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Abstract

The BGLR-R package implements various types of single-trait shrinkage/variable selection Bayesian regressions. The package was first re-
leased in 2014, since then it has become a software very often used in genomic studies. We recently develop functionality for multitrait
models. The implementation allows users to include an arbitrary number of random-effects terms. For each set of predictors, users can
choose diffuse, Gaussian, and Gaussian–spike–slab multivariate priors. Unlike other software packages for multitrait genomic regressions,
BGLR offers many specifications for (co)variance parameters (unstructured, diagonal, factor analytic, and recursive). Samples from the pos-
terior distribution of the models implemented in the multitrait function are generated using a Gibbs sampler, which is implemented by
combining code written in the R and C programming languages. In this article, we provide an overview of the models and methods imple-
mented BGLR’s multitrait function, present examples that illustrate the use of the package, and benchmark the performance of the soft-
ware.

Keywords: Bayesian; high-dimensional regression; multivariate models; multitrait models; Gibbs sampling; genomic regressions;
pedigree regressions; Genomic Prediction; GenPred; Shared Data Resource

Introduction
High-dimensional regression problems are ubiquitous in many
research areas. To confront the “curse” of dimensionality, a com-
mon approach is to use regularized regression procedures such
as penalized, reduced rank, or Bayesian methods. In genetics, the
continued development of genotyping and sequencing technolo-
gies has led to the development of large volumes of genomic
data. Genomic prediction (GP) models have been adopted in plant
and animal breeding for genomic selection (GS) (Meuwissen et al.
2001) and are used for complex trait prediction in human as well
(de los Campos et al. 2010; Yang et al. 2010). Several software
packages offer implementations to fit Bayesian (de los Campos
et al. 2013; Pérez and de los Campos 2014) and non-Bayesian
(Friedman et al. 2010; Endelman 2011) models for single-trait ge-
nomic models.

In most genomic data set, genotypes are evaluated for multi-
ple traits; likewise, in experimental settings genotypes are often
evaluated in multiple environments. Thus, soon after GS received
attention, it becomes clear that extensions to multitrait/multien-
vironment settings were needed (Burgue~no et al. 2012). Several
software packages implement multivariate mixed-effects
Gaussian models using likelihood/restricted maximum likelihood
(REML) methods (Gilmour et al. 1995; Meyer 2007; Lippert et al.
2014; Covarrubias-Pazaran 2016) or within a Bayesian setting

(Hadfield 2010; Cheng et al. 2018; Montesinos-López et al. 2019).

However, the extension of GP to multitrait settings within the

context of Bayesian variable selection models is more challeng-

ing; thus, the availability of multitrait Bayesian variable selection

models is much more limited. Within the open-source domain,

we are only aware of 1 software package that implements multi-

trait Bayesian variable selection and shrinkage methods for the

Julia language (Cheng et al. 2018).
The BGLR-R package (Pérez and de los Campos 2014) was origi-

nally developed for single-trait models; recently, we developed

the multitrait function, which implements shrinkage and vari-

able selection models for multitrait analysis. The software com-

bines features of the single-trait “BGLR” function (a similar user

interface, and similar programming strategies, and similar de-

fault rules for setting hyperparameters) with some of the features

of the MTM R package, a software that we developed and main-

tained in GitHub (https://github.com/QuantGen/MTM) since 2013

(de los Campos and Grueneberg 2013). MTM implements

Bayesian Gaussian multivariate models with structured and un-

structured (co)variance matrix using the methods described in

de los Campos and Gianola (2007). However, MTM was fully

developed using the R language and, thus, it does not scale for

problems involving large numbers of samples. Moreover, MTM

does not implement variable selection methods.
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In the multitrait function of the BGLR-R package, users can
specify models for an arbitrary number of random effects. For
each random effect, users can choose between diffuse, Gaussian,
and spike–slab priors. For (co)variance parameters, the software
offers the possibility of using either structured (e.g. diagonal, fac-
tor analytic, or recursive structures) or completely unstructured
specifications. Inputs for each of the random effects could be re-
lationship matrices (aka kernels, e.g. pedigree- or SNP-derived ge-
nomic relationship matrices), eigenvectors and eigenvalue values
from those matrices, or numeric matrices, which would be used
to provide SNP genotypes, factorizations of relationship matrices
(e.g. scaled eigenvectors or Cholesky factors), environmental
covariates, and other quantitative predictors. Importantly, the
trait matrix can have arbitrary patterns of missing values.

In what remains of this article, we describe the statistical models
and the algorithms implemented in the multitrait function, present
examples that illustrate the use of the software, and provide an
overview of the computational time required for analyses involving
various sample sizes, number of predictors (e.g. number of SNPs),
and number of traits.

Materials and methods
The data equation of the multitrait function can include various
types of effects, in matrix form, and the data equation can be rep-
resented as follows:

Y ¼ 1l0 þ X1B1 þ X2B2 þ � � � þU1 þ U2 þ � � � þ E; (1)

where Y is an n� t matrix (individuals in rows, traits in columns)
of phenotypes (missing values are allowed), l ¼ l1; . . . ; ltð Þ0 is a
vector of trait-specific intercepts, X� is an incidence matrix for
effects of a set of predictors (e.g. SNPs in columns), B� is a matrix
of effects (predictors in rows, effects on each of the traits in col-
umns), U� is a matrix of random effects (individuals in rows,
traits in columns), and E is a matrix with error terms (individuals
in rows, traits in columns). The error terms are assumed to be in-
dependent and identically distributed (IID), each row following a
multivariate normal (MVN) distribution with zero mean and co-
variance matrix R0; therefore, the conditional distribution of the
data given the regression parameters and the error covariance
matrix is

pðY hj Þ ¼
Yn

i¼1
MVN yijgi;R0

� �
; (2)

where gi ¼ lþ B01x1i þ B02x2i þ � � � þ u1i þ u2i þ � � �, where gi is a
t-dimensional vector containing the conditional mean of the
ith observation for each of the t traits, x�i and u�i are the ith rows
of the corresponding X� and U� matrices, and h ¼ l; B1;B2; . . . ;f
U1;U2; . . . ;R0g.

