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Abstract

Blood clots form at the site of vascular injury to seal the wound and prevent bleeding. Clots 

are in tension as they perform their biological functions and withstand hydrodynamic forces of 

blood flow, vessel wall fluctuations, extravascular muscle contraction and other forces. There 

are several mechanisms that generate tension in a blood clot, of which the most well-known 

is the contraction/retraction caused by activated platelets. Here we show through experiments 

and modeling that clot tension is generated by the polymerization of fibrin. Our mathematical 

model is built on the hypothesis that the shape of fibrin monomers having two-fold symmetry 

and off-axis binding sites is ultimately the source of inherent tension in individual fibers and the 

clot. As the diameter of a fiber grows during polymerization the fibrin monomers must suffer 

axial twisting deformation so that they remain in register to form the half-staggered arrangement 

characteristic of fibrin protofibrils. This deformation results in a pre-strain that causes fiber 

and network tension. Our results for the pre-strain in single fibrin fibers is in agreement with 

experiments that measured it by cutting fibers and measuring their relaxed length. We connect 

the mechanics of a fiber to that of the network using the 8-chain model of polymer elasticity. By 

combining this with a continuum model of swellable elastomers we can compute the evolution 

of tension in a constrained fibrin gel. The temporal evolution and tensile stresses predicted by 

this model are in qualitative agreement with experimental measurements of the inherent tension of 
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fibrin clots polymerized between two fixed rheometer plates. These experiments also revealed that 

increasing thrombin concentration leads to increasing internal tension in the fibrin network. Our 

model may be extended to account for other mechanisms that generate pre-strains in individual 

fibers and cause tension in three-dimensional proteinaceous polymeric networks.
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1. Introduction

Blood clots are formed at the sites of vessel wall injuries to seal or plug the damage and 

stem bleeding. Clots result from multiple reactions that involve blood cells and plasma 

components, including fibrinogen, the soluble protein converted enzymatically to insoluble 

fibrin (Weisel and Litvinov, 2017). A three-dimensional polymeric fibrin network comprises 

the scaffold of a blood clot and, in combination with embedded platelets and red blood cells 

(Chernysh et al., 2020), largely determines the clot’s biological and mechanical properties.

To fulfill its biomechanical function and prevent or stop bleeding, the blood clot and the 

fibrin scaffold must have certain mechanical resilience to be able to withstand hydrodynamic 

forces of blood flow, pulsation of a vessel wall, extravascular muscle contraction, and 

more (Litvinov and Weisel, 2017). Among many factors that contribute to the mechanical 

behavior of fibrin, one of the least studied is the physiological tension of the fibrin network 

generated by at least two mechanisms. The most apparent and well-studied is the external 

traction and compression of fibrin clots driven by activated platelets, with each individual 

platelet exerting contractile forces on the order of tens of nano-Newtons on adjacent 

fibrin fibers (Kim et al., 2017; Lam et al., 2011; Pathare et al., 2021; Sun et al., 2022). 

However, there is strong evidence that fibrin clots generate inherent (internal or intrinsic) 

tension unrelated to platelet contractility or any other external mechanical perturbations. For 

example, the individual hydrated fibrin fibers observed in a light microscope are straight, not 

sinuous, suggesting that each fiber is under inherent tension (Britton et al., 2019). Tension 

of individual fibrin fibers was introduced in Weisel et al. (1987), and their elasticity has 

been shown and quantified in AFM pulling experiments (Liu et al., 2010) and by active 

flexing or stretching a separate fibrin fiber using optical tweezers (Collet et al., 2005). 

Finally, the inherent fibrin fiber tension has been established directly by severing these fibers 

and watching them retract (Cone et al., 2020). If a great number of such taut individual 

fibers form a three-dimensional network, then the entire network must also be under tension. 

From the general theory of polymer mechanics, tension is self-generated in the polymers 

that possess some degree of non-uniformity and thermodynamic instability of the major 

structural elements (Zhang et al., 1991; Li et al., 2014). The complex spatial axial and 

lateral packing of the fibrin monomers and oligomers dictates their deviation (stretching) 

from the relaxed and stable conformational state that provides a fundamental structural and 

thermodynamic basis for the existence of inherent tension of fibrin networks (Torbet et al., 

1981; Caracciolo et al., 2003; Yeromonahos et al., 2010; Portale and Torbet, 2018; Jansen et 

al., 2020; Weisel et al., 1983; Weisel, 1986).
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The inherent tension of fibrin clots has a number of conceivable biological implications. 

First, it may comprise a thermodynamic mechanism to control the diameter of fibrin 

fibers, as the lateral aggregation of protofibrils stops when the protofibril stretching energy 

surpasses the energy of bonding (Weisel et al., 1987). Since fiber diameter is related to 

network porosity, fiber length, branch point density, etc., the inherent tension of fibrin 

clots may modulate the overall network structure. Second, the inherent tension in fibrin 

fibers can affect the rate of fibrinolysis both at the individual fiber level (Hudson, 2017; 

Li et al., 2017a; Cone et al., 2020) and in whole clot (Varjú et al., 2011) because 

susceptibility of fibrin to fibrinolytic enzymes depends strongly on the mechanical tension 

of the proteinaceous fibrous substrate. In aggregate, modulation of the structure of a fibrin 

network along with the tension of fibers can affect the mechanical and enzymatic stability of 

entire blood clots and thrombi that determine the course and outcomes of various hemostatic 

disorders (Litvinov and Weisel, 2017; Feller et al., 2022). Notably, the magnitude of inherent 

tension in fibrin networks should be quite variable since it must depend on multiple local 

and systemic influences that determine fibrin polymerization, including physiological and 

pathological variations in blood composition.

Here, our goal is to construct a mathematical model for the evolution of tension in isotropic 

fibrin networks by accounting for the kinetics of the fibrin polymerization reaction that 

regulates the size and structure of the fibrin fibers in a network model, accounting for the 

idea in Weisel et al. (1987) that monomers make a twisted protofibril, and the aggregation 

in register with a 22.5 nm repeat introduces tension. In the following we first describe 

experiments for the measurement of tension in fibrin networks during polymerization and a 

model for capturing the evolution of tension in a fibrin gel. We show how tension develops 

in a polymerizing fibrin fiber as its diameter increases, then use this information in a 

continuum model to predict the evolution of tension in a constrained fibrin clot.

2. Materials and methods

2.1. Sample preparation

Citrated apheresis platelet poor plasma (PPP) was obtained from 25 de-identified donors 

from discarded blood bank donations. Donors were consented in accordance with the 

University of Pennsylvania and State University of New York Stony Brook Blood Blank 

guidelines. Individual PPP samples were frozen at −65 °C, thawed (only once), pooled, 

filtered, and then aliquoted and refrozen at −80 °C. The fibrinogen concentration in the final 

PPP was 2.7 ± 0.2 mg/mL. For each testing method, a PPP aliquote was warmed to 37 °C 

and clots were formed, through the addition of 20 mM calcium chloride and 0.2 U/mL or 1 

U/mL human thrombin (final concentration, Sigma Aldrich). Immediately after initiation of 

clotting, the plasma was used in dynamic mechanical rheometer testing or optical turbidity 

testing to follow clot formation.

2.2. Mechanical rheometer testing

A Malvern Kinexus Ultra rheometer was used to analyze the inherent tensile force generated 

during fibrin polymerization in clotting plasma. Plasma samples were activated, mixed, and 

960 μL of the sample was quickly transferred to the surface of the lower horizontal plate of 
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the rheometer. After the upper plate came into contact with the activated plasma sample, the 

sample was surrounded with 300 μL of mineral oil to prevent drying during the test (see Fig. 

1). An oscillation shear strain test was performed on each plasma clot sample, at 0.001 Hz 

and 0.001% shear strain using a 40-mm parallel plate, a 0.70 mm gap and 2 s sampling rate 

for 1 h. The rheometer was equipped with a normal force sensor with a minimum detectable 

force of 0.001 N and a resolution of 0.5 mN. The normal/perpendicular force generated 

during formation of a plasma clot was measured as the force pushing (positive) or pulling 

(negative or tensile force) on the upper plate of the rheometer as a function of time. Normal 

force was converted to normal pressure using the area of the 40-mm diameter upper plate, 

then data was shifted to start at zero pascals at the start of the experiment. Pressure leveled 

off at ~1000 s, and was then normalized to zero or to the unclotted control plasma sample at 

this point to examine differences in the tensile pressure generated by each sample after this 

time point. At least four replicates were run for each sample.

2.3. Data analysis

To ascertain the inherent tensile force generated during the clot formation process, the 

normal pressure measured by the rheometer must be corrected for some artifacts and 

adjusted to 0 at time = 0. To make these corrections, we used unclotted plasma (without 

thrombin) as a control, since there will be no force generated. In order to isolate the changes 

in normal pressure due to the inherent tension and remove effects related to surface tension 

of the liquid phase of the sample, the average normal pressure values for unclotted plasma 

were subtracted from the individual clotted samples. Normal pressure was shifted to 0 

for time = 0 and the relative changes in normal pressure we assessed over the course of 

time. The normalized pressure was relatively unchanged until ~ 1000 s. At this time point, 

a change in magnitude in the negative direction was observed, representing the inherent 

tension developed as the clot forms. First order differential for each sample was calculated 

with GraphPad prism. The point at which the first order differential first crossed the x-axis 

indicated the beginning of decreasing normal pressure (tension generation) in each sample. 

The green shaded region in Fig. 2(a) includes the time points where each sample crossed 

the x-axis first (between 0–1000 s). The second point at which they crossed the x-axis 

indicates when the slope became 0 and normal pressure plateaued for the samples and no 

more tension was generated. The red shaded region in Fig. 2(a) includes the time points 

where each sample crossed the x-axis the second time (between 1800–2700 s). Each sample 

was individually analyzed to determine the change in pressure across this time period as well 

as the rate of pressure generation during the period. The absolute pressure generated was 

calculated by taking the difference between the beginning pressure values within the initial 

no-tension region and the final pressure values in the plateau region. A linear regression 

analysis was performed in this region to determine the rate of force generation.

2.4. Dynamic optical turbidity testing

A Molecular Devices Spectramax Plus plate reader was used to analyze the dynamic optical 

density of clotting plasma. Following initiation of clotting 100 μL plasma samples were 

transferred to a clear bottom 96-well plate, where surrounding wells were filled with 

distilled water to prevent drying of the clots. Turbidity measurements were taken at 405 
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nm and 37 °C every 15 s to track clot formation over the course of 90 min. Four replicates 

were run for each sample.

2.5. Statistical analyses

All statistical analyses were performed using GraphPad Prism 9.0. One sample t-test was 

used to determine the significance of the slope of force generation and amount of normal 

force produced by clotted blood plasma compared to an unclotted control at zero force. All 

data are represented as mean ± standard error of the mean unless otherwise noted. * p < 

0.05, ***p ≤ 0.01, and lack of significant differences between samples is indicated by no bar 

above the samples graphed.

3. Experimental results

The generation of normal (tensile) stress was measured in activated plasma to determine 

the inherent tension that is produced by the fibrin network during the clotting process. The 

clot formation kinetics, measured with turbidity, showed that clotting began at near 0 s with 

thrombin added at 1.0 U/mL and 600 s with 0.2 U/mL thrombin with both clots fully formed 

near 1000 s (Fig. 2(b)). The rate of tensile stress generation was higher in 1 U/mL thrombin 

samples (−0.001804 Pa/s, p < 0.001) than 0.2 U/mL thrombin samples (−0.001667 Pa/s) 

(Fig. 2(c)). The directionality of these slopes indicates the generation of a negative normal 

pressure, which corresponds to the inherent tension of the polymerizing fibrin network. 

The inherent tension was determined as the absolute magnitude of this force for samples 

normalized to the unclotted plasma. Our results reveal that clots formed at a higher thrombin 

concentration (1 U/mL) generated a higher inherent tensile force (−5.45 Pa relative to the 

unclotted plasma sample, p < 0.05) compared to the clots formed with 0.2 U/mL thrombin 

(−2.72 Pa) (Fig. 2(d)).

