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1  |  INTRODUC TION

The gut microbiome is widely acknowledged to coexist with the 
animal host, consisting of symbiotic and pathogenic bacteria in a 
dynamic balance state that produce a wide variety of signaling mol-
ecules. These bacteria colonize the intestine and perform functions 
the host itself cannot accomplish; in turn, they rely on the habitat 

provided by the host. A healthy gut microbiome plays a significant 
and irreplaceable role in determining the host’s overall health.

Zebrafish is an omnivorous freshwater fish that belongs to the 
small carp family. It has been widely used for research purposes on 
embryology and tissue regeneration, molecular genetics, reproduc-
tive biology, and toxicology given its numerous advantages, includ-
ing high fecundity, short lifespan, highly annotated genome, optical 
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Abstract
Zebrafish (Danio rerio) have attracted much attention over the past decade as a reli-
able model for gut microbiome research. Owing to their low cost, strong genetic and 
development coherence, efficient preparation of germ-free (GF) larvae, availability 
in high-throughput chemical screening, and fitness for intravital imaging in vivo, ze-
brafish have been extensively used to investigate microbiome-host interactions and 
evaluate the toxicity of environmental pollutants. In this review, the advantages and 
disadvantages of zebrafish for studying the role of the gut microbiome compared 
with warm-blooded animal models are first summarized. Then, the roles of zebrafish 
gut microbiome on host development, metabolic pathways, gut-brain axis, and im-
mune disorders and responses are addressed. Furthermore, their applications for the 
toxicological assessment of aquatic environmental pollutants and exploration of the 
molecular mechanism of pathogen infections are reviewed. We highlight the great po-
tential of the zebrafish model for developing probiotics for xenobiotic detoxification, 
resistance against bacterial infection, and disease prevention and cure. Overall, the 
zebrafish model promises a brighter future for gut microbiome research.
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clarity of embryo and larvae, and suitability for high-throughput 
screening in vivo.1–3 So far, mammalian host models have played a 
predominant role in evaluating microbial functions and the influence 
of exterior substances on host health.4 Using the vertebrate zebraf-
ish model to study the gut microbiome brings many advantages. 
First of all, zebrafish shares homology with the human genome5 
and is similar to the intestine of mammals in terms of structure and 
mode of action.6 Moreover, owing to its transparency, it is feasible 
to apply in situ real-time imaging technology to the whole organ-
ism.7 Furthermore, given that in zebrafish the innate immune system 
arises first, and adaptive immunity develops after 2–3 weeks, it is 
possible to examine the relationship between the innate immune 
system and gut microbiome.8,9 Last but not least, germ-free (GF) 
zebrafish provide a robust system for dissecting or manipulating mi-
crobial signals owing to its cost-effectiveness and the convenience 
of the techniques for constructing sterile zebrafish.10,11 Accordingly, 
it is possible to directly determine causality between the gut micro-
biome and disease-associated alterations in functional and mech-
anistic studies.12 Studies on gut microbiome using the zebrafish 
model have been considered a pioneering and vital field of research 
in recent years.

This review focuses on the application of a series of GF zebrafish-
derived models that unveil how the gut microbiome affects host de-
velopment, metabolism, and immunity. Moreover, the roles of the gut 
microbiome in microbiota homeostasis and vertebrate microbiome-
host interactions relevant to human health are elucidated, providing 
a theoretical foundation and support for further application in dis-
ease treatment. A flowchart of our review is shown in Figure 1.

2  |  COMPARISON BET WEEN ZEBR AFISH 
AND STANDARD WARM-BLOODED ANIMAL 
MODEL S (MICE AND R ATS)

The advantages and limitations of the zebrafish model used for 
host homeostasis and gut microbiome studies compared with mu-
rine models are comprehensively summarized in Table  1. Given 
these unique attributes, the vertebrate animal zebrafish has be-
come an ideal model for studying the gut microbiome. Though 
the gut microbiome structure of zebrafish may differ significantly 
from humans, its complexity and diversity can also provide valu-
able information and reference in comparative studies of the gut 
microbiome.13

F I G U R E  1  Currently available applications and techniques for research on gut microbiome-host interactions with zebrafish models
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3  |  THE ROLES OF THE GUT 
MICROBIOME IN TISSUE DE VELOPMENT 
AND PHYSIOLOGIC AL FUNC TION

3.1  |  Digestive system

Zebrafish provide effective models to research the functions of 
the gut microbiome for host intestinal tract development, including 
gene expression, cell proliferation, tissue differentiation, and related 
functions. The embryos initially develop in an essentially axenic 
chorion and first encounter microorganisms in the external environ-
ment after hatching (approximately 48 or 96  h post-fertilization). 
Most larval organs interact with the microbiota during hatching. 