Prior distribution
The software assumes independent priors for each set of predic-
tors; therefore,

p hð Þ ¼ p lð Þ � p B1ð Þ � p B2ð Þ � � � � � p U1ð Þ � p U2ð Þ � � � � � p R0ð Þ: (3)

Intercepts are assigned diffuse priors p lð Þ ¼ MVNð0; ImÞ, with m
equal to 1,000 times the maximum of the variance of each of the
phenotypes.

The random-effects matrices ðU�Þ are each assigned MVN distri-
butions of the form

p u�ð Þ ¼ MVNðu�j0;X� � K�Þ; (4)

where u� ¼ vec U�ð Þ is a vector with the columns of U� stacked,
X� is a t� t (unknown) covariance matrix, K� is a n� n covariance
structure (e.g. a genomic relationship matrix), and � is the
Kronecker product operator (more information about the prior on
X� is provided below).

Regression coefficients B� can be either assigned MVN priors or
priors from the spike–slab family. In the MVN prior,

p B�ð Þ ¼
Yp�

j¼1
MVNðb�jj0;X�Þ; (5)

where b�j is the jth row of B� and X� is a t� t (unknown) covari-
ance matrix describing covariance among the effects of the jth
predictor on each of the traits.

For variable selection models, users can choose a multivariate
spike–slab priors with a point of mass at zero and an MVN slab
(this is one possible multivariate extension of the model known
as BayesC in the animal breeding literature, e.g. Habier et al.
2011). For the spike–slab prior, we represent each of the entries of
B�¼ A�#D� ¼ b�jk ¼ a�jk � d�jk

� �
as the product of a normal ran-

dom variable (a�jk) and a dummy variable (d�jk) which controls
whether the jth predictor enters in the equation for the kth trait;
thus,

p A�;D�ð Þ ¼
Yp�

j¼1
MVNða�jj0;X�Þ

n o

�
Yp�

j¼1

Yt

k¼1
p

d�jk
�k 1� p�kð Þ1�d�jk

� �
: (6)

Above fp�1; p�2; . . . ; p�tg represent the proportion of nonzero
effects in each of the traits. By default, each of these parameters
are treated as unknown and they are assigned independent Beta
priors, that is: p p�1; p�2; . . . ; p�tð Þ /

Qt
k¼1 pa1

�k 1� p�kð Þa2 , where a1 and
a2 are the prior shape1 and shape2 parameters for the kth trait.

Table 1 describes for each type of random effects (X�B� and U�)
the priors implemented and how to specify it.

Finally, for each of the covariance matrices involved in the
model (R0 and each of the X�) the software offers the option to
modeled it as unstructured [in which case and Inverse-Wishart
(IW) prior is used], or structured (with 3 options in this case, see
Table 2). Covariance structures are specified using a list, the en-
try $type of the list specifies the type of the structure (unstruc-
tured, diagonal, factor analytic structure, or recursive model, see
Table 2), other arguments include the hyperparameters for the
structure (e.g. scale and degree of freedom parameters). In the
case of recursive and Factor Analytic (FA) structures, an entry la-
beled as M (logical matrix) is also needed. For FA models this ma-
trix must have dimensions t � number of factors and each cell
(TRUE/FALSE) indicates whether the trait (row) loads on the corre-
sponding factor (column). For recursive models, the matrix M has
dimensions t� t, and the cells (also TRUE/FALSE) indicate
whether the trait in column enters for the equation of the trait in
row, typically the diagonal entries of M will be FALSE, except for
simultaneous equation models, but this requires fixed-effects ex-
clusion restrictions (e.g. Goldberger 1972). Fully recursive models
(those with an M matrix with TRUE in all cells below the diagonal
and FALSE everywhere else) lead to an UN covariance matrix.

Default rules for hyperparameters
To simplify the use of the software we have implemented default
rules to set these parameters; therefore, when the user does not
specify 1 or several of the hyperparameters involved in the
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model, the rules described in Supplementary File 1 are used to
set default values. The hyperparameter values selected using
these rules always lead to proper priors with scale parameters
chosen considering the variance of the phenotype, the number of
terms in the linear predictor, and the number of covariates in
each of them.

Algorithms
The joint prior distribution of the model defined by expressions
(2)–(6) does not have a closed form; however, with the likelihood
and prior specifications used, all the fully conditionals have
closed form; therefore, the software generates samples from the
joint posterior distribution using a Gibbs sampler (e.g. Casella
and George 1992).

