, we also found modest Rp (550%), and mRNA–pro-
tein correlations were decreased in both D5 and D7 com-
pared with ND (Figure 3, A and B), suggesting that
regulation of protein translation is far more complex under
drought. The lack of strong correlation between full-length
RNAs and proteins can be partly explained by posttranscrip-
tional regulation, such as m6A, APA, and PAL (Figure 8). It is
clear from previous studies that protein biosynthesis and
cap-independent translation initiation is promoted by two
well-characterized m6A readers, YTHDF1 (Wang et al., 2015)
and YTHDF2 (Zhou et al., 2015), respectively. In this study,
we found increased expression of three m6A readers in re-
sponse to drought stress (Supplemental Figure S11).
However, it remains unclear whether m6A readers influence
protein biosynthesis upon drought in P. trichocarpa.

Recent technological advances in Nanopore DRS provide
an unprecedented opportunity for distinguishing full-length
and nonfull-length RNAs. We empirically assumed that full-
length RNAs were the main contributors to protein concen-
trations. Surprisingly, we found that the Rp of nonfull-length
RNA was always higher than that of full-length RNA based
on genome-scale measurements of DRS-based RNA and MS-
based protein levels. Although the mechanism remains
unclear, we summarize several potential explanations for the
lack of association between full-length RNA and protein
abundance, which should be explored in the future. First,
mRNAs and proteins have different turnovers associated
with regulation by degradation. The lifetime for mRNA and
protein is minutes and hours, respectively (Payne, 2015).
After translation, full-length RNAs are rapidly degraded into
nonfull-length RNAs. Thus, proteins are more stable than
RNAs, which might explain why we always observed a
higher Rp for nonfull-length RNA than for full-length RNA.
The correlation between RNA and protein can be more ac-
curately quantified through intensive time-course
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measurements based on mRNA–protein time series.
Specifically, future correlation analysis should combine tran-
scription and translation rates with mRNA and protein deg-
radation rates. Second, the delay between transcription of
full-length RNA and translation of protein can cause a tem-
poral delay in protein biosynthesis during drought stress
since the translation of full-length RNAs takes some time
(Liu et al., 2016a). Third, not all full-length RNAs are trans-
lated. Future work should focus on identifying full-length
RNAs bound by ribosomes using global ribosome profiling-
based methods (Ingolia, 2014). Such studies will reveal
whether ribosome-engaged full-length RNAs correlate better
with protein level.

In rice, �48% of expressed genes use alternative polyade-
nylation (APA) to generate transcriptomic and proteomic
diversity (Fu et al., 2016). In particular, APA is involved in
stress-responsive dynamics in rice (Ye et al., 2019). In this
study, we directly detected poly(A) usage shifts during
drought stress using Nanopore DRS, which offers a great ad-
vantage over other methods for the identification of APA
dynamics induced by drought. We identified a global in-
crease in distal poly(A) site usage in drought-treated SDX,
with genes exhibiting drought-responsive APA dynamics
mostly functioning in cellulose synthase activity and

protein-related activity. CPSF30 regulates poly(A) site choice
of most transcripts in Arabidopsis (Chakrabarti and Hunt,
2015), and recent studies show that the CPSF30-L isoform
regulates APA globally and has a slight preference for distal
poly(A) sites (Hou et al., 2021; Song et al., 2021). In this
study, we found that expression of Ptr-CPSF30 was upregu-
lated and exhibited a shift to the distal poly(A) site upon
drought treatment. It will be interesting to investigate
whether Ptr-CPSF30 is involved in global poly(A) switching
under drought treatment. The mutant of VIR promotes
lengthening of the 30-UTR of ATAF1, GI, and GSTU17 tran-
scripts via APA (Hu et al., 2021). Hypomethylated sites in
mutants of the m6A methyltransferase FIONA1 are associ-
ated with APA shifting to usage of proximal poly(A) sites
(Xu et al., 2022). Furthermore, we found an m6A peak/site
in the 30-UTR of CPSF30-L (Supplemental Figure S16). It will
be interesting to investigate the functional regulation of
these m6A sites in the 30-UTR, which might reflect the inter-
play between RNA modification and polyadenylation
(Figure 8, Module II versus Module III).

Nanopore DRS and RT-qPCR validation revealed several
significant differences in m6A-related genes including ECT2,
ECT8, ALKBH8B, and CPSF30 in response to drought stress.
Future work to explore dynamic binding sites of these
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Module III: Drought stress increases distal poly(A) site usage. Module IV: Drought stress increases PAL. The four modules are connected to each
other. For example, PAL (Module IV) and m6A (Module II) might regulate full-length read ratio (Module I). APA (Module III) might interplay with
m6A (Module II) via CPSF30, which can generate both m6A reader and polyadenylation factor.