The zebrafish gut microbiome has been found to aggregate into dif-
ferent communities during development, and these communities 
gradually become different from the external environment and from 
each other.21 The first comparison of gene expression between the 
digestive tract of GF zebrafish and conventional zebrafish was con-
ducted by Rawls et al. in 2004. Two hundred genes were found to be 
regulated by the gut microbiome, among which the expression of 59 
genes was conserved in the mouse intestine. The expression levels 
of these microbiota-related genes were mainly correlated with epi-
thelial cell turnover, nutrient uptake, xenobiotic metabolism, and im-
mune response.22 It has been established that the spatial distribution 
of the gut microbiome is related to both its host and itself, impacting 
the overall growth kinetics.23 Yossa et al. first documented inhibited 

TA B L E  1  The merits and limitations of common animal models (mice, rats, and zebrafish) in gut microbiome research

Animal 
model Advantages Limitations Ref.

Mice and 
rats

1.	Similarity with human
•	 Genetic conservation (~80%–90%)
•	 Similarity in microbial structure (dominated by 

Firmicutes and Bacteroidetes)
•	 Stable gut microenvironment
•	 High similarity in tissue and organ structure, cellular 

function, and metabolic features
2.	Experimental operation
•	 Collect feces in a noninvasive, sustaining, and easy 

way for metagenome sequencing
•	 Mature techniques for constructing various disease 

models

1.	Shortcomings
•	 Long reproductive cycle, small litter size per fetus, 

long lifespan
•	 Low throughput for toxicity testing
•	 Cage effects on individual gut microbial structure
2.	Experimental techniques
•	 Sterile model preparation is inefficient, small scale, 

high expense, and maintenance cost
•	 Manipulation of gut microbial composition by oral 

gavage

14–17

Zebrafish 1.	 Similarity with human/mammals
•	 Genetic conservation (~70%)
•	 Similarity in the development and physiology 

function of the digestive system
•	 The mode of behavior, internal secretion, and 

molecular changes are usually similar to clinical data
2.	 Intrinsic superiorities
•	 High fecundity, rapid development, short lifespan, 

strong genetic and development coherence, high 
degree of biological replication

•	 Transparency in early development, available for 
intravital imaging in vivo

•	 Lack of functional adaptive immune system in early 
development, capable of studying the innate immune 
system in the absence of adaptive immunity system

•	 High-throughput model for pharmacological and 
toxicological evaluation

3.	Experimental techniques
•	 Powerful manipulatable genetic systems and large 

availability of genetically modified models, including 
knock-out/in, GFP or mCherry fluorescent proteins, 
casper and crystal mutants

•	 Diversity of automated and species-specific 
behavioral assays for gut-microbiome-brain axis 
assessment

•	 Acquirement and quality control of sterile embryos 
are easy, practical, and economical

•	 Manipulation of gut microbial composition by 
immersion

1.	 Shortcomings
•	 Difference in microbial structure (dominated by 

Proteobacteria [76%–82%])
2.	Experimental techniques
•	 Difficulty to obtain a series of organ samples in 

individual operations for its small size
•	 Difficulty in modeling of GF adult zebrafish
•	 Interference in metagenome sequencing from 

the mixture of nucleic acid substances from other 
sources

5,7,9,11,18–21
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growth and increased mortality in a bacteria-dysbiosis zebrafish 
model induced by antibiotics.1 Furthermore, the proliferation, dif-
ferentiation, morphology, and related functions of intestinal cells of 
zebrafish are reportedly affected by the lack or the variation of gut 
microbiome.22,24 Hill et al. found that, during early development, the 
growth and division of pancreatic β cells require the participation of 
gut microbiome and certain bacteria, which secrete β-cell expansion 
factor A (BefA) proteins to induce the proliferation of β cells.25 In 
addition, next-generation sequencing showed that the hypoglycemic 
effect of BefA was highly correlated with an increase in beneficial 
bacteria (such as Oscillospria, Lactobacillus, and Bifidobacterium) and 
a decrease in opportunistic pathogens (Acinetobacter).26