In our implementation, most of the model unknowns are
updated sampling from univariate fully conditionals; the only ex-
ception are the unstructured covariance matrices for which a
sample for the matrix is obtained from an IW fully conditional.
Describing each of the fully conditionals in detail is beyond the
scope of this article; for location parameters (intercepts and re-
gression coefficients), most of the fully conditional distributions
are standard and have been previously described for Gaussian
multitrait models with conjugate priors (e.g. Sorensen and
Gianola 2002). The fully conditional distribution of the parame-
ters involved in structured covariance matrices are borrowed
from de los Campos and Gianola (2007), and from the implemen-
tation of the MTM software (de los Campos and Grueneberg
2013).

Sampling regression coefficients (and the dummy variables
(d�jk) in the case of the terms with spike–slab priors) is computa-
tionally the most demanding step. Therefore, we update all these
unknowns using a routine implemented in the C programming

language (Kernighan and Ritchie 1988). For hyperparameters and
for covariance matrices, we collect samples using code
implemented in the R language (R Core Team 2019).

Missing values
The phenotype matrix (Y in (1)) can contain missing values (NAs);
when this is the case, at each iteration of the sampler, the miss-
ing values are “imputed” with samples from the fully conditional
distribution (see Sorensen and Gianola 2002). Missing values in
the linear predictor (e.g. X or K matrices) are not allowed.

User interface and outputs
The main arguments of the multitrait function are the phenotype
matrix (y: a matrix of dimensions n� t, where n is the number of
individuals and t is the number of traits), the linear predictor
(ETA: a 2-level list, each elements of the regression function (1),
either a regression term of the form X�B�, or random intercepts
(U�Þ, see Table 1), and error covariance structure (resCov: A list
that specifies the structure and the hyperparameters for R0).
A complete list of arguments can be found in the help included in
the package.

The software returns a list with the estimated posterior
means, estimated posterior deviations, together with all the ele-
ments of model specification (priors and hyperparameters). In
the case of covariance matrices, only lower-triangular elements
are stored; the corresponding matrices can be recreated using the
function “xpnd,” also included originally in the MCMCpack
package (Martin et al. 2011).

Data sets
The BGLR-R package includes 2 data sets (these data sets were
also included in earlier versions of the package). The wheat data

Table 1. Specification of regression terms in the linear predictor.

Component Options

Regression functions (X�B�Þ Diffuse prior: list(X=,model¼“FIXED”)
Gaussian: list(X=,model¼“BRR”,Cov=)
Spike–slab:
list(X=,model¼“SpikeSlab”,

Cov=,inclusionProb=)
Random-intercept matrices (U�Þ list(K=,model¼“RKHS”,Cov=), or

list(EVD=,model¼“RKHS”,Cov=)
Above, EVD is a list that contains 2 components, vectors a square matrix with eigen vectors

of K and values a vector containing the eigen values of K

Table 2. Covariance structures.

Structure Prior and hyperparameters Specification

Unstructured X � IWðXjS0; df0Þ;
S0 : prior scale matrix ðt� tÞ
df0: prior degree of freedom

Cov¼list(type¼“UN”, df0=,S0=)

Diagonal X ¼ diagðx11; . . . ;xttÞ,
p xð Þ ¼

Qt
k¼1 v�2 xkkjS0kk; df0k

� �
S0: prior scale vector ðt� 1Þ,
df0 : prior df vector ðt� 1Þ

Cov¼list(type¼“DIAG”, df0=,S0=)

Factor analytic X ¼WW
0 þW; W : factor loadings, W ¼ diagðwkkÞ

p W;Wð Þ ¼ MVN vec Wð Þj0;r2I
� �

�
Qt

k¼1 v�2 wkkjS0kk; df0k
� �

.
S0: prior scale vector ðt� 1Þ,
df0 : prior df vector ðt� 1Þ; r2: prior variance

Cov¼list(type¼“FA”,df0=,S0=, M=,
var=)

Recursive X ¼ I�Wð Þ�1
Wð I�Wð Þ�1Þ0, Wt�t regression coefficients; W ¼ diagðwkkÞ.

p W;Wð Þ ¼ MVN vec Wð Þj0;r2I
� �

�
Qt

k¼1 v�2 wkkjS0kk; df0k
� �

S0: prior scale vector ðt� 1Þ,
df0 : prior df vector ðt� 1Þ; r2: prior variance.

Cov¼list(type¼“REC”,df0=,S0=, M=,
var=)
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set (data(wheat)) was first made available by Crossa et al. (2010).
This data set contains least-square means (average of 2 years) of
grain yield (wheat.Y) for 599 wheat lines which were evaluated in
4 environments, a kinship matrix derived from a pedigree
(wheat.A) and 1,279 Diversity Array Technology markers
(wheat.X, since these are inbreed lines, genotypes are coded as 0/
1). The mice data set (data(mice)) comes from mice experi-
ments conducted by the Wellcome Trust (Valdar, Solberg,
Gauguier, Burnett, et al. 2006; Valdar, Solberg, Gauguier, Cookson,
et al. 2006). The phenotypes consist of traits related to diabetes
and biochemistry for 1,814 mice (mice.pheno), a kinship matrix
derived from pedigree (mice.A) and 10,346 SNP markers
(mice.X).

Results
In this section, we introduce examples of various models that
can be implemented with the multitrait function. We present in
the article snippets with concise scripts that illustrate how to fit
models and how to retrieve results. The complete set of scripts
used to simulate and analyze data is provided in an R-Markdown
as a Supplementary material and is also available at BGLR’s
GitHub repository.