4. Theoretical model

Here we give a brief overview of the mathematical model that will be developed in 

the following sections, as well as some of the underlying motivation. The basis of this 

mathematical model is that each fiber making up the fibrin network is under tension, and 

the tension increases as the fiber diameter increases due to polymerization. The existence 

of tension in fibrin fibers has been demonstrated by cutting individual fibers and observing 

their retraction (Cone et al., 2020). The origin of tension in fibrin fibers may have to do 

with the spatial geometry of monomeric fibrin and oligomeric protofibrils (Weisel et al., 

1987; Weisel, 1987). The protofibrils making up a fibrin fiber are twisted into a helical 

shape in their stress-free state due to the spatial arrangement of the symmetrical rod-like 

fibrin monomers that polymerize axially and laterally (see Figs. 3(a) and 3(b)). When the 

protofibrils come together to form a fiber, the molecules making up a protofibril must be in 

register (Weisel et al., 1987; Medved et al., 1990), or properly aligned perpendicularly, in 

order for the linkages between them to form properly (see Figs. 3(c) and 3(d)). However, 

as the diameter of the fiber increases, the stress-free helix must deform in order for the 

molecules to be in register (see Fig. 3(d)), leading to some geometric frustration from the 

opposing forces (Grason, 2013; Atkinson et al., 2021). This causes strain in the helical 
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protofibrils and induces stress. This stress is ultimately responsible for the tension in a fibrin 

fiber.

No models exist for quantifying the tension in a fibrin fiber, let alone as a function of its 

diameter. Here we build such a model by analyzing the deformation of helical protofibrils 

and considering the change in radius and pitch of a helical rod. The evolution of the diameter 

of a fiber is given by a system of ordinary differential equations, based on Weisel and 

Nagaswami (1992), which track the concentrations of various species as the polymerization 

reaction proceeds. The helical rod model for a fibrin fiber then outputs the tension in an 

individual constrained fiber as a function of its (evolving) diameter. We show how a single 

fiber under tension relaxes when the constraint is removed; this mimics recent experiments 

in which individual fibers are cut and allowed to relax to determine their pre-strain (Cone 

et al., 2020). Next, we connect the mechanics of a single fiber to the constitutive response 

of a network using the 8-chain model of polymer elasticity (Arruda and Boyce, 1993; Qi et 

al., 2006; Brown et al., 2009; Purohit et al., 2011). We then use a continuum mechanical 

model of swellable elastomers (Chester and Anand, 2010) to predict the network tension as a 

function of time in a constrained fibrin gel. Initially we let the network solid volume fraction 

increase while holding constant the number of fibers per unit reference volume, and then we 

hold constant the network solid volume fraction to better mimic experiments.

4.1. Fibrin network polymerization model

Based on the paper of Weisel and Nagaswami (1992), the set of differential equations 

modeling the polymerization of a fibrin network, beginning with a concentration of 

fibrinogen, is

d fA
dt = − kA fA (1)

d f1
dt = − kpi f1 f1 + f1 ∑

i = 1

lagg
fi − kpg[f] fn + kA fA (2)

d fj
dt = kpi ∑

i = 1

j
2

fi fj − i − fj fj − fj ∑
i = 1

lagg
fi − kpg fn fj  ∀j ∈ 2, lagg (3)

d fn
dt = kpi ∑

j = 1

lagg + 1
2

fj + flagg + 1 − j ∑
i = lagg + 1 − j

lagg
fi − 2kfi fn fn

− kfg fr fn

(4)
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d fr
dt = kfi fn fn − kfA fr fr (5)

d fn
tot

dt = 2kfi fn fn + kfg fr fn + kfA fr fr (6)

d cfn
dt = kpi ∑

i = 1

lagg
lagg + i ∑

j = i

lagg + i
2

fj flagg + i − j + kpg fn ∑
i = 1

lagg
fi

− kfi fn cfn − kfg fr cfn

(7)

d cfr
dt = 2kfi fn cfn + kfg fr cfn + kfA fr fr (8)

m = fn
tot

fr
, (9)

where fA represents fibrinogen, f1 represents fibrin monomers, fi represent fibrin oligomers 

comprised of i monomers, fn represent protofibrils, fr represent fibrin fibers, fn
tot  represents 

total protofibrils in fibers, cfn  represents total fibrin (monomers) in protofibrils, cfr
represents total fibrin in fibers, and, m is the average number of protofibrils per fiber 

cross-sectional area (see Appendix A).

The parameters in this system are as follows:

• lagg + 1, the minimum length for protofibrils to be capable of lateral aggregation: 

Since the length of protofibrils is about 500 nm (Weisel and Litvinov, 2017; 

Chernysh et al., 2011) and the half-staggered length of monomers is about 22.5 

nm (Weisel et al., 1987; Weisel and Litvinov, 2017; Chernysh et al., 2011; 

Erickson and Fowler, 1983; Yermolenko et al., 2011), and thus the number of 

fibrin monomers in protofibrils are about 20 (Weisel and Litvinov, 2017), lagg = 

20 is chosen.

• fA0, the initial concentration of fibrin(ogen): fA0 = 2.8229 mg/mL is chosen to 

match the initial fibrin(ogen) concentration value of 5 × 1018 molecules/L of 

Weisel and Nagaswami (1992) (the experimental concentration used in Section 

2.1 was 2.7 mg/mL, but as can be seen from Fig. 5(a), this difference does not 

have a large effect on the results).

• kA, the rate of fibrinopeptide A cleavage to convert fibrinogen to fibrin 

monomers: kA = 1 s−1.
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• kpi, the rate of association of fibrin monomers to yield small oligomers and 

initiate protofibril formation: kpi = 6.0 × 10−20 L/molecule s.

• kpg, the rate of protofibril growth in length by longitudinal association with 

monomers or shorter oligomers: kpg = 1.4 × 10−17 L/molecule s.

• kfi, the rate of protofibril lateral aggregation to initiate a fiber: kfi = 1.0 × 10−20 

L/molecule s.

• kfg, the rate of fiber growth by association with additional protofibrils: kfg = 2.0 

× 10−16 L/molecule s.

• kfA, the rate of lateral aggregation of fibers: the value kfA = 1.0 × 10−19 L/

molecule s is chosen to be in a similar range as the other rate constants.

The rate constants were selected to be similarly valued to those used by Weisel and 

Nagaswami (1992), and the conditions kpi < kpg and kfi < kfg in Weisel and Nagaswami 

(1992) were ensured.

The output parameter that is most important for this context is m, the average number of 

protofibrils per fiber cross-sectional area, since that is the one from which the radius of the 

fiber is estimated (see Section 4.2). For the parameter choice given above, the evolution of m 
over time can be seen in Fig. 4.

To study the effect of each parameter on the evolution of m over time, we ran the 

calculations for a 20% change in each parameter and plotted the results together (see Fig. 5). 

As can be seen in Fig. 5(a), a 20% change in the initial concentration of fibrin(ogen) affects 

the slope of the increase in thickness: a larger fA0 causes a greater slope. Similarly, as can be 

seen in Fig. 5(b), lagg also affects the slope of the increase in thickness, but in the opposite 

way: a larger lagg results in a smaller slope. In Fig. 5(c), it can be seen that small changes 

in kA have only a very small effect similar to lagg. Fig. 5(d) shows that small changes in 

kpi have a similar effect as fA0, whereas Fig. 5(e) depicts that small changes in kpg have a 

similar effect as lagg. Fig. 5(f) demonstrates that small changes in kfi result in changes in the 

value of the asymptotic limit plateau region of the average number of protofibrils per fiber 

m: smaller values of kfi yield larger values of the limit. In contrast, Fig. 5(g) shows that kfg 

has the opposite effect: smaller values of kfg yield smaller values of the limit. Finally, Fig. 

5(h) depicts that kfA has a small affect on the slope of the asymptotic limit plateau region of 

m: larger values of kfA result in larger slopes in the asymptotic limit plateau region of m.

As noted above, the rate constants kfi and kfg control the value of the asymptotic limit 

plateau region. These rate constants are likely related to the energy barrier that must 

be surmounted by protofibrils laterally attaching to each other and to existing fibers. 

Protofibrils must deform in order for their bonding sites to align with those on the perimeter 

of a fiber, and the protofibrils must deform more as the fiber radius increases (as shown 

later). Once the energy required to deform the protofibril to align its binding sites exceeds 

the energy binding the protofibril to the fiber, protofibrils will no longer laterally aggregate 

onto the fiber. As these binding energies are likely related to the rate constant kfg for 

growing fibers through lateral aggregation of protofibrils, the rate of lateral aggregation of 
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protofibrils onto a fiber will decrease as the fiber radius increases, and the rate of increase of 

the number of protofibrils per fiber cross-section will also be reduced. Thus, in theory, the 

rate constant kfg should decrease as the fiber radius increases, but we leave it as a constant 

here because our main focus is on the development of tension in a polymerizing fibrin gel.

4.2. Fiber radius as a function of fibrin polymerization time

If the radius of the region occupied by a single protofibril is given as rm, then the cross-

sectional area occupied by a single protofibril is

a0 = πrm2 . (10)

Similarly, if the radius of a fiber is R, then the cross-sectional area of a fiber is given by

Afiber = πR2 . (11)

Since the average number of protofibrils per fiber is given above as m,

Afiber = a0 m, (12)

which gives us

πR2 = πrm2  m, (13)

or

R(t) = rm m(t) . (14)

This is similar to the expression derived in Palmer and Boyce (2008). This derivation 

assumes a uniform density of protofibrils per fiber cross-sectional area. The simplicity 

of this assumption enables concrete calculations, but there is evidence of non-uniform 

protofibril density (Yeromonahos et al., 2010; Yermolenko et al., 2011; Yang et al., 2000; 

Guthold et al., 2004; Li et al., 2016, 2017b) in the fiber cross-section. See Appendix B 

for a quantitative discussion of the ramifications of non-uniform protofibril density. The 

polymerization parameters (see Section 4.1) which most directly control the plateau value of 

R(t) are kfi and kfg.

4.3. Tensile force in a fiber

It has been observed (Weisel et al., 1987; Medved et al., 1990; Zhmurov et al., 2016, 

2018) that protofibrils and fibrin fibers are comprised of smaller longitudinal units helically 

twisted around a central stem. Thus, the theory developed in Appendix C is applicable to the 

components of both fibrin fibers and protofibrils. For a helix of radius r and pitch p, the pitch 

angle is given by

tan α = τ
κ = p

2πr (15)
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where τ is the torsion of and κ is the curvature of the helical curve. Additionally, since the 

adjacent helical protofibrils must maintain register required for the 22.5 nm half-staggered 

longitudinal band pattern (Weisel et al., 1987; Weisel and Litvinov, 2017; Chernysh et al., 

2011), the pitch angle must remain constant through the cross-section of the fiber at different 

values of the radius r. As r evolves in time the pitch angle also evolves. For example, the 

pitch angle α = 80.8° calculated from the measured quantities r = 50 nm and p = 1930 nm 

for fibrin fibers (Weisel et al., 1987). The pitch angle α = 85.5° calculated from the extracted 

quantities r = 5 nm and p = 400 nm from simulations of equilibrated molecular structures 

(Zhmurov et al., 2018). Assuming also that there is no twisting moment, so that κ3 = κ03, the 

magnitude of the force in a protofibril can be written as (see Appendix C)

n(r) = −Kb sin α1
r

cos2 α
r − κ0 , (16)

where Kb is a bending modulus and κ0 is a spontaneous curvature, both material properties 

of the helical protofibrils. In a tension-free state with pitch angle αs (for example, in a 

hypothetical free-floating twisted but unstretched fiber) the total force on the fiber is F = 0. 

Since the radial distribution of protofibrils is disordered (Weisel et al., 1987), the number 

density of protofibrils per unit cross-sectional area is assumed to be constant (see Appendix 

B for a discussion of the ramifications of a non-uniform density) and the fiber cross-section 

is taken as being circular of radius R. Then, the force balance in the tension-free fiber 

cross-section is

∫rm

R 2πr
a0

n(r)dr = 0, (17)

where again

a0 = πrm2 (18)

is the area occupied by one protofibril. Since Kb, a0, and αs are constant, the integral 

simplifies to

∫rm

R cos2 αs
r dr = ∫rm

R
κ0dr, (19)

which gives

cos2 αs = κ0 R − rm
ln R

rm

. (20)

This sets the pitch angle of the fiber as a function of the radius R in a stress-free state.