Epitranscriptome and proteome under drought stress PLANT PHYSIOLOGY 2022: 190; 459–479 | 473

https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiac272#supplementary-data


erasers and readers under stress will provide further insights
into the drought-regulated epitranscriptome. Toward this
goal, recently developed approaches such as formaldehyde
cross-linking and immunoprecipitation, which was devel-
oped for identifying binding sites on transcripts targeted by
ECT2 in Arabidopsis (Wei et al., 2018a, 2018b), and
HyperTRIBE, adapted to identify targets of m6A reader pro-
teins, will be of great use in furthering our understanding of
the drought-regulated epitranscriptome (Arribas-Hernandez
et al., 2021; ZHou et al., 2021).

In summary, our study provides a comprehensive profile
of epitranscriptome and proteome changes triggered by
drought stress in P. trichocarpa SDX. Under drought treat-
ment, the full-length read ratio decreases and m6A stimu-
lates RNA degradation in cellulose- and lignin-related genes.
Moreover, drought stress promotes a shift to distal poly(A)
site usage in many genes, including CPSF30. Finally, PAL is
related to the ratio of full-length reads and m6A-modifica-
tion. These findings greatly expand our understanding of the
effects of drought on posttranscriptional aspects of gene
expression.

Materials and methods

Drought treatment and sample collection
Poplar (P. trichocarpa) plants were grown in a 22�C–25�C
greenhouse and subjected to drought treatment as de-
scribed previously (Li et al., 2019; Gao et al., 2021). In short,
P. trichocarpa plants were divided into three groups: control
(ND), D5, and D7. SDX tissues were collected directly into
liquid nitrogen and stored at –80�C for DRS and liquid
chromatography-tandem mass spectrometer (LC-MS/MS).

Library construction and analysis for Nanopore DRS
For ND, D5, and D7 samples, total RNA was extracted using
an RNAprep Pure Kit (polysaccharides and polyphenolics-
rich) (Code no. DP441, Tiangen Co. Ltd, Beijing, China) fol-
lowing the manufacturer’s instructions and treated with
DNase I to remove DNA. Libraries for DRS were prepared
using the Oxford Nanopore Technologies SQK-RNA002 kit
protocol. In brief, poly(A) + RNA was isolated using a
Dynabeads mRNA purification kit (Thermo Fisher Scientific,
Waltham, MA, USA; 61006) and ligated to Nanopore RTA
adapter; first-strand cDNA was synthesized using
SuperScript III reverse transcriptase (Thermo Fisher;
18080093) and ligated to RNA adapter (RMX). A total of 75-
lL library was loaded onto the flow cell (Gao et al., 2021).
Six libraries (two biological repeats for ND, N5, and N7)
were constructed and run on a MinION flow cell (FLO-
MIN106) independently. Details of DRS libraries and read
statistics are provided in Supplemental Table S1. DRS raw
data was analyzed using Guppy (v3.6.1) with default param-
eters to generate FASTQ, which was then converted to
FASTA format and corrected using LoRDEC (Salmela and
Rivals, 2014) with Illumina short reads (PRJNA315705; Li
et al., 2019).

Estimation of full-length and nonfull-length reads
Full-length reads were identified among Nanopore DRS data
using a previously described method with minor modifica-
tions (Roach et al., 2020). Annotated translation start sites
were used as a standard for estimating the completeness of
long reads. The first 20 bp were considered error sites to
avoid sequence bias at the 50-end. Reads were treated as full
length or nonfull length according to whether their 50-ends
fell within ±20 of an annotated transcription start site. The
full-length read ratio for each gene was calculated using the
following formula: number of full-length reads/(number of
full-length + nonfull-length reads). Differential full-length
read ratio (ND versus D5, ND versus D7) for each gene was
identified using the Fisher’s test based on the number of
full-length reads and nonfull-length reads using P5 0.005 as
the cutoff.

Identification of DEGs
Corrected DRS reads were aligned to the P. trichocarpa v3.0
genome using minimap2 (version 2.10) (Li, 2018) with –sec-
ondary=no -ax splice -uf -k14 -t 40 parameters. BAM format
files were then converted to bed12 format using BEDTools
with the bamtobed -bed12 -split option (Quinlan and Hall,
2010). Reads corresponding to each gene were called using
BEDTools with intersect -wo -a -b.