Gaussian (kernel) models
The example in Box 1 illustrates how to fit a single-kernel multi-
trait (GBLUP) model with unstructured (co)variance matrices.
Lines 13–18 show how to retrieve parameter estimates and the
corresponding posterior SD. The code in line 20 shows how to re-
trieve the predicted genomic values. Samples from the posterior
distribution of model parameters can be found in files
UN_mu.dat (intercepts), UN_R.dat (residual covariance matrix),
and UN_Omega_1.dat (genomic covariance matrix).
Supplementary Box 1 (File 2) provides scripts that illustrate how

to create trace plots and posterior samples for genetic and resid-
ual dispersion parameters and the resulting plots are shown in
Supplementary Figs. 1 and 2 (File 3).By default, the software fits
unstructured (co)variance matrices; the examples in Box 2 illus-
trate how to specify structured covariance matrices. The first
model (fmRD) uses a fully recursive model for the genomic covari-
ance matrix and a diagonal structure for the error terms. In the
recursive structure, there are regressions of traits 3 and 4 on trait
2 and of trait 4 on trait 3. This is specified with the matrix M (logi-
cal), which is used to specify recursions between traits. In the ex-
ample, M is specified in a way that makes the genetic values of
trait 1 independent from the genetic values on the other 3 traits
(i.e. the resulting structure is block diagonal). The second exam-
ple uses a 1-factor model for the genomic covariance matrix and
a diagonal structure for the error terms (fmFD). The parameter M,
which in this case links traits with common factors, links traits
2–4 with a common factor, thus, also leading to a block diagonal
structure. In models with structured covariance matrices, the co-
variance matrices are nonlinear functions of the model parame-
ters. For instance, in a GBLUP model with a FA structure for the
genetic covariance, X ¼WW

0 þW; likewise, for a recursive model,
the covariance matrix is X ¼ I�Wð Þ�1

Wð I�Wð Þ�1Þ0 (see Table 2).
At each iteration of the sampler, the software computes these
covariances and returns not only the posterior means of the
parameters involved in the covariance structure (W, W in the pre-
ceding examples), but also the posterior means of the corre-
sponding covariance matrix (X) (see lines 17–21 and 34–38).
Supplementary Boxes 2a and 2b (File 2) provide code that can be
used to produce posterior plots and summaries of the parameters
of recursive and FA covariance structures, the resulting plots are
shown in Supplementary Figs. 3–5 (File 3). In genetic models,
upon appropriate scaling, parameters X and R0 can be inter-
preted as genetic and environmental (co)variance components.
However, we will discuss later in the document approaches

Box 1: Multitrait GBLUP with unstructured and structured covariances.

1 library(BGLR)

2 data(wheat)

3 K<-tcrossprod(scale(wheat.X, center¼TRUE))
4 K<-K/mean(diag(K))
5 Y<-wheat.Y # 4 traits

6

7 # Fitting a GBLUP un-structured cov-matrices

8 LP<-list(mar¼list(K¼K, model¼“RKHS”))
9 set.seed(123)

10 fmUN<-Multitrait(y¼Y, ETA¼LP, nIter¼10000, burnIn¼5000,
11 saveAt¼“UN_”,verbose¼FALSE)
12

13 # Retrieving estimates and posterior SD

14 fmUN$resCov$R # residual covariance matrix

15 fmUN$resCov$SD.R

16

17 fmUN$ETA$mar$Cov$Omega # genomic covariance matrix

18 fmUN$ETA$mar$Cov$SD.Omega

19

20 fmUN$ETA$mar$u # predicted random effects
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drawn from Lehermeier et al. (2017), which account for linkage

disequilibrium and yield estimates, which often have smaller

biases than those of the posterior means of X and R0.

Multikernel models
The Gaussian models described above can be extended by adding

fixed effects and other random effects (e.g. pedigree þ SNP mod-

els). The scripts in Supplementary Boxes 3a and 3b (File 2) imple-

ments a model with a genomic and a pedigree relationship

matrix for the wheat data set, the script implements the unstruc-

tured and structured (diagonal, recursive, and FA) covariance

matrices.

Bayesian variable selection models
We turn now into models using priors that can perform variable se-

lection. To illustrate the use of these models, we simulated 3 traits

using the genomes available in the mice data set (data(mice)).

The script used to simulate data is presented in Supplementary

Box 4a (File 2). Briefly, the simulation has a sample size of n ¼
1,814, and 1,000 SNPs, 12 of which had nonzero effect. Each trait

had 6 QTL. Traits 1 and 3 had 3 “private” QTL and 3 shared with

trait 2. All the QTL affecting trait 2 were shared with either trait 1

or trait 2. The trait heritabilities were 0.1, 0.05, and 0.1 for traits 1,

2, and 3, respectively. For illustration purposes, we present

results from a single Monte Carlo replicate; we emphasize that

assessing mapping power and FDR would require running multi-

ple replicates and more complex simulation settings.
Box 3 shows how to fit a multitrait Bayesian regression model

with a spike–slab prior. As before, Y is a matrix with traits in col-

umns and subjects in rows, and X is a matrix with subjects in

rows and SNPs in columns. For regression models, the multitrait

function supports 3 priors (see Table 1). The argument

saveEffects¼TRUE can be used to save the samples of effects

into a binary file.Figure 1 shows the posterior probability of inclu-

sion by SNP and trait (the code used to produce the plot are given

in Supplementary Box 4b, File 2). The model correctly identified 8

Box 2: Multitrait GBLUP with structured covariance matrices.