For a fiber of pitch angle αe ≠ αs both twisted and stretched to connect to a network, the 

total force on the fiber is F ≠ 0. In this case, the force balance for the cross-section of a fiber 

under tension is

Spiewak et al. Page 10

J Mech Behav Biomed Mater. Author manuscript; available in PMC 2023 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



∫rm

R 2πr
a0

n(r)dr = F . (21)

This time, the solution of the integral for the force on the fiber is

F = 2π
a0

Kb sin αe κ0 R − rm − cos2 αe ln  R
rm

. (22)

If we define

λe = tan αe
tan αs

(23)

as the elastic stretch of the fiber between the twisted but unstretched state with pitch angle 

αs and the twisted and stretched state with pitch angle αe, then the force on the fiber Eq. 

(22) can be considered as a function of λe and αs(R), where αs(R) is known from Eq. (20), 

and R(t) from Eq. (14) can be calculated from the fiber polymerization equations in Section 

4.1. The result from Eq. (22) for different values of R, in line with previously reported range 

of fibrin fiber radii of 25 – 115 nm (Tutwiler et al., 2020), are shown in Fig. 6 for parameter 

values discussed below. Note that F = 0 at λe = 1 for all values of R. This will be useful 

when we define a stress-free intermediate configuration in the continuum model (see Section 

4.5).

The parameters in Eq. (22) are as follows: a0 = πrm2 , the area of a circular region of radius rm 

occupied by one protofibril (plus surrounding fluid); Kb, the bending modulus of the fiber; 

λe, the stretch of the fiber between the twisted but unstretched state with pitch angle αs 

and the twisted and stretched state with pitch angle αe; and κ0, the spontaneous curvature 

in the stress-free state. The radius of the area occupied by a single protofibril is known 

to be rm = 6.5 nm (Zhmurov et al., 2016, 2018; Jansen et al., 2020). With an estimate of 

the persistence length of protofibrils of Lp = 400 nm (Zhmurov et al., 2018) and a room 

temperature of T = 290 K, the bending modulus can be estimated as Kb = kBTLp ≈ 1600 

pN nm2, where kB is the Boltzmann constant. κ0 can be estimated in two ways: the first way 

utilizes the relationship between curvature and the radius and pitch of a helix Eq. (C.52), 

and the extracted quantities r0 = 5 nm and p0 = 400 nm from simulations of equilibrated 

molecular structures of free protofibrils (Zhmurov et al., 2018), which gives a value κ0 ≈ 

1.226 × 10−3 nm−1; the second way rearranges Eq. (20), uses tan αs = p
2πR , and takes the 

average value of κ0 for the values of R = 50 nm and the range p = 1930±280 nm from 

Weisel et al. (1987), which gives a value ⟨κ0⟩ ≈ 1.235 × 10−3 nm−1. These two estimates are 

in excellent agreement, so the value κ0 = 1.23×10−3 nm−1 is chosen. Using these values, the 

tensile force F in a fiber vs. time t in polymerization can be seen in Fig. 7 with λe = 1.501 

held fixed.

Fig. 7 shows that the force in a fiber is on the order of a few pN while the scale of thermal 

energy kBT at T = 300 K is 4.1 pN nm. However, thermal fluctuations of the fibers turn 

out to be negligible, as can be seen from the following calculation. Thermal fluctuations are 

Spiewak et al. Page 11

J Mech Behav Biomed Mater. Author manuscript; available in PMC 2023 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



largest at the center of a fiber fixed at both ends. With hinged–hinged boundary conditions 

and taking the origin of coordinates as the center of the fiber, the thermal fluctuations can be 

calculated from eqn. (20) of Purohit et al. (2008):

d2 = 2kBT
FL

L2

4 − L Kb
F

sinh2  L
2

F
Kb

sinh  L F
Kb

. (24)

Suppose the length of the fiber is taken as L = 1 μm and the radius is R = 75 nm. The 

Young’s modulus of a fiber can be approximated as E = 15 MPa (Collet et al., 2005) (note 

that this is different from the Young’s modulus estimated in Section 5 where important 

factors in the modulus, such as fiber cross-linking, the packing density of protofibrils in 

fibers, all lateral forces, and the long and largely unstructured αC regions, are neglected). 

Then, the bending modulus of the fiber is Kb = EI, with I = π
4 r4 for a cylindrical cross-

section. There will be more fluctuations if the fiber is not as taut, so it is logical to use a 

force on the lower end, F = 1 pN. Doing so, the thermal fluctuations are d2 ≈ 0.672 nm. 

Therefore, thermal fluctuations here are not so significant. This is consistent with the 

relatively straight fibers seen in confocal images of clots (Litvinov and Weisel, 2017).

4.4. Kinematics of fiber relaxation after transverse cutting

According to the theory presented in Section 4.3, a fiber of length l in a network will relax to 

an equilibrium length l/λe when cut transversely. This assertion can be confirmed by solving 

for the length of a fiber over time as it relaxes. Here, the fiber will be modeled as a rod 

relaxing through a fluid. Similar to Raj and Purohit (2011), the kinematics over time t are 

developed for a rod-like structure of length l in one spatial dimension characterized by the 

reference configuration variable ς. All relevant vectors have the same direction along the 

length of the fiber from ς = 0 to l, so they will be treated as scalars with unit vector direction 

along the length of the fiber. The fiber is assumed to be moving in a fluid, which itself is 

flowing with velocity ν, which causes a drag force. Thus, the spatial position of a material 

point ς at time t is z(t, ς), the velocity of the spatial point is ∂z
∂t , and the stretch

λ = ∂z
∂ς = tan α

tan αe
(25)

depends on both position and time. Here α(ς, t) is the current pitch angle and we have 

chosen the reference state to be the one with uniform stretch λe everywhere. The balance of 

linear momentum for a segment of the fiber in this reference configuration can be written

d
dt∫ς1

ς2
ρ∂z

∂t dς = F t, ς2 − F t, ς1 + ∫ς1

ς2
b(t, ς)dς, (26)

where the linear density ρ is mass per unit length of the fiber, F = F(t, ς) is the force at time t 
acting on material point ς, and b = b(t, ς) is a distributed load per unit length at ς. Here, the 

inertia force is negligible, so ρ = 0. The distributed body force
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b(t, ς) = − dw
∂z(t, ς)

∂t − v (27)

where dw is the effective drag coefficient caused by the drag force exerted on the fiber by 

the surrounding fluid. The effective drag coefficient dw is estimated using results proposed 

by Brennen and Winet (1977) for thin bodies in flow with low Reynolds’ number. These 

results take advantage of thinness to make simplifications to approximate solutions for the 

flow around these bodies, and superimpose fundamental singularities around the body to 

solve for complex flows. Exact solutions can be obtained for mathematically simple bodies 

in mathematically simple flows. Their expression for the axial drag coefficient is

dw = 2πμ
ln l

R + c
, (28)

where μ is the fluid viscosity, l is the length of the body, R is the radius of gyration of the 

body, and c depends on the shape of the body. For a uniform cylinder,

c = ln 2 − 3
2 . (29)

As such, the linear momentum equation becomes

F t, ς2 − F t, ς1 − ∫ς1

ς2
dw

∂z(t, ς)
∂t − v dς, (30)

which can be localized to

∂F (t, ς)
∂ς = dw

∂z(t, ς)
∂t − v (31)

since there are no discontinuities. In this case, the fluid is not flowing, so ν = 0. Therefore, 

the localized balance of linear momentum becomes

∂F (t, ς)
∂ζ = dw

∂z(t, ς)
∂t . (32)

We take the constitutive law for the force F to be the same as in Eq. (22),

F (t, ς) = 2π
a0

Kb sin α  κ0 R − rm − ln  R
rm

 cos2 α , (33)

with

tan α = ∂z
∂ζ tan αe . (34)

For the fiber in question, one end is assumed fixed and the free end has no force. Therefore, 

the boundary conditions are
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z(t, ς = 0) = 0, (35)

F (t, ς = l) = 0. (36)

The initial condition at time t = 0+ is that z(ς) = ς everywhere except very close to the 

end which is severed. At the severed end the tension instantaneously goes to zero. Since we 

integrate the PDE for the relaxation numerically by a finite difference method we give the 

initial condition in discrete form as:

z(t = 0, ς) =
ς, 0 ≤ ς ≤ 0.99l,
tan αs
tan αe

(ς − 0.99l) + 0.99l, 0.99l < ς ≤ l, (37)

where the last (100th) element is assumed to be at zero force.

Eq. (32) can be solved using a finite difference method. Eq. (32) is discretized for numerical 

calculation as

Fi, j + 1
2

− Fi, j − 1
2

Δς = dw
zi + 1, j − zi, j

Δt , (38)

where j denotes the jth node and i denotes the ith time step, Δς is the element length, and 

Δt is the time step. From this, the position of the fiber at the next time increment can be 

calculated by

zi + 1, j =
Fi, j + 1

2
− Fi, j − 1

2
Δζ

Δt
dw

+ zi, j . (39)

The condition

Δt ≤ dw
2ka

(Δς)2, (40)

with the largest slope of the force-stretch relation curve

ka = 2π
a0

Kb tan αe cos3 αs κ0 R − rm + 1 + sin2 αs  ln  R
rm

, (41)

must be satisfied to ensure stability of the method.

The inputs to this partial differential equation are as follows: the fiber radius, R; the pitch 

angle of the fiber in the stress-free state, αs; the pitch angle of the fiber in the state in 

which it is twisted, stretched, and connected to the network, αe; the fluid viscosity, μ; and 

the length of the fiber l when it is connected to the network. The fiber radius R is chosen 

from the final value calculated from the polymerization over time t, Eq. (14), which is in 

line with our previously reported range of fibrin fiber radii of 25–115 nm (Tutwiler et al., 

2020). The pitch angle in the stress-free state αs is calculated as in Eq. (20), and the pitch 
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angle of the fiber αe in its connected state is computed from Eq. (23) with the fixed value 

λe = 1.501 used above in Section 4.3. Since the fluid in which the rod resides predominantly 

behaves like water, μ = 1.002 × 10−3 Pa s, the fluid viscosity of water. The probability 

density function of the fiber lengths P(l) in a network is a log-normal distribution function of 

l with parameters μ = 0.53 and σ = 0.78, as found in Kim et al. (2014). The most probable 

value is l = 0.9 μm, with a likely range of about 0.5 μm ≤ l ≤ 2 μm (see also Appendix D). 

Fig. 8 depicts the length z(t, ς = l) of the fiber relaxing over time t, with R = 78 nm, tan αs 

= 5.22, tan αe = 7.84, λe = 1.501, and l = 0.5 μm. For λe = 1.501, the fiber relaxes to the 

length 0.34 μm in time tf = 0.12 ms from Eq. (32), in excellent agreement with the length 

l/λe = 0.33 μm from the theory proposed in Section 4.3. Relaxation time tf was taken as the 

amount of time required to reach the expected length l/λe ±1% from the theory proposed in 

Section 4.3. Relaxation times and lengths, both calculated from Eq. (32) and from l/λe from 

the theory proposed in Section 4.3, for different initial lengths l are presented in table Table 

1.

Studies such as Hudson et al. (2013) (specifically as interpreted by Cone et al. (2020)) 

demonstrate that fibrin fibers recoil in a timescale on the order of milliseconds or even 

submilliseconds. The relaxation times tf given by the theory developed here agree with the 

millisecond and submillisecond recoil times presented by Hudson et al. (2013). Additionally, 

recent works of Cone et al. (2020) have also measured lengths of individual fibers from 

fibrin networks prior to cleavage and the subsequent fragments, and calculated the average 

prestrain value as ⟨ε⟩ = 23 ± 11%. The prestrain from the model presented here can be 

calculated as

ε = 1 − 1
λe

. (42)

With the value of λe = 1.501 calculated from the mechanisms in Section 4.5, the prestrain 

is ε = 33%. This value is in excellent agreement with the prestrain measured by Cone et al. 