DEGs in ND versus D5 and ND versus D7 comparisons
were identified using edgeR (Robinson et al., 2010) with fold
change 42 and P5 0.005 as a cutoff. GO enrichment
analysis of DEGs was performed with the Poplar Gene Web
Server (Liu et al., 2016b) using the Chi-square statistical test
and the Hochberg FDR multi-test adjustment method; the
significance level was false discovery rate (FDR)5 0.05.

Identification of DE m6A
m6A sites were identified using the published Nanom6A
(Gao et al., 2021) pipeline with default parameters, and the
m6A ratio for each site in each gene was calculated using
the following formula: number of modified reads/(number
of modified reads + number of unmodified reads). Fisher’s
extract test was used to identify differential m6A sites be-
tween ND and drought treatments using the number of
m6A-modified and unmodified reads. P 5 0.05 and differen-
tial m6A ratio 40.1 were used to identify DE m6A sites.

RT-qPCR validation
Total RNA was extracted using an RNAprep Pure Kit (poly-
saccharides and polyphenolics-rich) (Tiangen; no. DP441) fol-
lowing the manufacturer’s instructions and treated with
DNase I to remove DNA. Total RNA (1 lg) from each sam-
ple was reverse transcribed into cDNA using a PrimeScript
RT reagent Kit with gDNA Eraser (TaKaRa, Shiga, Japan;
RR047A) for validation of the m6A functional factors. Oligo
(dT) primer was used for validating the full-length read ra-
tios of DUF239 and SGR1, and the APA of CPSF30, according
to the protocol of the HiScript II 1st Strand cDNA Synthesis
Kit ( + gDNA wiper) (Vazyme, Nanjing, China; R212-01). All
cDNAs were diluted 10� , and 1–2 lL of 10� cDNA was
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used as template in a 20-lL RT-qPCR system. EF1a and 18S
rRNA were used as reference genes. RT-qPCR was performed
using Hieff qPCR SYBR Green Master Mix (YEASEN,
Shanghai, China; 11202ES08) on an Agilent M � 3005P Real-
Time PCR System, following the manufacturers’ instructions.
All RT-qPCR primers are detailed in Supplemental Table S16
and Supplemental Figure S28. For RT-qPCR analysis, expres-
sion relative to that under ND was firstly calculated using
DDCt and then using the full-length read ratio approxi-
mately equal to full-length read expression divided by total
read expression; PPR relative expression was obtained by
proximal/(proximal + distal). Lastly, an F.TEST was per-
formed, and T.TEST was used to evaluate significant differ-
ence (*P5 0.05).

Identification of differentially cleaved poly(A) sites
The 30-positions of mapped individual reads were obtained
and allocated into 25-nt poly(A) site windows (PAWs). The
depth of PAWs was calculated using in-house python
scripts. The two most abundant PAWs were retained for
identifying differentially cleaved poly(A) sites using Fisher’s
exact test with P5 0.005 as the cutoff. A proximal poly(A)
usage ratio of 410% was considered as a differential APA
event.

Identification of differential PAL
PAL of individual reads was calculated using Nanopolish
(version 0.11.1; Workman et al., 2019). Differential PAL was
identified using edgeR (Robinson et al., 2010). Fold change
41.5 and P5 0.05 between ND and drought treatments
were considered to represent differential PAL.

GO enrichment and heatmap
The Poplar Gene Web Server (Liu et al., 2016b) was used for
GO enrichment analysis using the Chi-square statistical test
and the Hochberg FDR multi-test adjustment method with
FDR5 0.05 as a cutoff. Heatmaps were plotted using
TBtools (Chen et al., 2020).

Protein extraction, digestion, and TMT labeling
Fresh SDX (0.3 g; three biological repeats for ND, N5, and
N7) was ground in liquid nitrogen and suspended in 1-mL
lysis buffer (10-mM Tris–HCl (pH 8.0), 5-mM EDTA, 1%
(w/v), sodium dodecylsulfate (SDS), 8-M urea, and 20-mM
dithiothreitol). Samples were vortexed and then incu-
bated on ice for 30 min. After incubation at 4�C for 2 h
with 20g, the lysate was centrifuged at 15,000g for 30 min
at 4�C. The supernatant was aspirated to a new tube and
centrifuged again for 15 min. The supernatant was then
transferred to another new tube without touching any
impurities then precipitated overnight at –20�C using six
volumes of 10% (v/v) TCA/acetone (10% trichloroacetic
acid dissolved in acetone). After centrifugation at 15,000g
for 15 min at 4�C, pellets were washed 2 times with pre-
cooled acetone (flushed repeatedly using a pipette tip
and gently poked several times). The supernatant was
then removed, and pellets were air-dried for 2–10 min.