1 #(continued from Box 1)
2

3 # Omega-recursive, R-diagonal

4 # Matrix specifying loadings among traits 2¼>3,2¼>4,3¼>4
5 M1<-matrix(nrow¼4, ncol¼4, FALSE)
6 M1[3,2]<-M1[4,2]<-M1[4,3]<-TRUE

7 CovREC<-list(type¼“REC”,M¼M1)
8 LP<-list(mar¼list(K¼K, model¼“RKHS”,Cov¼CovREC))
9

10 CovDIAG<-list(type¼“DIAG”)
11

12 set.seed(456)

13 fmRD<-Multitrait(y¼Y, ETA¼LP, nIter¼10000, burnIn¼5000,
14 resCov¼CovDIAG, saveAt¼ “REC_DIAG_”,

15 verbose¼FALSE)
16

17 fmRD$resCov$R

18 fmRD$ETA$mar$Cov$Omega # genomic covariance

19 fmRD$ETA$mar$Cov$W # recursive effects

20 fmRD$ETA$mar$u # predicted genetic effects

21 fmRD$ETA$mar$Cov$PSI # scaling factors

22

23

24 # Omega-FA(2), R-diagonal

25 M2<-matrix(nrow¼4, ncol¼1, FALSE)
26 M2[2:4,1]<-TRUE

27 CovFA<-list(type¼“FA”,M¼M2)
28 LP<-list(mar¼list(K¼K, model¼“RKHS”,Cov¼CovFA))
29

30 set.seed(789)

31 fmFAD<-Multitrait(y¼Y, ETA¼LP, nIter¼10000, burnIn¼5000,
32 resCov¼CovDIAG, saveAt¼ “FA_DIAG_”,

33 verbose¼FALSE)
34 fmFAD$resCov$R

35 fmFAD$ETA$mar$Cov$Omega # genomic covariance

36 fmFAD$ETA$mar$Cov$W # recursive effects

37 fmFAD$ETA$mar$u # predicted genetic effects

38 fmFAD$ETA$mar$Cov$PSI # scaling factors
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of the 12 QTL. Trait 2 had the lowest heritability and the lowest
proportion of QTL detected. Some QTL are not individually
detected because of high LD in the QTL region. This happened,
for example, for QTL2, which was located (position 99) in a region
with high LD. In this region, there were 3 SNPs (position 99, 100,
and 101) with elevated probability of inclusion in the QTL region.
The R-squared between the causal variant and SNP 100 and 101
is 0.999 and 0.937. Clearly, when SNPs are in high LD, variable se-
lection algorithms cannot discern which SNP is associated with
the phenotype—this also happens in single-trait models. When
this situation happens, there are at least 2 possible remedies: (1)
filter SNPs based on LD or (2) use all the SNPs and make infer-
ences using credible sets (i.e. groups of SNPs). For example, in the

region in question (positions 99–101) the joint posterior probabil-
ity of inclusion (i.e. the proportion of times that at least one of
the SNPs in the region was active) was 99.75 (see code in
Supplementary Box 4c, File 2). Thus, for this region, we can be
confident that there is an association with the phenotype, but we
are uncertain as to which SNP has an effect.

A more general approach to identify credible sets is demon-
strated in Supplementary Box 4d (File 2). The function “segments”
of the BGData R package (Grueneberg and de los Campos 2019) is
used to identify segments with local FDR smaller than 0.7 (that is
SNP inclusion probability greater than 0.3), and then we used the
samples from the posterior distribution to estimate the joint
probability of inclusion of each segment (i.e. the probability that

Box 3: Fitting a multitrait spike–slab model.

1 # Run the code in Box S4a before runing this code

2 fmSS<-Multitrait(y¼Y, ETA¼list(list(X¼X, model¼”SpikeSlab”,
3 saveEffects¼TRUE)),nIter¼12000, burnIn¼2000,
4 verbose¼FALSE)
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Fig. 1. Posterior probability of nonzero effect by SNP and trait. Each dot/circle represents an SNP, red circles had posterior probability of inclusion
greater than 0.8, and the dashed vertical lines show the position of the causal variants.
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at least 1 SNP in the segment is active in the model). The result is
a table with discoveries, which includes both individual SNP and
credible sets and their posterior probability of inclusion.

For comparison with the multitrait model, we fitted 4 separate
single-trait models using the BayesC implementation available in
BGLR function (see Supplementary Box 4e, File 2). The results are
presented in Supplementary Fig. 6 (File 3). The single-trait analy-
sis identified 2 QTL less than the corresponding multitrait model.
In particular, the single-trait model did not identify (from left to
right) the 3rd QTL of trait 1 and the first QTL of trait 2; the last 1
was shared between traits 1 and 2. This example illustrates some
potential benefits of using a multitrait model for mapping var-
iants with pleiotropic effects; however, as we will see below, in
some cases, single-trait models may be more powerful.