3.2  |  The gut-brain axis

The gut microbiome has been recognized to profoundly affect the 
neurochemistry and central nervous system in zebrafish. Importantly, 
microbial colonization is required for the normal development and 
physiological function of the nervous system in zebrafish. In this 
regard, it has been found that sterile or antibiotic-treated zebrafish 
exhibited increased locomotor behavior or hyperactivity; coloniza-
tion with different strains of Vibrio cholerae or Aeromonas veronii 
could hinder locomotor hyperactivity. However, interference with 
heat-killed bacteria or microbiome-associated molecular patterns 
could not inhibit this abnormal phenotype in GF larvae.27 Besides, 
treatment with Lactobacillus plantarum strain alleviated anxiety and 
depressive-like behavior and alleviated the stress response in ze-
brafish with an intestinal disorder.28 Manipulating the gut microbi-
ome composition in zebrafish may also affect the nervous system. 
By co-culturing GF zebrafish with six selected bacteria, either single 
strain or mixed strains, Weitekamp et al. showed that different bac-
terial species had different effects on their host's behavior, which 
might be correlated with colonization success in the host's intes-
tine.29 Borrelli et al. found variations in the gut microbial composi-
tion in the probiotic Lactobacillus rhamnosus treatment group, with 
a significant increase in Firmicutes and decrease in Proteobacteria, 
including potential pathogens (such as Plesiomonas and Vibrio). In 
this respect, zebrafish’s social and explorative behavior could be 
significantly altered; the expression levels of endogenous neuro-
active molecules, brain-derived neurotrophic factor, and serotonin 
were modulated to a certain extent by feeding with probiotic L. 
rhamnosus.30 A GF zebrafish study revealed a potential mode of ac-
tion where melatonin could regulate disorders of neurotransmitter 
secretion induced by caffeine via the gut-microbiome-brain axis.31 
Additionally, Cuomo et al. documented that the administration of L. 
rhamnosus in larvae led to DNA methylation code of the Tph1A and 
BDNF promoter gene reconstruction in the gut and the brain of ze-
brafish. Accordingly, alterations in the gut microbiome may influence 
the host epigenetic landscape, resulting in long-term consequences 
for specific gene regions.32

Moreover, the zebrafish model revealed the roles of the gut 
microbiome in neuroendocrine response. The intestine, vital for 

controlling food intake and maintaining energy balance, represents 
one of the most important endocrine systems in vivo.33 The gut mi-
crobiome is capable of promoting enteroendocrine cells (EECs) to 
secrete gut hormones (e.g., gut peptide YY, cholecystokinin, oxyn-
tomodulin, and glucagon-like peptide-1). These hormones act on the 
central nervous system through blood circulation via vagal afferent 
fibers and work mainly on the hypothalamus. Furthermore, current 
evidence suggests that the gut microbiome can influence the sens-
ing ability and modulation of EECs. Ye et al. revealed that a high-fat 
(HF) diet altered EECs morphology and converted them into a state 
insensitive to nutrients, termed “EEC silencing.” It has also been 
shown that a high-fat diet could alter the gut microbiome composi-
tion, especially with the proliferation of Acinetobacter. They further 
identified a strain of Acinetobacter that can induce EEC silencing.24 
Likewise, EECs also transmit signals from the gut microbiome to 
regulate intestinal and vagal pathways. Researchers found that the 
gut microbiome could produce tryptophan catabolite to activate the 
transient receptor potential ankyrin A1 channels on EECs and then 
cause rapid activation of cells in the intestine and vagus nerve.34