(2020). This suggests that our assumption that λe ≈ 1.5 is reasonable.

4.5. Continuum model of fibrin gel

Consider a hypothetical free fibrin fiber polymerizing in space, beginning as a string of 

length L of protofibrils in this initial configuration. As it is not attached to any other fibers, 

such an imaginary fiber would not be constrained by outside agents (note that an actual 

fibrin fiber would polymerize attached to other fibers in a network and would thus be under 

tension). As polymerization of this imaginary fiber proceeds, protofibrils aggregate laterally 

around the initial protofibril. If the fiber is not constrained in any way, the length of the 

fiber will decrease as the radius increases, as outer protofibrils stretch and protofibrils near 

the center contract in order for the protofibrils to maintain register required for the 22.5 

nm half-staggered pattern (Weisel et al., 1987; Weisel and Litvinov, 2017; Chernysh et al., 

2011; Weisel, 1986). Let us assume that the stretch of this fiber (with respect to the initial 

configuration of length L) is

λs(t) ≤ 1, (43)
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where t is the elapsed time since the start of polymerization (see Section 4.1). If there was an 

unconstrained isotropic network of such fibers which we describe as a continuum then this 

network will shrink compared to its configuration at t = 0 and the deformation gradient will 

be given by:

Fs(t) = λs(t)I . (44)

Following the framework developed in Chester and Anand (2010) we will call this state of 

the continuum as an intermediate stress-free configuration. In this state, the length of the 

fibers is λsL, and the fibers are twisted helically but are not under tension. Imagine next that 

the network was actually formed between two rheometer plates whose normals are in the 

z-direction. If the distance between the plates is not allowed to change then the network is 

constrained and it will pull on the plates as the fiber diameter increases. Accordingly, there 

is a force along the ez direction, and there are zero forces in the ex and ey directions. Thus, 

due to this constraint, the fibers will be in a twisted and stretched state and the continuum 

representing the network has stretches λex(t), λey(t), and λez(t) measured with respect to the 

intermediate state, giving a deformation gradient

Fe(t) = ∂xe
∂xs

, (45)

where xe is the position in the fully deformed configuration of a particle whose position in 

the intermediate configuration is xs, and the elastic right Cauchy–Green tensor is

Ce = Fe
TFe =

λex
2 0 0

0 λey
2 0

0 0 λez
2

. (46)

The total deformation gradient is then

F(t) = Fe(t)Fs(t) . (47)

Next, we need to give an expression for the stored energy density in the continuum as a 

function of F. To this end, we will use the 8-chain model proposed in Arruda and Boyce 

(1993), Qi et al. (2006) and Bischoff et al. (2001). This model was shown to describe fibrin 

networks (Brown et al., 2009; Purohit et al., 2011), rubbers and elastomers (Arruda and 

Boyce, 1993; Bischoff et al., 2001), actin filament networks (Palmer and Boyce, 2008), and 

other random networks. In Brown et al. (2009) the stored energy density had two parts — 

(a) due to the deformation of the fibrin fibers, for which we use the Arruda–Boyce 8-chain 

model (Arruda and Boyce, 1993), and (b) due to volumetric deformation that the 8-chain 

model cannot capture for which we use a bulk-modulus. In the 8-chain model, the network 

is represented by a cube of length a in the reference (undeformed) configuration with eight 

fibers (or chains) of length
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L = 3
2 a (48)

connecting each of the vertices to the center of the cube.

If the sides of the cube are parallel to the principal coordinates of the deformation, then after 

the deformation the length of each fiber is λe(t)λs(t)L, where

λe = λex
2 + λey

2 + λez
2

3 . (49)

If the strain energy per unit reference length of the fiber in the intermediate configuration 

due to the elastic deformation is G(λe), then the stored energy in each fiber is G(λe)λsL, and 

the force–extension relation of a fiber is

F λe = dG λe
dλe

. (50)

The contribution of fiber deformation to the total strain energy per unit volume is 
v

λs3
λsLG λe , where

v = vnd = 3 3
L3 (51)

is the density of fibers in the reference configuration. Next, we need to account for the 

energy of volumetric deformation that is not captured by the 8-chain model. If the volume 

of the cube in the intermediate configuration is Vs and the volume change of the cube to the 

final configuration is ΔV, then

ΔV
V s

= λexλeyλez − 1. (52)

The strain energy per unit intermediate volume due to this volumetric deformation is 

denoted as g(λexλeyλez). Thus, the strain energy density per unit volume of the cube in 

the intermediate configuration is given by

Ue λex, λey, λez = v
λs

3λsLG λe + g λexλeyλez . (53)

By observing that the strain energy density in the reference configuration U is related to the 

strain energy density in the intermediate configuration by

U = λs
3Ue, (54)

the strain energy density in the intermediate configuration can be converted into the strain 

energy density in the reference configuration as
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U λex, λey, λez, λs = vλsLG λe + λs
3g λexλeyλez . (55)

Having described the kinematics and energetics of the continuum in this way we now want 

to enforce equilibrium. A comprehensive continuum mechanical theory to do this exercise 

for gels is given in Chester and Anand (2010). We refer the reader to Chester and Anand 

(2010) for detailed derivations of the equations used below. Similar to the analyses in 

Chester and Anand (2010), the second Piola–Kirchhoff stress can be written

Te = 2Fe
∂U
∂Ce

(56)

TR = 2Fe
∂U
∂Ce

Fs
−T , (57)

where TR is the reference Piola–Kirchhoff stress that satisfies the equilibrium equation

Div TR = 0 (58)

in the reference configuration. Using our expression for the stored energy function we get,

Te = vλsL
3λe

λex 0 0
0 λey 0
0 0 λez

F λe + λs
3f λexλeyλez ×

1
λex

0 0

0 1
λey

0

0 0 1
λez

λexλeyλez (59)

TR = vL
3λe

λex 0 0
0 λey 0
0 0 λez

F λe + λs
2f λexλeyλez ×

1
λex

0 0

0 1
λey

0

0 0 1
λez

λexλeyλez . (60)

where f ΔV
V s

= g′ ΔV
V s

. It should be noted that the shear components of Te and TR are all 0 

in principal coordinates. Since there are no forces or constraints applied on the fibers in the 

intermediate configuration, it is reasonable to assume F(1) = f(1) = 0.

In the present case with a network polymerizing in between fixed rheometer plates with 

surfaces perpendicular to the axial ez direction, forces are applied only in the axial ez 

direction, and

TRxx = TRyy = 0. (61)
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Due to isotropy,

λex = λey = λ* (62)

are also expected, and so

λx = λy = λ*λs (63)

λz = λezλs . (64)

Since during polymerization the rheometer plates are fixed,

λz = 1. (65)

Hence,

λez = 1
λs

. (66)

As such, equilibrium in terms of the Piola–Kirchhoff stresses reduce to the following two 

equations:

0 = vL
3λe

λ*F λe + λsλ*f
λ*

2

λs
(67)

TRzz = vL
3λeλs

F λe + λs
2λ*

2f
λ*

2

λs
, (68)

for the two unknowns λ* and TRzz, where now

λe =
2λ*

2λs
2 + 1

3λs
2 . (69)

The network stress TRzz can be multiplied by the area of the rheometer plate to get the force 

exerted on the network due to polymerization.

The unknowns in this model are as follows: L, the length of the fiber in the imaginary 

reference configuration; F(λe), the force-stretch relation of a fiber; f, the relationship 

between volumetric strain and pressure; λs, the stretch between the imaginary reference 

configuration and the intermediate configuration; λ*, the stretches between the intermediate 

configuration and the final configuration in the directions other than that in the axial eZ 

direction; and, in the fixed solid volume fraction formulation, the solid volume fraction 

ϕs. The length of the fiber L in the imaginary reference configuration can be found by 

calculating
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L = l
λeλs

, (70)

from the distribution found in Kim et al. (2014), as discussed in Section 4.4. The force-

stretch relation of a fiber F(λe) is the same as the force in a fiber Eq. (22) derived in Section 

4.3. The relationship between volumetric strain and pressure is taken to be

f
λ*

2

λs
= K

λ*
2

λs
− 1 , (71)

where K = 1314.67 Pa is a bulk modulus as found in Punter et al. (2020). We have verified 

that a higher bulk modulus value of K = 100 kPa has little effect on the results. The stretch 

between the imaginary reference configuration and the intermediate configuration is taken to 

be

λs(R(t)) = tan αs(R(t))
tan α0

, (72)

where tan αs(R(t)) is given by Eq. (20), and tan α0 = 400
2π × 5  for a single protofibril based on 

Zhmurov et al. (2018). The stretches λ* between the intermediate configuration and the final 

configuration in the directions other than that in the axial ez direction can be solved for each 

elapsed polymerization time t from Eq. (67). This calculated value of λ*, along with the λs 

value, can be used to calculate λe in Eq. (69). In solving these equations, we use λe = 1.501. 

Finally, the network Piola–Kirchhoff stress TRzz can be computed from Eq. (68).

Using the above values and choosing l = 0.5 μm, the Piola–Kirchhoff stress TRzz as a 

function of polymerization time t can be seen in Fig. 9. As the clot polymerizes the tension 

increases, as expected. Steady state is reached by about 1000 s, in qualitative agreement with 

experiments.

To study the effect of the estimated parameter length l and final fiber radius R on the 

network Piola stress TRzz, we ran simulations with different values for each and compared 

the results. Fig. 10(a) depicts the change in Piola stress TRzz for fiber length l values in the 

range 0.5 μm ≤ l ≤ 2.0 μm. As can be seen in Fig. 10(a), larger fiber lengths produce smaller 

network Piola stresses TRzz. Additionally, as can be seen in Fig. 10(b), thicker fibers of the 

same length produce larger network Piola stresses TRzz.

The above discussion held the number of fibers per unit reference volume constant, giving 

a density νnd. If, instead, as in our experiments (see Section 3) and in other experiments 

(Tutwiler et al., 2020), the solid volume fraction ϕs is held constant at ϕs = 0.01 or 1%, a 

value previously estimated for plasma clot fibrin networks (see Figures S3 and S4 in the 

supplement of Tutwiler et al. (2020)), the density becomes

v = vvf = ϕs
πR2λeλsL

. (73)
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In this formulation, the number density of fibers varies as the solid volume fraction is 

held fixed, such that in a given volume there will be fewer but thicker fibers or more 

but thinner fibers to yield the same protein concentration. When using this density in 

the calculations of network stress, results for varying different input parameters are more 

consistent. As can be seen in Fig. 11(a), fibers of different lengths produced the same 

network stress TRzz; this is not the same effect as in Fig. 10(a) which held the number 

density of fibers fixed, where larger fiber lengths produce smaller network Piola stresses 

TRzz. Also, the estimated final values of the tensile stress are in agreement with experimental 

results in Fig. 2. Additionally, as can be observed in Fig. 11(b), thinner fibers of the same 

length produce larger network Piola stresses TRzz, which is also different from the trend 

observed in Fig. 10(b) which held the number density fixed. Recall from our experiments 

that increased thrombin concentration causes decrease in turbidity, which is related to the 

average protofibrils per fiber m (Weisel and Nagaswami, 1992), leading to a decrease in 

R. Thus, these results for ν = νυf are in agreement with the trend expected from Weisel 

and Nagaswami (1992) and the results from our experiments where increased thrombin 

concentration yields increased magnitude of network stress (see Section 3). In a real network 

there is a distribution of fiber lengths, so we accounted for this in rudimentary way in 

Appendix D and showed that the resulting values of final tensile stress are not very different 

from those reported in Fig. 11.