The previous example used a stylized simulation, to illustrate
the application of multitrait variable selection models in a more
complex scenario, we used the function multitrait to map risk
loci for 6 blood biomarkers (glucose, total cholesterol, HDL and
LDL cholesterol, creatinine, and triglycerides) using the mice data
set. The results are presented in Supplementary Fig. 7 and
Supplementary Table 1 (File 3). In this case, the combination of
small effects, small sample size, and high LD leads to no individ-
ual variants with a probability of inclusion greater than 0.8.
However, for each of the biomarkers there are multiple regions
with clearly elevated inclusion probabilities. Using the function
“segments” of the BGData R package (Grueneberg and de los
Campos 2019), we identified 25 regions with joint posterior proba-
bility greater than 0.8 (Supplementary Fig. 7, File 3). We identified
5 of such regions for glucose and 5 for HDL cholesterol, 9 regions
for LDL cholesterol, 1 for creatinine, 3 regions for triglycerides,
and 2 regions for total cholesterol. Some of the regions identified
for different traits overlap (e.g. chromosome 1, mbp 89–98, chro-
mosome 4, mbp 62–67, and chromosome 12, mbp 0–3) suggesting
pleiotropy. For completeness, we also analyzed the same traits
using single-trait models (Supplementary Fig. 8, File 3); most of
the regions with elevated posterior probability of inclusion
detected using with the multitrait model also showed elevated
posterior probability of inclusion in the single-trait models.

We repeated the analysis of mice blood biomarkers using a se-
quence of 5 single-trait analyses using BGLR with a variable selec-
tion prior (BayesC) prior. Interestingly, the number of regions that
cleared a joint inclusion probability of 0.8 was similar for glucose
but more significant for the other traits (Supplementary Table 2
and Supplementary Fig. 8, File 3). Overall, there was a substantial
overlap in findings between the single-trait and multitrait analy-
ses. However, many regions identified by the single-trait models
were not identified by the multitrait analysis. Conversely, the
single-trait model did not identify a few regions discovered
through a multitrait analysis (Supplementary Table 3, File 3).
Because these analyses are based on real data, we cannot discern
which discoveries were true and which ones are false discoveries.
However, the example illustrates that multitrait analyses, which
borrow information between traits, may not always lead to a
higher power and more discoveries.

Estimation of variance components
Dissecting the phenotypic (co)variance into genetic and nonge-
netic components is an important goal of many genetic studies.
Maximum likelihood, REML, and Bayesian estimates of (co)vari-
ance parameters are not guaranteed to be unbiased. In our expe-
rience, environmental (co)variances are often estimated with
relatively small biases using the estimated posterior mean of R0.
However, this is not always the case for genetic (co)variances.

There is an extensive literature on biases that may emerge when
using genomic models to estimate genetic variances (e.g. de los
Campos et al. 2015; Krishna Kumar et al. 2016; Lehermeier et al.
2017). The amount of information at the likelihood about cova-
riances is often smaller than the information provided for varian-
ces; therefore, presumably, there may be also sizable biases in
estimate of genetic covariances.

The literature on genetic (co)variance estimates is largely fo-
cused on GBLUP-type models; however, at least in principle, those
parameters should be estimable in variable selection models. In
this section, we present a simulation study in which we assess
the bias of (co)variance estimates derived from multitrait GBLUP
and spike–slab models. For residual covariance matrix, we use as
estimator the posterior mean of R0.

For estimating genetic covariances in models not involving
variable selection (e.g. “RKHS” or “BRR”) we consider 2 estimation
methods: the posterior mean of the (co)variance parameter
(X, method 1) and a second method (method 2) based on an
approach described in Lehermeier et al. (2017), which account for
covariances between predictors (e.g. LD between SNPs). Briefly,
for method 2, at each iteration of the sampler, we compute for
each trait the vectors of genomic values (i.e. the columns of U in
GBLUP models or in regression on SNPs, U ¼ XB) and compute
the sample covariance between the columns of U.

In models involving variable selection (“SpikeSlab”), only a
fraction of the SNPs are active in the equation of each trait.
Therefore, the (co)variance matrix of effects, Cov ajð Þ ¼ X, cannot
be directly used to estimate the contribution of the regression.
Therefore, to estimate genetic covariances in these models we
consider 3 methods: method 1, at each iteration of the Gibbs sam-
pler, we compute B ¼ A#D and then compute the sample covari-
ance between the columns B; the estimate is then the posterior
mean of cov(B). For method 2, we computed genomic values
(U ¼ XB) at each iteration of the sampling process and form there
we computed the sample variance–covariance matrix of the real-
ized genomic values (var(U)). This approach, which accounts for
LD between markers, extends the method described for single-
trait models by Lehermeier et al. (2017) to multitrait analyses.
Finally, we consider a 3rd method, which was proposed by Cheng
et al. (2018). In method 3, at each iteration of the Gibbs sampler,
we compute the following variance–covariance parameters:

G0kk ¼ c�Xkk � pk k ¼ 1; . . . ; t
G0kk0 ¼ c�Xkk0 � pkk0 k; k

0 ¼ 1; . . . ; t; k 6¼ k
0 ;

�

where c is the sum of the variances of the markers (c ¼
Pp

j¼1 Var xjð Þ),
pk is the proportion of markers with non-null effect on trait k and
pkk0 is the proportion of markers with non-null effects for traits
k and k0.

We evaluated the bias of each of the estimation methods
above described using 200 MC replicates of the simulation de-
scribed in the previous section (see Supplementary Box 4a for the
simulation code, File 2). The code for estimating genetic covari-
ance matrixes is given in Supplementary Box 5 (File 2).