Protein samples were dissolved in buffer (8-M urea, 25�
Cocktail (Thermo Scientific; A32963), 100-mM Tris–HCl,
pH 8.0) on ice, centrifuged 15,000g for 15 min at 4�C, and
the supernatant was transferred to a new tube. The con-
centration of purified proteins was measured by bicincho-
ninic acid (BCA)protein assay (Thermo Fisher Scientific,
Waltham, MA, USA) according to the manufacturer’s
instructions.

A total of 100 lg of each sample (three biological repeats
for ND, N5, and N7) was digested using a filter-aided sample
preparation procedure with minor modifications
(Wi�sniewski et al., 2009). Briefly, several volumes of 8-M urea
were added to each sample to bring the final concentration
of urea to 44 M; samples were then mixed with 1-M
dithiothreitol to a final concentration of 20 mM and incu-
bated at 37�C for 1 h. Next, 1-M iodoacetamide was added
to a final concentration of 50–60 mM, incubated at room
temperature in darkness for an additional 30 min, and cen-
trifuged at 12,000g for 10 min. Subsequently, 100 lL 8-M
urea was added, and samples were centrifuged again at
12,000g for 10 min; this step was repeated 2 times. A total
of 100 lL 50-mM ammonium bicarbonate (ABC) or triethy-
lammonium bicarbonate (TEAB) was added, and samples
were centrifuged at 12,000g for 10 min. This step was re-
peated two to 5 times. The supernatant was collected in a
new tube and digested using 100-lL trypsin buffer (trypsin
in 100 lL 50-mM ABC or TEAB) with a ratio of 1:50 (trypsin
buffer: protein sample) at 37�C for at least 8 h. Samples
were then centrifuged at 12,000g for 10 min before adding
100-lL HPLC water, vortexing, and centrifuging again. The
supernatant was collected and dried by vacuum freeze-
drying and stored at –20�C until use.

The resulting peptide mixture was labeled using 10-plex
TMT reagent according to the manufacturer’s instructions
(Thermo Fisher Scientific, MA, USA). The peptide mixture
was prefractionated using an Ultimate 3000 (Thermo
Fisher Scientific, MA, USA), and MS analysis was per-
formed following methods described in a previous study
(Yu et al., 2019).

LC–MS/MS analysis
Raw data were searched against the UniProt protein data-
base and all redundant sequences were removed using
Proteome Discoverer version 2.2 software. For protein identi-
fication, the following options were used: MS1 toleran-
ce = 10 ppm; MS/MS fragment tolerance = 0.02 Da; enzyme
was set to trypsin with no more than two miss cleavages;
fixed modification: carbamidomethyl (C), TMT 10 plex (N-
term), TMT 10 plex (K); variable modification of oxidation
(M) and acetylation (N-term); FDR5 0.01, and more than
one unique peptide. Only unique peptides with report ion
S/N4 15 and FDR5 0.01 were used for protein quantifica-
tion; the signal error between different samples was normal-
ized using the sum of the total intensity of every report ion
channel. For the selection of DEPs, a 1.5-fold cutoff and
P5 0.05 were used.
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Accession numbers
All ONT FAST5 sequencing data have been deposited in
NCBI under accession PRJNA672182. Mass spectrometry
proteomics data were deposited to the ProteomeXchange
Consortium via the PRIDE (Perez-Riverol et al., 2018) partner
repository with the dataset identifier PXD029406. Analysis
and visualization were performed using Python scripts; all
code is available by request from the corresponding author.
Transcript sequences, coding sequences, and protein sequen-
ces of important genes mentioned in this study are listed in
Supplemental Table S17. All data in this study are available
at forestry.fafu.edu.cn/db/Ptr_Drought. The database pro-
vides modules for processing queries by gene ID or GO term
and a Genome Browser to visualize Nanopore DRS reads.

Supplemental data
The following materials are available in the online version of
this article.

Supplemental Figure S1. Wiggle plot, histogram, and RT-
qPCR show increased full-length read ratio of SGR1 upon
drought treatment.

Supplemental Figure S2. Expression and translation of
exonucleases in response to drought treatment.

Supplemental Figure S3. Heatmap of 23 upregulated TFs
and 4 downregulated TFs in SDX under drought treatment.

Supplemental Figure S4. Transcription, posttranscription,
and translation of PtrAREB1-2, PtrAREB1-4, PtrGT56, ERF76,
ERF38, MYB010, BLH6a, and GRAS under drought stress.

Supplemental Figure S5. Frequency distribution plots for
protein abundance, full-length RNA abundance (RPM), and
nonfull-length RNA abundance (RPM) across all samples.

Supplemental Figure S6. Association between full-length
transcript level and protein abundance from PacBio Iso-Seq.