4.6. Summary of full mathematical model

The model can be summarized as follows: The system of ODEs, resulting from the chemical 

rate equations governing fiber polymerization, are as follows:

d fA
dt = − kA fA (74)

d f1
dt = − kpi f1 f1 + f1 ∑

i = 1

lagg
fi − kpg[f] fn + kA fA (75)

d fj
dt = kpi ∑

i = 1

j
2

fi fj − i − fj fj − fj ∑
i = 1

lagg
fi − kpg fn fj ∀j

∈ 2, lagg

(76)

d fn
dt = kpi ∑

j = 1

laag + 1
2

fj + flagg + 1 − j ∑
i = lagg + 1 − j

lagg
fi − 2kfi fn fn

− kfg fr fn

(77)
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d fr
dt = kfi fn fn − kfA fr fr (78)

d fn
tot

dt = 2kfi fn fn + kfg fr fn + kfA fr fr (79)

d cfn
dt = kpi ∑

i = 1

lagg
lagg + i ∑

j = i

lagg + i
2

fj flagg + i − j + kpg fn ∑
i = 1

lagg
fi

− kfi fn cfn − kfg fr cfn

(80)

d cfr
dt = 2kfi fn cfn + kfg fr cfn + kfA fr fr . (81)

with

m = fn
tot

fr
. (82)

The fiber radius R as a function of the average number of protofibrils per fiber cross-section 

m is

R(t) = rm m(t) . (83)

The stretch connecting the imaginary reference configuration and the intermediate 

configuration of a fiber, as a function of fiber radius R, is given by

λs(R(t)) = tan αs(R(t))
tan α0

=

ln R(t)
rm

κ0 R(t) − rm
− 1

400
2π × 5

. (84)

The stretch between the intermediate configuration and the final configuration of the whole 

network in the directions other than that in the axial ez direction λ* is calculated by solving

0 = vL
3λe

λ*F λe + λsλ*f
λ*

2

λs
(85)

using the force in a fiber

F = 2π
a0

Kb sin α κ0 R − rm − cos2 α ln  R
rm

(86)

with
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tan α = λe tan αs = λe
ln  R(t)

rm
κ0 R(t) − rm

− 1, (87)

the stretch between the intermediate configuration and the final configuration

λe =
2λ*

2λs
2 + 1

3λs
2 , (88)

and the relationship between volumetric strain and pressure

f
λ*

2

λs
= K

λ*
2

λs
− 1 . (89)

Then, the network Piola stress can be computed from

TRzz = vL
3λeλs

F λe + λs
2λ*f2 λ*

2

λs
. (90)

The model takes the unknown input parameters initial concentration of fibrinogen fA0, 

rate of fibrinopeptide A cleavage to convert fibrinogen to fibrin monomers kA, the rate of 

association of fibrin monomers to yield small oligomers and initiate protofibril formation 

kpi, the rate of protofibril growth in length by association with oligomers kpg, the rate of 

protofibril aggregation to initiate a fiber kfi, the rate of fiber growth by association with 

additional protofibrils kfg, the rate of interactions between fibers kfA, and initial length of a 

fiber connected in a network l. The model outputs the radius of a polymerizing fiber R(t), 
force on a fiber F, the stretches λs and λe, the relaxed length of a fiber l/λe, and the network 

Piola stress TRzz.

5. Discussion

In this paper we have followed Weisel et al. (1987) and Weisel and Nagaswami (1992) 

and modeled fibrin clot formation – from fibrinogen to fibrin monomers and oligomers 

to protofibrils to fiber formation – by a set of ODEs for the chemical rate of change in 

concentration of the reacting structures of each individual stage. The solution of that system 

of ODEs gives the average number of protofibrils per fiber cross-section as a function of 

polymerization time. Variation of the rate constants involved in the intermediary biochemical 

reactions demonstrates that the two most important stages determining final fiber radius 

are fiber initiation by lateral aggregation of protofibrils and fiber growth by transverse 

association with additional protofibrils. The resulting (final value of) average number of 

protofibrils per fiber cross-sectional area is directly related to the radius of a fiber. Therefore, 

we can calculate how the radius of a fiber evolves in time. This radius is used as an input to 

calculate the evolving tensile force in a fiber, which ultimately determines the tensile force 

in a network constrained between two rheometer plates.
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We assumed that since the radial distribution of protofibrils is disordered (Weisel et al., 

1987; Weisel, 1986), the number density of protofibrils per unit fiber cross-sectional area is 

constant. In particular, we assumed that a single protofibril occupies a circle of radius 6.5 

nm in the fiber cross-section. Thus, if the number of protofibrils in a fiber is known (from 

the solution of the ODEs), the radius of the fiber as a function of time can be calculated. 

The resulting values of the fiber radius are in line with the previously reported range of 

fibrin fiber radii of 25–115 nm (Tutwiler et al., 2020). However, we note that other works 

suggest that the density of protofibrils per fiber cross-sectional area is not constant (Yang et 

al., 2000; Guthold et al., 2004; Yeromonahos et al., 2010; Yermolenko et al., 2011; Li et al., 

2016, 2017b); the number of protofibrils per fiber cross sectional area is proportional to D1.3 

(Guthold et al., 2004) or D1.4±0.2 (Li et al., 2017b), and not D2 as we have used. It has also 

been suggested that the fiber core is more dense than the periphery layers (Li et al., 2017b). 

We used the constant number density assumption in our calculations due to its simplicity 

and also because a specific numerical value (6.5 nm) for the inter-protofibril distance was 

available (Jansen et al., 2020; Zhmurov et al., 2016, 2018). On the other hand, other works 

(Guthold et al., 2004; Li et al., 2017b) provide scaling laws which do not furnish enough 

information to compute actual numerical values of the fiber radius. Additionally, even if a 

more accurate relationship between the number of protofibrils per fiber cross sectional area 

is specified, it will only change the computation of the radius from the average number of 

protofibrils in a fiber and some details of the force in a fiber computation (see additional 

details discussed in Appendix B). Our overall approach of computing the fiber tension 

and the network tension will still remain the same. Furthermore, our simple assumption of 

constant number density of protofibrils per fiber cross-sectional area is able to capture a 

crucial experimental observation that the Young’s modulus of a fibrin fiber decreases with 

increasing radius, as demonstrated below.

Our equation (see Eq. (22)) for the force-stretch relation of a single fiber is derived by 

mathematically describing ideas in Weisel et al. (1987), which trace the origin of tension 

in fibrin fibers to the two-fold axis of symmetry and off-axis binding sites of individual 

fibrin monomers. This causes protofibrils to be helical as clearly seen in the simulations 

of Zhmurov et al. (2018) and images of Medved et al. (1990). If a number of such helical 

protofibrils are to form a fibrin fiber by lateral aggregation then it is necessary that the 

individual monomers be properly aligned. This causes some protofibrils to stretch and others 

to shorten so that there is overall force balance in the cross-section (Weisel et al., 1987). 

We have enforced this force balance in a fiber cross-section by considering the equilibrium 

of each individual helical protofibril, which may have stretched or shortened depending on 

its location in the fiber cross-section. This force balance is expressed as Eq. (22) and the 

radius R of a fiber enters as a parameter in this equation. Starting with the force F in Eq. (22) 

and dividing by the assumed cross sectional area πR2, we get the stress σ in a fiber due to 

external force F. Then, since this stress and the stretch in Eq. (23) are both functions of the 

variable tan αe, the Young’s modulus E of a fiber may be calculated as

E = dσ/dαe
dλe/dαe λe = 1

= 4
a0R2Kbκ0 R − rm sin3αs . (91)
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The results of this equation can be found in Fig. 12, and the trend of decreasing Young’s 

modulus with increasing radius is similar to the trend in Li et al. (2016). There are additional 

contributions to individual fiber modulus, for example fiber cross-linking, the packing 

density of protofibrils in fibers, all lateral forces, and the long and largely unstructured 

αC regions may have significant contribution as well (Li et al., 2016), but we have captured 

the general trend in Fig. 12. While the model is not yet entirely quantitative, incorporating 

neglected factors mentioned above and the dependence of rate constants on the mechanical 

deformations of protofibrils is likely to improve the predictive ability of the model.

The force-stretch relation given by Eqs. (22) and (23) can be combined with the equation of 

motion of a fiber subject to fluid drag to predict the relaxation to equilibrium of a severed 

fibrin fiber. Here we have shown that the relaxation time depends on the fiber length and 

radius and the resulting time scales as well as fiber pre-strains are in excellent agreement 

with the cutting experiments of Cone et al. (2020). Importantly, we made no attempt to 

compare the forces (or stresses) in our calculations with those documented in Cone et al. 

(2020) because the experimental values of the forces are obtained from the strains using a 

Young’s modulus that is different from those calculated in Fig. 12. Also, a simple linear 

relation between stress and strain in a single fibrin fiber may not be appropriate at large 

strains. Finally, we acknowledge that the process of enzymatic cleavage of a fibrin fiber (as 

in Lynch et al. (2022)) is quite complex since one would have to also model the diffusion 

and binding/unbinding of the enzyme together with mechanics of cleavage of individual 

protofibrils. As a fiber is digested, it at least partially maintains its inherent tension (Lynch et 

al., 2022) likely because some of the protofibrils break, but others remain intact. This can be 

accounted for in the balance of forces by having fewer protofibrils in the fiber. However, the 

coupling of fiber mechanics, cleavage kinetics, and enzyme diffusion is a complex problem 

that is beyond the scope of this work.

Finally, we connect the mechanical behavior of a fibrin network to that of individual fibers 

by using the 8-chain model (Arruda and Boyce, 1993; Qi et al., 2006) together with the 

continuum mechanics of swellable gels (Chester and Anand, 2010). We show that the 

inherent tensile stress in polymerizing fibrin networks depends on fiber length, radius, solid 

volume fractions, etc. Our results from the continuum model in Section 4.5 are in agreement 

with the results from experiments in Section 3. The order of magnitude of the inherent 

tension is the same in both experiments and continuum model and steady state is reached by 

around 1000 s in both the model and the experiments. Additionally, our continuum model 

can recover the trend that thinner fibers produce larger network stress for fixed solid volume 

fraction as observed in our experiments coupled with the study of the effect of thrombin 

concentration on turbidity in Weisel and Nagaswami (1992), although the predicted trends 

from the model are weaker than those from experiments.

This trend in Fig. 11(b) that thinner fibers produce larger network stress is not obvious. One 

hypothesis to explain this phenomenon involves the following simplified scenario: imagine 

that two fixed horizontal plates are connected by a “network” consisting of only vertical 

fibers of uniform thickness. Since the fibrin volume fraction is constant irrespective of the 

fiber radius, the total sum of the cross-sectional area of all those fibers will be the same 

whether the fibers are thinner or thicker, but there will be more thinner fibers in such a 
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scenario than if the fibers were thicker. Now, from Eq. (22), the force in a fiber can be 

calculated as a function of the fiber radius, from which the inherent stress in the fiber can be 

computed by dividing by the cross-sectional area of a fiber πR2. If the cross-sectional area 

of a fiber increases faster as the radius increases than does the force in the fiber, the inherent 

stress in the fiber will decrease with radius, and the total “network” stress will decrease with 

fiber radius as well.

This can be better illustrated by the use of concrete examples, such as the three radii in Fig. 

11(b), namely, R = 74 nm, R = 78 nm, and R = 82 nm. For these radii and choosing the 

same fiber length l = 0.5 μm, the resulting fiber stretches λe from using Eq. (73) in Eq. 

(67) are λe = 1.48, λe = 1.50, and λe = 1.52, respectively. With these values and computing 

the pitch angle αe from Eq. (23), the inherent forces in each fiber are, F = 0.78 pN, F = 

0.83 pN, and F = 0.88 pN, respectively. The cross-sectional area of each fiber is, Afiber = 

17200 nm2, Afiber = 19100 nm2, and Afiber = 21100 nm2, respectively, which, combined with 

the inherent forces in the fibers, yields the fiber inherent stresses, σ = 45.4 Pa, σ = 43.5 

Pa, and 41.7 Pa, respectively (see Table 2). It should be noted that these calculations were 

performed in a simplified scenario to illustrate one possible hypothesis, and they do not take 

into account confounding factors such as the isotropic nature of fibrin gels or branch points, 

although they give some physical intuition for the phenomenon.