The error (co)variance parameters were estimated without
any noticeable bias by both the GBLUP and spike–slab model
(Fig. 2a). The genetic variances were estimated with small biases
by the GBLUP, with method 2 having slightly smaller bias than
method 1 (Fig. 2b, see Supplementary Table 4, File 3 for average
estimates and SEs). The spike–slab model gave estimates with
noticeable bias with methods 1 and 3; however, these biases were
reduced when method 2 was used. In summary, at least for this
specific data set and simulation setting, it seems that regardless

P. Pérez-Rodr�ıguez and G. de los Campos | 7

https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac112#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac112#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac112#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac112#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac112#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac112#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac112#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac112#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac112#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac112#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac112#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac112#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac112#supplementary-data


of the prior used, the residual (co)variance parameters can be es-
timated with small biases, and estimation of genetic (co)varian-
ces seem to be better with method 2.

Prediction
For the entries of the phenotype matrix containing missing
values, at each iteration of the sampler, the software samples
the missing phenotypes from the corresponding fully conditional
distributions (which in the models implemented is MVN). This
process leads to inferences that average over possible values of
the missing phenotypes. To make the sampling of missing pheno-
types more efficient, we identify missing value patterns and
impute them (with samples) jointly (missing_patterns contain
the patterns identified and labeled missing_records indicate
the rows of Y, which map to each of the patterns).

The multitrait function returns estimates of the posterior
mean of the linear predictor (g ¼ 1l0 þ X1B1 þ X2B2 þ � � � þ U1þ
U2 þ � � � þ, named ETAHat in the returned object), these are esti-
mates of the expected value of the phenotypes given the predic-
tors. Box 4 shows how to retrieve these predictions (the missing
value patterns in YNa were generated using the script in
Supplementary Box 6, File 2). The plot in Fig. 3 shows the simu-
lated phenotype vs the posterior mean of for entries that were ob-
served and missing, using trait 3 as an example (see
Supplementary Box 6, File 2).

Benchmark
We evaluated the computational time it takes for the multitrait
function to generate 1,000 posterior samples for data sets with a
sample size ranging from 10,000 to 500,000 individuals and with
5,000 to 50,000 SNPs. The data used for this benchmark were
from the UK-Biobank; we fitted models to 2 and 4 traits (body
mass index total cholesterol, glucose, and height, all adjusted by

sex, age, center, and 10 SNP-derived PCs) using either Gaussian or
spike–slab priors. The analyses were performed in MSU’s high-
performance computing cluster using nodes equipped with Intel
Xeon Gold 6148 processors at 2.40 GHz. We used R 4.2.0 compiled
from source and the reference BLAS implementation was
substituted with OpenBLAS version 0.3.17 (https://www.open
blas.net). Jobs were run using 4 computing threads. To bench-
mark our software, we compared the computational perfor-
mance of BGLR’s multitrait function with that of Julia’s JWAS
package (Cheng et al. 2018), which also uses OpenBLAS for matrix
operations. We provide the scripts to produce the benchmarks
in the case of a Gaussian prior in Supplementary Boxes 7 and 8
(File 2).

Figure 4 shows the time (in minutes) required to generate
1,000 Gibbs samples for models using variable selection priors.
We found that JWAS performed slightly better using just 1
thread; therefore, the results in Fig. 4 are for multitrait running
with 4 threads and JWAS running with 1 thread (for results with
both software using 4 threads, see Supplementary Fig. 9, File 3).
Both software scaled approximately linearly with sample size,
but the slope of the lines representing computational time vs
sample size was smaller for the multitrait function. Likewise,
while in both packages, the computational time increased with
the number of traits, the increase in computational time that oc-
curred when increasing the number of traits from 2 to 4 was
more important for JWAS. The results for models using a
Gaussian prior are presented in Supplementary Figs. 10 and 11
(File 3). The overall trends were very similar to those obtained
with the variable selection priors (Fig. 4).

The computational time required for implementing a GBLUP
(or any other kernel model) depends on sample size, this without
considering the time it takes to compute the genomic relation-
ship matrix. The BGLR and multitrait functions fit GBLUP model

Fig. 2. Average Monte Carlo estimates of error (a) and genetic (b) (co)variance parameter, by model and estimation method. The horizontal line gives
the true parameter value (for SEs see Supplementary Table 4, File 3).
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by first factorizing kernel matrices using an eigenvalue decompo-

sition; then, the software runs a random regression (with

Gaussian IID priors) on the scaled eigenvectors (de los Campos

et al. 2009). Therefore, the computational time it takes to collect

samples for kernel models is the same as the computing time it

takes for a Gaussian model with a sample size of n and n SNPs

(which can be inferred from the results just presented), plus the

time it takes to factorize the genomic relationship matrix. We

present in Supplementary Fig. 12 (File 3) the computational time

required to perform eigenvalue decomposition. The computa-

tional time increases exponentially with the dimensions of the

kernel matrix; for 30,000 subjects it took approximately 25 min to

compute the eigenvalue decomposition. In general, the option of

using a genomic relationship matrix is recommended (relative to

an equivalent model implemented as a random regression on

SNPs) only when n is not too large, and sample size is consider-

ably smaller than the number of SNPs.

Discussion
We presented the newly developed multitrait function of the

BGLR-R package. The software allows the user to include fixed

effects (i.e. effects with a diffuse prior), shrinkage, and variable

selection priors in multitrait models. These methods can be used

Box 4: Prediction.