3.3  |  Bone health

The gut microbiome has been established as a primary regulator of 
zebrafish bone metabolism. The relationship between the microbi-
ota (or probiotics) and bone homeostasis and development has been 
explored in recent years; direct evidence of how the gut microbi-
ome communicates with its host to regulate bone mineral density 
has been obtained.35 Nevertheless, the effects of the microbiome 
on zebrafish bone metabolism have also been studied. It was found 
that supplementation of L. rhamnosus to conventional zebrafish mi-
crobiome led to faster backbone calcification and correlated with 
stimulation of the insulin-like growth factor system.36 Moreover, L. 
rhamnosus feeding could regulate genes involved in osteocyte forma-
tion and suppress bone formation inhibitors in zebrafish.37 It is well 
established that inflammatory bowel disease (IBD) is correlated with 
a higher risk of low bone density. Zebrafish share similarities with 
humans in terms of bone development given that their scales repre-
sent a good readout model to assess bone metabolism. Accordingly, 
zebrafish represent an excellent model to verify the relationships 
between intestinal inflammation and bone metabolism.38 After sup-
plementation of defatted soybean meal to cause intestinal inflam-
mation in adult zebrafish, Carnovali et al. found that intense acute 
intestinal inflammation was related to temporary osteoporosis-like 
phenotype at the edge of the scales. Besides, the chronic inflam-
matory state with continuous IL-8 expression was highly correlated 
with the resorption of lacunae at the center of the scale.39 However, 
it remains unknown whether intestinal inflammation causes changes 
in microbial structure or its secreted metabolites, nor is it clear how 
the gut microbiome regulates bone metabolism. Further studies 
are required to reveal the mechanism of the action of the gut mi-
crobiome in bone signaling pathways after dietary intervention or 
probiotic treatment. The above findings also emphasize the need to 
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explore new strategies to further improve bone disease treatment 
by regulating the composition and abundance of the targeted gut 
microbiome.

3.4  |  Immunity system

3.4.1  |  Immune system development

An increasing body of evidence suggests that the gut microbiome 
is involved in the normal development of the zebrafish immune 
system, with the ability to mount immune responses to different 
stresses such as injuries and infections, especially neutrophils.40,41 
A study by Masud et al. comprehensively described how innate im-
mune cells were produced in early development and how the gut 
microbiome impacted immune cell production, differentiation, and 
function using a zebrafish model.42 Interestingly, Bates et al. showed 
that the internal microbiome accounted for the normal neutrophil 
levels in the zebrafish gut by modulating intestinal tumor necrosis 
factor receptor, Myd88, and alkaline phosphatase.43 Koch et al. con-
sistently found that a normal gut microbiome or single commensal 
bacterial species (from phylum Bacteroidetes or Firmicutes) could 
induce changes in intestinal leukocytes and host gene expression; 
these changes were dependent on innate immune adaptor gene 
Myd88.44 Besides, Brugman et al. revealed that adaptive immune 
deficiency was associated with excessive growth of Vibrio species 
at larval stages, and overgrowth could be inhibited with the devel-
opment of adaptive immunity. It was further demonstrated that 
adaptive immune processes could control the proliferation of Vibrio 
species in mutants with the loss of adaptive immunity. It was found 
that the adoptive transfer of T lymphocytes to Rag1-deficient re-
cipients effectively suppressed the expansion of the Vibrio species 
in vitro.45

The gut microbiome has been reported to modulate the activ-
ity of gut neutrophils and other leukocytes. Kanther et al. found 
that the number of systemic neutrophils and the expression of my-
eloperoxidase were increased, and the location and migration of 
neutrophils was changed in GF zebrafish colonized with gut micro-
biome.46 With live imaging of larvae, Wiles et al. discovered that 
the expression of gut-related macrophages and proinflammatory 
cytokine tumor necrosis factor-α (TNF-α) in the liver was induced 
by a Vibrio symbiont derived from zebrafish intestine through its 
swimming motility and chemotaxis.47 In addition, serum amyloid 
A (SAA), a host factor secreted by intestinal epithelium cells, was 
potently upregulated in the gut after microbial colonization of 
zebrafish and mediated the migratory behavior of tissue-specific 
neutrophils caused by microbial stimuli.48,49 Murdoch et al. showed 
that SAA secreted by the gut in reaction to microbiome changes, 
acting as a systemic signal to determine the fate of neutrophils. 
Importantly, SAA could reduce the inflammatory response and bac-
terial killing ability while improving the capacity of neutrophils to 
migrate to the wound. The intestinal SAA could also restore neu-
trophils to normal levels in GF zebrafish.50

Intestinal microbial metabolites also play a vital role in determin-
ing neutrophil levels. Cholan et al. discovered that butyrate isolated 
and synthesized by gut microbiome in adult zebrafish could signifi-
cantly reduce the number of neutrophils recruited after embryonic 
trauma.51 In addition, GF zebrafish transplanted with hybrid stur-
geon gut microbiota, treated with a para-probiotic and postbiotic 
supplement diet, showed that the gene TGF-β and the levels of non-
specific immune-associated genes (lysozyme, Defbl-1, C3a) were sig-
nificantly upregulated. In contrast, the levels of the proinflammatory 
gene IL-1β significantly decreased.52 These findings highlight the 
need to maintain stability and homeostasis of the intestinal micro-
ecology to protect host health and prevent chronic inflammation.