Our calculation based on the 8-chain model assumes a given constant length of all fibers, 

but this is not the case for real fibrin networks. The constant length we use to compute 

pre-tension should really be interpreted as the average fiber length in a network. We may 

be able to do slightly better by using the probability density function for the fiber lengths 

and computing a probability density for the pre-tension values obtained (see Appendix D). 

However, this still does not account exactly for the different values of pre-tension in each 

fiber of a real fibrin gel, although it does utilize known information about the structure 

of a true fibrin network. A proper accounting of the variation of fiber lengths to predict 

pre-tension in a network will likely require computations that are beyond the scope of the 

research presented in this paper.

Pre-tension in fibrin networks specifically is important because it contributes to the stability 

of the material. Fibrin fiber networks, as well as many other biological networks, have 

connectivity (average number of fibers connected at a junction) below the Maxwell isostatic 

threshold, which, for networks with a large number of elements, is twice the dimensionality 

(Maxwell and Clerk, 1864; Vahabi et al., 2016; Arzash et al., 2019). Thus, if the fiber 

interactions were limited to tension and compression central forces, the network materials 

would be unstable for small deformations and would be floppy rather than rigid (Vahabi et 

al., 2016; Arzash et al., 2019). The presence of pre-tension in fibrin networks, similar to the 

presence of fiber bending in F-actin networks in cytoskeletons (Head et al., 2003), active 

stresses generated by myosin motors in cytoskeletal networks (Koenderink et al., 2009) and 

in fibrin networks in blood clots (Jansen et al., 2013), thermal fluctuations (Qi et al., 2006; 

Su and Purohit, 2012), and osmotic pressure in actin networks (Palmer and Boyce, 2008), 

stabilizes and rigidifies the network material (Vahabi et al., 2016; Arzash et al., 2019).
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Estimations of inherent stress in a fibrin fiber network, as well as of other network material 

properties, will be useful in interpreting experiments performed on blood clots and thrombi, 

in the use of fibrin as a biomaterial – for example, the inherent tension may comprise a 

thermodynamic mechanism to control fiber diameter, and thus modulate the overall network 

structure – and in the application and development of novel methods of treatment of 

thrombotic states such as in mechanical thrombectomy since the susceptibility of fibrin 

to fibrinolytic enzymes depends strongly on the mechanical tension of the proteinaceous 

fibrous substrate (Hudson, 2017; Li et al., 2017a; Cone et al., 2020; Varjú et al., 2011). Thus, 

variation of the tension in fibers and the structure of the fibrin network can affect mechanical 

and enzymatic stability of entire blood clots and thrombi, which determines the course and 

outcome of hemostatic disorders (Litvinov and Weisel, 2017; Feller et al., 2022).

Acknowledgments

We acknowledge support from NSF, USA grant CMMI 1662101, NIH, USA grant R00 HL148646-01, NIH, USA 
grant R01 HL135254, and NIH, USA grant R01 HL 148227.

Data availability

Data will be made available on request.

Appendix A.: Expanded fibrin network polymerization model

Weisel and Nagaswami (1992) propose a system of ordinary differential equations 

(ODEs), to describe the polymerization of fibrin fibers, comprising fibrin network, from 

a fibrinogen solution. The polymerization process they describe consists of the following 

steps — beginning with a concentration of fibrinogen and thrombin (which cleaves the 

A fibrinopeptides from the fibrinogen to create fibrin monomers), association of fibrin 

monomers to form double-stranded half-staggered protofibrils, and then aggregation of 

protofibrils into fibrin fibers, which branch and grow to create the fibrin network gel. Their 

polymerization process includes a minimum length requirement (which we will call lagg + 

1) for protofibrils to be capable of aggregation, which produces the observed lag period 

in the number of protofibrils per fiber. Their model, including the polymerization chemical 

reaction equations and the resulting system of ODEs, for the example of lagg = 10, is given 

as follows (with some modification of the explanatory text only, to better reflect our current 

understanding of fibrin polymerization):

fA
kA f fibrinopeptide A cleavage to convert fibrinogen to monomeric fibrin (A.1)

f + f
kpi f2 fibrin monomers associate to yield small longitudinal oligomers, protofibril precursors (A.2)

f2 + f
kpi f3 (A.3)
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f3 + f
kpi f4 (A.4)

⋮

f9 + f
kpi f10

(A.5)

f10 + f
kpi fn longer oligomers are formed until they reach the length of protofibrils capable of lateral association (A.6)

fn + f
kpg fn protofibrils grow in length (A.7)

fn + fn
kfi fr two protofibrils aggregate laterally to initiate a fiber (A.8)

fr + fn
kfg fr additional protofibrils add to a transversely growing fiber (A.9)

d fA
dt = − kA fA (A.10)

d[f]
dt = kA fA − kpi[f] 2[f] + f2 + f3 + ⋯ + f10 − kpg[f] fn (A.11)

d f2
dt = kpi[f] [f] − f2 (A.12)

d f3
dt = kpi[f] f2 − f3 (A.13)

⋮
d f10

dt = kpi[f] f9 − f10
(A.14)

d fn
dt = kpi[f] f10 − 2kfi fn fn − kfg fr fn (A.15)

d fr
dt = kfi fn fn (A.16)

Spiewak et al. Page 28

J Mech Behav Biomed Mater. Author manuscript; available in PMC 2023 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



d fn
tot

dt = 2kfi fn fn + kfg fr fn (A.17)

d cfn
dt = 11kpi[f] f10 + kpg fn [f] − 2kfi fn cfn − kfg fr cfn

(A.18)

d cfr
dt = 2kfi fn cfn + kfg fr cfn

(A.19)

n =
cfn
fn

(A.20)

m = fn
tot

fr
(A.21)

l =
cfr
fn

tot , (A.22)

where fA represents fibrinogen, f represents fibrin monomers, f2 through f10 represent fibrin 

oligomers comprised of 2 through 10 monomers, fn represent protofibrils, fr represent fibrin 

fibers, fn
tot  represents total protofibrils in fibers, cfn  represents total fibrin [monomers] 

in protofibrils, cfr  represents total fibrin in fibers, n is the average number of fibrin per 

protofibril, m is the average number of protofibrils per fiber, and l is the average length of 

fibers.

Weisel and Nagaswami (1992) also mention that the model should also account for 

longitudinal oligomer–monomer and oligomer–oligomer interactions in the intermediate 

stages of protofibril formation, which are not explicitly accounted for in the above model. 

A logical extension to this, which is also mentioned by Weisel and Nagaswami (1992), 

would be to include protofibril growth due to interactions with oligomers, which is also not 

included in the above model. They additionally describe that a reaction can be included to 

account for fiber–fiber interactions. Taking these additions into account, we can write the 

following chemical polymerization reactions:

fA
kA f1 (A.23)

fi + fj
kpi fi + j i + j < lagg + 1

fn i + j ≥ lagg + 1,    ∀j ∈ i, lagg   ∀i ∈ 1, lagg (A.24)
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fn + fi
kpg fn    ∀i ∈ 1, lagg (A.25)

fn + fn
kfi fr (A.26)

fr + fn
kfg fr (A.27)

fr + fr
kfA fr (A.28)

These polymerization reactions result in the following system of ODEs:

d fA
dt = − kA fA (A.29)

d f1
dt = − kpi f1 f1 + f1 ∑

i = 1

lagg
fi − kpg[f] fn + kA fA (A.30)

d fj
dt = kpi ∑

i = 1

j
2

fi fj − i − fj fj − fj ∑
i = 1

lagg
fi − kpg fn fj   ∀j

∈ 2, lagg

(A.31)

d fn
dt = kpi ∑

j = 1

laag + 1
2

fj + flagg + 1 − j ∑
i = lagg + 1 − j

lagg
fi − 2kfi fn fn

− kfg fr fn

(A.32)

d fr
dt = kfi fn fn − kfA fr fr (A.33)

d fn
tot

dt = 2kfi fn fn + kfg fr fn + kfA fr fr (A.34)
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d cfn
dt = kpi ∑

i = 1

lagg
lagg + i ∑

j = i

lagg + i
2

fj flagg + i − j + kpg fn ∑
i = 1

lagg
fi

− kfi fn cfn − kfg fr cfn

(A.35)

d cfr
dt = 2kfi fn cfn + kfg fr cfn + kfA fr fr . (A.36)

We retain the same definitions

n =
cfn
fn

(A.37)

m = fn
tot

fr
(A.38)

l =
cfr
fn

tot . (A.39)

The parameters in this system are as follows: lagg + 1, the minimum length for protofibrils 

to be capable of aggregation; fA0, the initial concentration of fibrinogen; kA, the rate 

of fibrinopeptide A cleavage to convert fibrinogen to fibrin monomers; kpi, the rate of 

association of fibrin monomers to yield small oligomers and initiate protofibril formation; 

kpg, the rate of protofibril growth in length by association with oligomers; kfi, the rate of 

protofibril aggregation to initiate a fiber; kfg, the rate of fiber growth by association with 

additional protofibrils; and kfA, the rate of lateral interactions between fibers.

Appendix B.: Non-uniform protofibril density

The results presented earlier assumed a uniform density of protofibrils in the fiber cross-

section, which is known to be inaccurate (Yeromonahos et al., 2010; Yermolenko et al., 

2011; Yang et al., 2000; Guthold et al., 2004; Li et al., 2016, 2017b). Here, the modifications 

to the above theory to include a non-uniform density, and the changes in the results 

caused by these modifications, will be discussed. The necessary modifications appear in two 

primary locations: first, the relationship Eq. (14) between fiber radius R and average number 

of protofibrils per fiber cross-section m, will be different; and second, a density function 

must be included in the force balance equations Eqs. (17) and (21), which would also change 

the results from those equations. Since it is known that the density of protofibrils decreases 

closer to the perimeter of a fiber (Yeromonahos et al., 2010; Yermolenko et al., 2011; Yang 

et al., 2000; Guthold et al., 2004; Li et al., 2016, 2017b), this fact must be incorporated into 

the theory.
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To generalize the theory to include non-uniform densities of protofibrils per fiber cross-

section, the density can be described as having a power law relationship:

ϱ(r) = 1
a0

r
rpc

−ℎ
, (B.1)

where rpc is a proportionality constant with the same units as r, which, for the purposes of 

this derivation, will be taken as rpc = 20 nm in order for the calculated fiber radii to be in 

the correct range, but must be determined from experiment (and may also depend on h). h 

= 0 represents uniform density. Recall that a0 = πrm2  is the area occupied by one protofibril 

under the assumption of constant density. Since it is known that the density of protofibrils 

decreases closer to the perimeter of a fiber (Yeromonahos et al., 2010; Yermolenko et al., 

2011; Yang et al., 2000; Guthold et al., 2004; Li et al., 2016, 2017b), h ≥ 0.

Next, the relationship Eq. (14) between the fiber radius R and the average number of 

protofibrils per fiber cross-section m can be rewritten as

m(t) = 1
πrm2

∫
0

R(t)
ϱ(r)2πrdr . (B.2)

This yields

m(t) = 2rpcℎ

rm2
∫

0

R(t)
r1 − ℎdr, (B.3)

which reduces to

m(t) = 2rpcℎ

rm2
R2 − ℎ

2 − ℎ . (B.4)

Since we want m > 0, we will take 0 ≤ h < 2, then

R(t) =
1 − ℎ

2
rpcℎ

1
2 − ℎ

rm

2
2 − ℎ(m(t))

1
2 − ℎ . (B.5)

When h = 0 the result Eq. (14) is recovered. As an example, some experimental results 

showed m ∝ R0.4 as a minimum exponent (Li et al., 2016) which corresponds to h = 1.6. 

Results for selected values of 0 ≤ h < 2 are depicted in Fig. B.13. Note that, as discussed in 

Section 4.1, the polymerization reaction rate constants kfi and kfg can be adjusted to account 

for this change in fiber radius.