1

2 K<-tcrossprod(X)

3 K<-K/mean(diag(K))

4

5 LP<-list(list(K¼K, model¼“RKHS”))
6

7 #Fit multivariate GBLUP with UN-structured covariance matrixes

8 fmG<-Multitrait(y¼YNa, ETA¼LP, nIter¼10000, burnIn¼5000, thin¼10,
9 verbose¼FALSE)
10

11 #Missing values for trait 3

12 whichNa3<-fmG$missing_records[fmG$patterns[ , 3]]

13 Y[whichNa3,3] #Observed values

14 fmG$ETAHat[whichNa3,3] #Predicted values
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Fig. 3. Predicted (posterior mean of the linear predictor) vs observed phenotypes for trait 3 (see Supplementary Box 6, File 2).
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to fit models commonly used in genomic analysis of complex
traits, including parametric genomic and pedigree models, vari-
able selection models, and semiparametric regressions (e.g.
RKHS). The interface allows users to specify models with multiple
terms, each having their own priors.

The architecture of the software was designed to take advantage
of interpreted code written in R and compiled code written in C. The
MCMC algorithms (Metropolis and Gibbs sampler) implemented are
computationally intensive. We make an effort to optimize compu-
tations without losing much flexibility in terms of the types of mod-
els that users can implement. As a result, the software can be used
with a very large sample size, large numbers of SNPs, and multiple
traits. However, users must be aware that the computational time
grows linearly with sample size and with the number of SNPs; thus,
fitting models to very large data sets and hundreds of thousands of
SNPs will have a very high memory requirement and it will be time
consuming. The programming strategy we adopted makes intensive

use of level-1 BLAS functions “ddot” and “daxpy.” For large prob-
lems, we strongly recommend using an optimized version of BLAS
for the hardware and running the software on multiple threads.

The possibility of specifying structured (co)variance matrices
for both Gaussian and variable selection priors is a distinctive
feature of multitrait. Users should be aware that priors on (co)-
variance matrices can be influential; this is particularly the case
of the IW prior, which can be highly influential if sample size is
small, and the number of traits is large. To remediate this prob-
lem, we described in this study an approach (referred as to
method 2 in Fig. 2) for estimating the variances and covariances
that are less influenced by the prior; however, even with this ap-
proach, the IW prior can be influential. This method, which ex-
tend the ideas discussed in Lehermeier et al. (2017) to multitrait
models, accounts for the contribution of linkage disequilibrium
to (co)variance and, importantly, can be used with any prior (in-
cluding diffuse, Gaussian, and variable selection priors). Another

Fig. 4. Average time (in minutes, 6 SD) to collect 1,000 posterior samples for variable selection models, by the number of SNPs (panels), the number of
traits (horizontal axis), and the software used. Results for Gaussian prior are presented in Supplementary Figs. 10 and 11 (File 3).
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approach that may be less influential is to use a fully recursive

model which also leads to an unstructured (co)variance matrix.

In this case, the prior specification involves defining priors over

variances and over recursive effects. The priors on the recursive

effects (which in the multitrait are by default Gaussian) can be

made effectively diffuse and this may lead to less influence of the

prior on inferences.
Although the software was originally developed for genomic

and pedigree model, like BGLR, the multitrait function can also

be used to implement models for other omics (including metabo-

lomic, microbiome, and gene expression data) and environmen-

tal information (e.g. models for environmental covariates). We

look forward to continuing improving BGLR and welcome users’

feedback. Future updates will be shared in BGLR’s GitHub reposi-

tory (https://github.com/gdlc/BGLR-R) and in the CRAN (https://

cran.r-project.org/web/packages/BGLR/index.html).
The reader may wonder: For what problems, or under what con-

ditions, is a multitrait analysis preferred relative to a sequence of

single-trait analyses? Of course, the answer to that question is prob-

lem specific; however, some guidelines can be provided for parame-

ter estimation, mapping, and prediction problems. Obviously,

multitrait analyses are needed to estimate genetic and environmen-

tal correlations between traits (or environments).
Depending on the problem, the multitrait model may offer

higher or lower power than the single-trait analysis. Standard

multitrait models assume a homogeneous covariance of effects

across the genome. In regions of the genome where the correla-

tion of effects aligns with the average correlation of effects of the

genome, borrowing information between traits may increase

power. However, in regions where the correlation of effects is

markedly different than the average correlation of effects in the

genome, the multitrait model may reduce power because multi-

trait models tend to shrink effects toward a common covariance

pattern. Variable selection priors may mitigate this problem be-

cause the model, as implemented in the multitrait function, has

separate variable selection dummy variables for each SNP-trait

combination. This allows for an SNP to affect some traits but not

others. However, even considering the flexibility that variable se-

lection priors offer for mapping, we strongly encourage consider-

ing both the multitrait and the single-trait models.
For GP, there is evidence showing that for some prediction

problems (Burgue~no et al. 2012), the multitrait model can offer

higher prediction accuracy than predictions derived from single-

trait models. The superiority of the multitrait model over single-

trait analyses occurs when the prediction problem enables

borrowing of information within-subject between traits and

environments. This happens, for example, when predicting

genetic values for an unmeasured trait for individuals with

records for other traits (or environments, this was labeled as CV2

in Burgue~no et al. 2012). On the other hand, for the prediction of

genetic values for subjects that do not have any records (labeled

as CV1 in Burgue~no et al. 2012), multitrait models do not consis-

tently outperform predictions derived from single-trait models.

Data availability
The data sets are included with the BGLR package, which is freely

available in the CRAN website, https://cran.r-project.org/web/

packages/BGLR/index.html and also in our GitHub web site,

https://github.com/gdlc/BGLR-R.
Supplemental material is available at GENETICS online.
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