Supplemental Figure S7. Rp of gene clusters in full-
length reads according to GO term.

Supplemental Figure S8. Rp of gene clusters in nonfull-
length reads according to GO term.

Supplemental Figure S9. Rp of “endoplasmic reticulum
to Golgi vesicle-mediated transport” and “structural mole-
cule activity” in full-length reads.

Supplemental Figure S10. m6A sites, m6A genes, MTA
expression, and MTA protein abundance under drought
stress.

Supplemental Figure S11. Expression profiles of genes
encoding m6A functional factors and RT-qPCR validation.

Supplemental Figure S12. GO enrichment of genes with
altered m6A ratio in D5 and D7.

Supplemental Figure S13. Scatter plots from the pairwise
comparison D7 versus ND show the relationships of m6A ra-
tio with gene expression, protein level, and H3K9ac level.

Supplemental Figure S14. Scatter plots showing full-
length RNA ratio in Col-0 versus vir-1, VIRc versus vir-1, and
WT versus shMETTL3.

Supplemental Figure S15. Histogram showing GO enrich-
ment analysis of genes with increased full-length RNA ratio
in vir-1.

Supplemental Figure S16. Wiggle plot showing an m6A
peak in the 30-UTR of CPSF30-L.

Supplemental Figure S17. Wiggle plot and histogram
showing CESA7 (Potri.018G103900) as an example of a gene
with increased PPR.

Supplemental Figure S18. Differential poly(A) switch
regions with m6A sites showing enrichment at proximal
poly(A) sites in D5 and D7.

Supplemental Figure S19. Box plots showing functions of
10 groups with the longest PAL (orange) and 10 groups
with the shortest PAL (blue) in D5 and D7.

Supplemental Figure S20. Box plots showing PAL distri-
bution for fully spliced (no_IR) and IR transcripts in full-
length reads and nonfull-length reads.

Supplemental Figure S21. GO enrichment of genes with
differential PAL in D5 versus ND.

Supplemental Figure S22. GO enrichment of genes with
differential PAL in D7 versus ND.

Supplemental Figure S23. Box plots show that drought
stress induces longer PAL and shorter PAL compared with
ND.

Supplemental Figure S24. Distribution of median PAL
per gene in ND, D5, and D7.

Supplemental Figure S25. PAL distribution in pools of
genes with different expression levels in ND, D5, and D7.

Supplemental Figure S26. Full-length RNA has longer
PAL than nonfull-length RNA.

Supplemental Figure S27. Scatter plot showing median
PAL for m6A-modified and non-m6A-modified transcripts in
ND, D5, and D7.

Supplemental Figure S28. Primer positions for m6A func-
tional factors.

Supplemental Table S1. DRS library construction.
Supplemental Table S2. Genes with differential full-

length read ratio in D5 versus ND and D7 versus ND.
Supplemental Table S3. Nine genes with increased full-

length read ratio in both D5 versus ND and D7 versus ND
comparisons.

Supplemental Table S4. DE proteins in D5 versus ND
and D7 versus ND.

Supplemental Table S5. Dynamics of full-length read ratio,
DEGs, DEPs, DE m6A, differential PAL, and differential APA as-
sociated with wood-formation genes under drought stress.

Supplemental Table S6. Dynamics of full-length read ra-
tio, DEGs, DEPs, DE m6A, differential PAL, and differential
APA based on the GO term “response to water deprivation”
under drought stress.

Supplemental Table S7. Dynamics of full-length read ra-
tio, DEGs, DEPs, DE m6A, differential PAL, and differential
APA associated with ABA-related genes under drought
stress.

Supplemental Table S8. DEGs in D5 versus ND and D7
versus ND.

Supplemental Table S9. Rp of full-length reads versus
protein abundance and nonfull-length reads versus protein
abundance.
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Supplemental Table S10. DE m6A in ND versus D5 and
ND versus D7.

Supplemental Table S11. DE m6A genes versus DEGs, DE
m6A genes versus proteins, and DE m6A genes versus DE
H3K9ac in D5 versus ND and D7 versus ND.

Supplemental Table S12. Differential APA in D5 versus
ND and D7 versus ND.

Supplemental Table S13. MicroRNA target sites in genes
with decreased PPR.

Supplemental Table S14. PAL of genes in ND, D5, and
D7.

Supplemental Table S15. Differential PAL in ND versus
D5 and ND versus D7.

Supplemental Table S16. RT-qPCR validation of m6A
functional factors, full-length read ratios of DUF239 and
SGR1, and the APA of CPSF30.

Supplemental Table S17. Names, transcript sequences,
coding sequences, and protein sequences of important genes
mentioned in this study.
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