Next, the new density function Eq. (B.1) must be included in Eq. (17):

∫rm

R 2πr
a0

ϱ(r)n(r)dr = 0. (B.6)
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Then, the equation becomes

cos2 α∫rm

R
r−1 − ℎdr = κ0∫rm

R
r−ℎdr . (B.7)

Now, the solution to this integral equation also will depend on the value of h > 0. If h = 0, 

then the integral on the left would become

∫rm

R
r−1dr = ln  R

rm
; (B.8)

if h = 1, the above would be the solution for the integral on the right; and if h is anything 

else, then the integral would become

∫rm

R
r−ℎdr = R1 − ℎ − rm1 − ℎ . (B.9)

Thus, the solution is

cos2 αs =

κ0
R − rm
ln R

rm

, ℎ = 0

κ0
ln R

rm
R−1 − rm−1 , ℎ = 1

κ0
R1 − ℎ − rm1 − ℎ

R−ℎ − rm−ℎ , otherwise.

(B.10)

For the value of h = 0, the uniform density assumed previously, this reduces to Eq. (20).
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Fig. B.13. 
Effect of modifying the assumption of uniform density of protofibrils per fiber cross-section 

to be non-uniform. Effect on the fiber radius R. Recall that h = 0 is the uniform density 

assumed in the main text.

Similarly, Eq. (21) would become

F = ∫rm

R 2πr
a0

ϱ(r)n(r)dr, (B.11)

for which the solution is
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F λe, R(t) = 2π
a0

Kb sin αe ×

rpcℎ κ0 R − rm − cos2 αe ln  R
rm

, ℎ = 0

rpcℎ κ0 ln  R
rm

− cos2 αe R−1 − rm−1 , ℎ = 1

rpcℎ κ0 R1 − ℎ − rm1 − ℎ − cos2 αe R−ℎ − rm−ℎ , otherwise.

(B.12)

Again, for h = 0, the uniform density assumed previously, this reduces to Eq. (22).

Appendix C.: Force in helical rods

Since it has been observed (Weisel et al., 1987; Zhmurov et al., 2018) that both protofibrils 

and fibrin fibers are comprised of smaller units helically twisted around a central stem, the 

derivation for the force in a helical fiber is presented here.

A circular helix of radius r and pitch p with right-handed chirality can be described in 

lab-frame Cartesian coordinates as

r(ζ) = r cos(ζ)e1 + r sin(ζ)e2 + p
2π ζe3, (C.1)

and we denote

1
η = dr(ζ)

dζ = r2 + p
2π

2
(C.2)

for simplicity. If s(ζ) is an arc-length coordinate along the contour of the helix, then

s(ζ) = ∫
0

ζ dr(σ)
dσ dσ = ζ

η , (C.3)

and the helix can be rewritten as

r(s) = r cos(ηs)e1 + r sin(ηs)e2 + p
2π ηse3 . (C.4)

The tangent to the helix is given as

t(s) = dr(s)
ds = − rη sin(ηs)e1 + rη cos(ηs)e2 + p

2π ηe3, (C.5)

which is clearly a unit vector since
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|t(s) |2 = η2 r2 + p
2π

2
= 1. (C.6)

We can define the curvature

κ = dt(s)
ds = rη2 (C.7)

and unit normal vector

v(s) = 1
κ

dt(s)
ds = − cos(ηs)e1 − sin(ηs)e2 + 0e3, (C.8)

from which we can also define the unit binormal vector

β(s) = t(s) × v(s) = p
2π η sin(ηs)e1 − p

2π η cos(ηs)e2 + rηe3 (C.9)

and right-handed torsion

τ = (t × v) ⋅ dv
ds = p

2π η2 . (C.10)

(Note that for a helix with left chirality, for example r(s) = r sin(ηs)e1 + r cos(ηs)e2 + p
2π ηse3, 

the right-handed torsion is τ = − p
2π η2, but with the given definitions the difference has no 

other effect.) From here it is clear that

κ2 + τ2 = η2 (C.11)

and thus

r = κ
κ2 + τ2 (C.12)

p
2π = τ

κ2 + τ2 . (C.13)

It can be verified that the three vectors t(s), v(s), and β(s) are orthonormal, and that the 

Frenet–Serret theorem

d
ds

t(s)
v(s)
β(s)

=
0 κ 0

−κ 0 τ
0 −τ 0

t(s)
v(s)
β(s)

(C.14)

holds. As such, it is logical to express the lab-frame in the Frenet frame, using the 

transformations
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t(s)
v(s)
β(s)

=

−rη sin(ηs) rη cos(ηs) p
2π η

−cos(ηs) −sin(ηs) 0
p

2π η sin(ηs) − p
2π η cos(ηs) rη

e1
e2
e3

(C.15)

e1
e2
e3

=

−rη sin(ηs) −cos(ηs) p
2π η sin(ηs)

rη cos(ηs) −sin(ηs) − p
2π η cos(ηs)

p
2π η 0 rη

t(s)
v(s)
β(s)

. (C.16)

Having described the kinematics of a helical rod we now want to examine equilibria with 

curvature κ and torsion τ, both independent of s. It is assumed that the helical rod can carry 

forces and moments and that it is acted upon by body forces and body moments. The goal 

is to find the force and moment in the helical rod, given κ, τ, and the body forces and 

body moments. In the Frenet frame, the body force per unit length on the helix, assumed 

independent of position on the helix s, can be written

f = ftt + fvv + fββ, (C.17)

and the force vector at any point s in the helix can be written

n(s) = ntt + nvv + nββ . (C.18)

The balance of forces requires

dn(s)
ds + f = 0, (C.19)

which, using the Frenet–Serret theorem Eq. (C.14), reduces to

dnt
ds − nvκ + ft = 0 (C.20)

dnv
ds − nβτ + ntκ + fv = 0 (C.21)

dnβ
ds + nvτ + fβ = 0. (C.22)

Differentiating Eq. (C.21) with respect to s, and substituting in for 
dnt
ds  from Eq. (C.20) and 

dnβ
ds  from Eq. (C.22), results in
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d2nv
ds2 + η2nv + τfβ − κft = 0, (C.23)

which has solution

nv(s) = A cos(ηs) + B sin(ηs) − 1
η2 τfβ − κft , (C.24)

where A and B are two constants. Putting Eq. (C.24) into Eqs. (C.20) and (C.22), we have

dnt
ds = Aκ cos(ηs) + Bκ sin(ηs) − κ

η2 τfβ − κft − ft (C.25)

dnβ
ds = − Aτ cos(ηs) − Bτ sin(ηs) + τ

η2 τfβ − κft − fβ, (C.26)

which can be integrated with respect to s to get

nt = Aκ
η sin(ηs) − Bκ

η cos(ηs) − κs
η2 τfβ − κft − fts + Dt (C.27)

nβ = − Aτ
η sin(ηs) + Bτ

η cos(ηs) + τs
η2 τfβ − κft − fβs + Dβ, (C.28)

where Dt and Dβ are arbitrary constants. Substituting Eqs. (C.27), (C.24), and (C.28) into 

Eq. (C.21) yields

fv = τDβ − κDt . (C.29)

It is useful to recast the force balance in the directors di, i = 1, 2, 3 of a material frame in 

the reference configuration of the circular cross-section of the rod comprising the helix. This 

frame is a rotation by an angle

ϕ(s) = κ3 − τ s (C.30)

about the normal vector t, where κ3 is a constant. In this frame,

d1(s)
d2(s)
d3(s)

=
0 cos ϕ sin ϕ
0 −sin ϕ cos ϕ
1 0 0

t(s)
v(s)
β(s)

, (C.31)

and
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t(s)
v(s)
β(s)

=
0 0 1

cos ϕ −sin ϕ 0
sin ϕ cos ϕ 0

d1(s)
d2(s)
d3(s)

. (C.32)

The material frame also has the property

ddi
ds = κ × di,   i = 1, 2, 3, (C.33)

where the curvature vector can be represented

κ = κ1d1 + κ2d2 + κ3d3, (C.34)

or, in the Frenet frame, as

κ = κ1 cos ϕ − κ2 sin ϕ v + κ1 sin ϕ + κ2 cos ϕ β + κ3t (C.35)

= κ3t + κβ, (C.36)

with

κ1 = κ sin  κ3 − τ s (C.37)

κ2 = κ cos  κ3 − τ s (C.38)

κ3 = constant . (C.39)

We next analyze the moments. The balance of moments can be expressed as

dm
ds + t × n + ℓ = 0, (C.40)

where m is the moment at any point on the helix and ℓ is a body moment per unit arc 

length. Following the example of Nizette and Goriely (1999), to relate the moment m and 

the curvature vector κ, we use the constitutive relation from linear elasticity for a rod of 

circular cross section

m = Kb κ1 − κ01 d1 + Kb κ2 − κ02 d2 + Kt κ3 − κ03 d3, (C.41)

where

Kb = E πr4

4 (C.42)

is the bending modulus with E the Young’s modulus of the rod,

Spiewak et al. Page 39

J Mech Behav Biomed Mater. Author manuscript; available in PMC 2023 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Kt = Gπr4

2 (C.43)

is the twisting modulus with G the shear modulus of the rod, and

κ01 = κ0 sin  κ3 − τ s , (C.44)

κ02 = κ0 cos  κ3 − τ s , (C.45)

κ03, and κ0 are the spontaneous curvatures of the helix in the stress-free state. In the Frenet 

frame, the constitutive relation giving the moment m can be written

m = Kb κ − κ0 β + Kt κ3 − κ03 t . (C.46)

As in Nizette and Goriely (1999), we also take the body moment

ℓ = 0 . (C.47)

Now, the balance of moments reduces to the following three equations:

Kt
dκ3
ds = 0 (C.48)

Kt κ3 − κ03 κ − Kb κ − κ0 τ − nβ = 0 (C.49)

nv = 0, (C.50)

recalling that

κ = r
r2 + p

2π
2 ,

(C.51)

κ0 = r0

r0
2 + p0

2π
2 ,

(C.52)

and κ03 are constants. Eq. (C.48) shows that κ3 is constant, and Eq. (C.49) shows that

nβ = Kt κ3 − κ03 κ − Kb κ − κ0 τ, (C.53)

which is therefore also a constant. Combining Eq. (C.50) with Eq. (C.24), we have

0 = A cos(ηs) + B sin(ηs) − 1
η2 τfβ − κft ∀s . (C.54)
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In order for this equation to be true for all s, we must conclude that

A = B = 0, (C.55)

τfβ = κft . (C.56)

Using these conclusions, Eqs. (C.27) and (C.28) become

nt = Dt − fts (C.57)

nβ = Dβ − fβs . (C.58)

However, since we have also Eq. (C.53) independent of s, from the last equation we must 

conclude also that

fβ = 0 (C.59)

Dβ = nβ = Kt κ3 − κ03 κ − Kb κ − κ0 τ . (C.60)

Since we also have Eq. (C.56), if fβ = 0, we must also have

ft = 0, (C.61)

and therefore

nt = Dt (C.62)

is also a constant. Thus, we have

n = Dtt + Kt κ3 − κ03 κ − Kb κ − κ0 τ β (C.63)

f = Kt κ3 − κ03 κτ − Kb κ − κ0 τ2 − κDt v . (C.64)
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Fig. D.14. 
Probability distributions of (b) fiber lengths as found in Kim et al. (2014), and (b) network 

stresses based on the fiber lengths and holding constant the solid volume fraction ϕs = 0.01 

as estimated in Tutwiler et al. (2020).

In the material frame, the body force per unit length on the helix can be written

f = f1d1 + f2d2 + f3d3, (C.65)

and the force vector at any point s in the helix can be written

n(s) = n1d1 + n2d2 + n3d3 . (C.66)

From our previous analysis, we have

n = Kt κ3 − κ03 − Kb κ − κ0
τ
κ κ1d1 + κ2d2 + Dtd3 (C.67)

f = Kt κ3 − κ03 τ − Kb κ − κ0
τ2

κ − Dt κ2d1 − κ1d2 , (C.68)

which gives us

n1 = Kt κ3 − κ03 − Kb κ − κ0
τ
κ κ1 (C.69)

n2 = Kt κ3 − κ03 − Kb κ − κ0
τ
κ κ2 (C.70)

n3 = Dt (C.71)
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f1 = Kt κ3 − κ03 τ − Kb κ − κ0
τ2

κ − Dt κ2 (C.72)

f2 = − Kt κ3 − κ03 τ − Kb κ − κ0
τ2

κ − Dt κ1 (C.73)

f3 = 0. (C.74)

Suppose there is a force F = Fe3 applied on the helical filament along its axis. This applied 

force in the Frenet frame can be expressed

F = Fe3 = F p
2π ηt + rηβ . (C.75)

The filament will carry the force as the force vector n = F. Thus, in the Frenet frame, we 

have

Dt = F p
2π η (C.76)

Kt κ3 − κ03 κ − Kb κ − κ0 τ = Frη . (C.77)

Solving the second of these two equations for F and substituting back into the first, we arrive 

at

Dt = Kt κ3 − κ03 − Kb κ − κ0
τ
κ τ . (C.78)

Thus, the body force per unit length on the helix and the force vector at any point s on the 

helix become

f = 0 (C.79)

n = Kt κ3 − κ03 − Kb κ − κ0
τ
κ κ1d1 + κ2d2 + τd3 . (C.80)

In the case when κ0 = κ03 = 0, the force vector

n
Kb

= Kt
Kb

κ3 − τ κ − κ3 − τ d3 (C.81)

from Nizette and Goriely (1999) is recovered.

The magnitude of the force vector is
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n = Kt κ3 − κ03 − Kb κ − κ0
τ
κ η . (C.82)

In the main text we assume there is no twisting moment acting on the helix, so Kt(κ3 − κ03) 

= 0.

Appendix D.: Distribution of fibrin fiber lengths

Fig. D.14(a) depicts the probability distribution of fiber lengths in a fibrin network, as found 

in Kim et al. (2014). The probability density function is a log-normal distribution function of 

l with parameters μ = 0.53 and σ = 0.78, as found in Kim et al. (2014). Fig. D.14(b) depicts 

the probability density of l vs. the peak stress TRzz from the simulations utilizing that l as an 

input parameter, with the radius for that given l calculated by

R = ϕs
vπl , (D.1)

where the density ν = 0.1 μm−3, as measured in Kim et al. (2016), and TRzz is also 

calculated using ν = 0.1 μm−3 from Kim et al. (2016). The mean value of TRzz is 1.21 

Pa. This mean value is roughly of the same order of magnitude as the network Piola 

stresses TRzz calculated from the simulations in Fig. 9. The stress values resulting from 

these computations are also of the same order of magnitude as the values produced by the 

experiments in Section 3.
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Fig. 1. 
Cartoon depicting the experimental setup using a rheometer. Testing apparatus, including 

rheometer plates, force sensor, and humidity chamber, are shown in black. The light purple 

shape represents the fibrin network material, the purple lines in the fibrin network represent 

the isotropic fiber network, and the off-white ovals next to the clot represent the mineral 

oil added to prevent sample drying during testing. Platelet poor plasma (PPP) was activated 

with 20 mM CaCl2 and 0.2 U/mL or 1 U/mL thrombin and placed between rheometer 

plates, which leads to a polymerization reaction that forms a fibrin network. The rheometer 

plates are held fixed such that a tension in the network results in pulling on the upper 

plate. The tensile force on the rheometer plates generated by the polymerizing fibrin clot is 

measured as a function of time.
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Fig. 2. 
(a) Average normal pressure for 0.2 U/mL thrombin (pink, triangles) and 1 U/mL thrombin 

samples (teal, circles) profile in plasma samples after activation of clotting. Green shaded 

regions on the left indicate the range of time where first order derivatives were negative, 

indicating decreasing normal pressure. Red shaded regions on the right indicate where the 

first order derivative crosses the x axis indicating a plateau of normal pressure across each 

sample. (b) Average optical density measurements of 0.2 U/mL thrombin (black, triangles) 

and 1 U/mL thrombin (purple, circles) samples. Green and red ranges indicate the same as 

in (a). (c) Comparison of the slope of normal pressure in clotting plasma after normalization 

to unclotted plasma, as negative normal pressure is generated in samples activated with 

0.2 U/mL (pink, left) and 1 U/mL (teal, right) thrombin. (d) Comparison of the change 

in normal pressure in clotting plasma after normalization to unclotted plasma, as negative 

normal pressure is generated in the samples. All data are represented as mean ± standard 
error of the mean unless otherwise noted. Subfigures (c) and (d) show comparison to the 
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unclotted plasma slope and pressure at 0 Pa/s and 0 Pa respectively. *p ≤ 0.05, ***p < 0.001, 

and lack of significant differences between samples is indicated by no bar above the samples 
graphed. Analysis was completed using a one sample t-test relative to a theoretical 0 value, 

as the samples were normalized to the unclotted control.
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Fig. 3. 
Schematic representations of fibrin fibers. (a) A protofibril constructed from fibrin 

monomers (Zhmurov et al., 2018), having two-fold axis of symmetry and off-axis binding 

sites (Weisel, 1987), depicting the 22.5 nm half-staggered periodicity. Brace indicates one 

full monomer. (b) A protofibril modeled as a pair of helical rods. Each rod of the protofibril 

is comprised of fibrin monomers stacked end to end, twisting around the other rod in a 

helical fashion. (c) Three helically twisted protofibrils, each formed of the same structure 

as (b) but depicted and modeled here as a single rod instead, twisted around each other. 

Dashed lines emphasize the 22.5 nm vertical striation necessitated to maintain longitudinal 

periodicity. (d) The outer shell of a helical fiber modeled as a collection of protofibrils 

helically twisted around the fiber core (not shown). Each protofibril is depicted and modeled 

here as a single rod. All scale bars are 22.5 nm. All black areas of protein densification 

(Yermolenko et al., 2011) correspond to the DED structures in the half-staggered packing. 

All red angular measures represent the pitch angle α.
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Fig. 4. 
The average number of protofibrils per fiber cross-section m over time t, given the input 

parameters fA0 = 2.8229 mg/mL, lagg = 20, kA = 1 s−1, kpi = 6.0 × 10−20 L/molecule s, kpg 

= 1.4 × 10−17 L/molecule s, kfi = 1.0 × 10−20 L/molecule s, kfg = 2.0 × 10−16 L/molecule s, 

and kfA = 1.0 × 10−19 L/molecule s.

Spiewak et al. Page 53

J Mech Behav Biomed Mater. Author manuscript; available in PMC 2023 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Parameter study of the input parameters in the fiber formation model. Each parameter was 

both increased and decreased by 20%. (a) Variation of initial concentration of fibrinogen 

fA0
mg
mL . (b) Variation of the minimum length for protofibrils to be capable of lateral 

aggregation lagg + 1 (number of monomers). (c) Variation of the rate of fibrinopeptide 

A cleavage to convert fibrinogen to fibrin monomers kA
1
 s . (d) Variation of the rate of 

association of fibrin monomers to yield small oligomers and initiate protofibril formation 

kpi
L

molecule s . (e) Variation of the rate of protofibril growth in length by association with 

oligomers kpg
L

molecule s . (f) Variation of the rate of protofibril lateral aggregation to initiate 

a fiber kfi
L

molecule s . (g) Variation of the rate of fiber growth in diameter by association with 

additional protofibrils kfg
L

molecule s . (h) Variation of the rate of lateral aggregation of fibers 

kfA
L

molecule s .

Spiewak et al. Page 54

J Mech Behav Biomed Mater. Author manuscript; available in PMC 2023 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Tensile force F vs. stretch λe in an individual fiber for different fiber radii. Thicker fibers 

develop higher tensile forces.
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Fig. 7. 
Tensile force F in individual fibers vs. time t in polymerization for the values rm = 6.5 nm, 

Kb = 1600 pN nm2, λe = 1.501, and κ0 = 1.23 × 10−3 nm−1.
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Fig. 8. 
Length z(t, ς = l) of the fiber relaxing over time t for different initial lengths l and different 

stretch λe values. (a) Length z(t, ς = l) of the fiber relaxing over time t, with R = 78 nm, tan 

αs = 5.22, tan αe = 7.84, λe = 1.501, and the initial length values l = 0.5 μm, l = 0.75 μm, 

and l = 1.0 μm. Inset: the same curves with y-axis normalized by the initial lengths of the 

fibers z(t = 0, ς = l). For λe = 1.501, the fibers relax to the lengths 0.34 μm, 0.50 μm, and 

0.67 μm, respectively, from Eq. (32), in excellent agreement with the lengths l/λe = 0.33 μm, 

l/λe = 0.50 μm, and l/λe = 0.67 μm from the theory proposed in Section 4.3. (b) Length z(t, 
ς = l) of the fiber relaxing over time t for different stretch λe values, with R = 78 nm, tan αs 

= 5.22, l = 1.0 μm, and the stretch and pitch angle values λe = 1.2 and tan αe = 6.27, λe = 

1.501 and tan αe = 7.84, and λe = 1.8 and tan αe = 9.40..
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Fig. 9. 
Piola–Kirchhoff stress TRzz in the network in the fixed number density formulation as a 

function of polymerization time t, using the length of the fiber connected in a network l = 

0.5 μm.
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Fig. 10. 
(a) Effect of estimated fiber length l on the network Piola stress TRzz using five values of l 
from the most likely range of l from the experimental probability distribution found in Kim 

et al. (2014), as discussed in Section 4.4. These plots assume that l remains fixed as solid 

volume fraction ϕs evolves with time. (b) Network Piola stress TRzz vs. polymerization time 

t for constant fiber length l = 0.5 μm, for different final values of fiber radius Rf. Thicker 

fibers contribute more network Piola stress TRzz.

Spiewak et al. Page 59

J Mech Behav Biomed Mater. Author manuscript; available in PMC 2023 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 11. 
Results for network Piola stress using the fixed solid volume fraction formulation. In this 

formulation, the number density of fibers varies as the solid volume concentration is held 

fixed, such that in a given volume there will be fewer but thicker fibers or more but thinner 

fibers to yield the same protein concentration. (a) Effect of estimated fiber length l on the 

final network Piola stress TRzz using five values of l from the most likely range of l from the 

probability distribution found in Kim et al. (2014), as discussed in Section 4.4. (b) Effect of 

final fiber radius R on final network Piola stress TRzz, for constant fiber length l = 0.5 μm. 

Thinner fibers contribute more network Piola stress TRzz. Since the solid volume fraction 

during polymerization is not constant, only the values calculated from the final time in the 

polymerization have been included. The final solid volume fraction for each of these points 

is ϕs = 0.01..
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Fig. 12. 
Calculated Young’s modulus of an individual fiber in a fibrin network vs. fiber radius. Note 

the trend that the Young’s modulus decreases with increasing radius.
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Table 1

Relaxation times tf and lengths, both calculated from Eq. (32) and from l/λe from the theory proposed in 

Section 4.3, for different initial lengths z(t = 0, ς = l) = l. Relaxation time tf was taken as the amount of time 

required to reach the expected length l/λe±1% from the theory proposed in Section 4.3.

z(t = 0, ς = l) = l t f z(t = tf, ς = l) l
λe

L = l
λeλs

0.5 μm 0.12 ms 0.34 μm 0.33 μm 0.81 μm

0.75 μm 0.23 ms 0.50 μm 0.50 μm 1.22 μm

1.0 μm 0.34 ms 0.67 μm 0.67 μm 1.62 μm

1.5 μm 0.62 ms 1.01 μm 1.00 μm 2.44 μm

2.0 μm 0.98 ms 1.35 μm 1.33 μm 3.25 μm
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Table 2

Computed values for fiber (and network) stresses, given a fixed and uniform fiber radius for a “network” of 

fibers vertically connected between two horizontal plates with a fixed separation distance 0.5 μm. The fiber 

stretches λe are calculated using Eq. (73) in Eq. (67). Inherent forces in fibers F are computed from Eq. (22), 

using pitch angles calculated from Eq. (23). The cross-sectional area of each fiber Afiber = πR2. Inherent fiber 

stresses σ are computed by dividing the force F by the fiber cross-sectional area Afiber.

R (nm) λ e F (pN) Afiber (nm2) σ (Pa)

74 1.48 0.78 17,200 45.4

78 1.50 0.83 19,100 43.5

82 1.52 0.88 21,100 41.7
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