3.4.2  |  Immune dysfunction

Invasion of pathogenic bacteria can disturb the homeostasis of the 
intestinal microbiome and result in perturbations of the intestinal 
immune system. Subsequently, the innate immune system is acti-
vated to mediate pathogen clearance and inflammation. Yang et al. 
demonstrated that, in response to invasion of pathogenic bacteria, 
the intestinal microbial structure was susceptible to changes with in-
creased abundance of pathogens and decreased abundance of ben-
eficial bacteria. Rolig et al. found that zebrafish lacking an enteric 
nervous system exhibited microbiome-dependent inflammation; 
increased inflammation levels were associated with an excess of 
proinflammatory bacterial lineages and a lack of anti-inflammatory 
ones.53 Furthermore, transgenic lines expressing fluorescent pro-
teins were subjected to pathogen infection and provided readout 
models for immune system activation and in vivo visualization of im-
mune responses to pathogens. Additionally, it has been found that 
antimicrobial peptide genes, including defensin1, lectin, and hepci-
din, increased at the mRNA level in the intestine after pathogenic 
infection.54

The intestinal microbiome is a central factor associated with 
IBD with dysfunction or the loss of integrity of the intestinal barrier. 
Using zebrafish and mouse models, Kaya et al. substantiated that the 
expression of gut G-protein-coupled receptor 35 was dependent on 
the gut microbiome, and it increased when inflammation was trig-
gered.55 Interestingly, a close relationship was found between gene 
GPR35 single-nucleotide polymorphism and increased risk of IBD.56 
In a project exploring susceptibility genes for IBD, mutations in the 
ubiquitin-like protein with PHD and RING finger domains 1, a highly 
conserved gene of methylation, were identified. Besides, current ev-
idence shows that dysfunctional ubiquitin-like protein with PHD and 
RING finger domains 1 could induce hypomethylation of the TNF-α 
promoter, releasing transcriptional repression of the promoter and 
resulting in TNF-α upregulation within the intestinal epithelium.57 
Notably, the upregulated expression of TNF-α contributed to the oc-
currence of microbiota-dependent chronic inflammation, such as the 
shedding and apoptosis of epithelial cells, recruitment of immune 
cells, and impairment of intestinal barrier. By establishing a Shigella-
zebrafish infection model, Willis et al. found that Shigella-mediated 
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stem cell-driven granulopoiesis could activate the innate immune 
system and protect against superinfection.58

3.5  |  The host metabolism

Given the substantial number of metabolism-associated genes 
shared with humans,59 the zebrafish model has been extensively 
employed to investigate the relationship between different meta-
bolic patterns and the gut microbiome. Substantial evidence sug-
gests that changes in the gut microbiome and their metabolites are 
closely related to glucose metabolism, insulin resistance, and re-
covery of pancreatic function in type 2 diabetes mellitus (T2DM).60 
T2DM zebrafish represents a promising model to study host-
microbial interactions in human obesity, metabolic syndrome, and 
related diseases. Intriguingly, it was found that some strains of the 
genera Aeromonas and Shewanella could release BefA proteins to 
induce upregulation of host pancreatic β cells, thereby increasing 
insulin levels and regulating blood glucose levels.25 Furthermore, 
the intestinal microbial metabolites (endotoxin, short-chain fatty 
acids [SCFAs], secondary bile acids, and indole) are reportedly in-
volved in glucose regulation by participating in glucagon-like pep-
tide-1 secretion.61 In addition, the α-diversity (the Chao1 index) 
was decreased in T2DM adult zebrafish compared with the healthy 
controls.62 Furthermore, Bootorab et al. found that blood glucose 
levels were decreased after probiotic L. rhamnosus administration 
via downregulation of proinflammatory cytokines (such as TNF-α 
and IL-1β) involved in T2DM therapeutic signaling pathways.63 
Importantly, it has been found that Escherichia coli could utilize 
glucose and produce acidic byproducts of glucose metabolism in 
the zebrafish gut. These acidic products significantly reduced the 
colonization rate of the classical and EI Tor biotypes of V. cholerae 
to prevent or treat cholera infection.64

Mounting evidence suggests that a disturbed gut microbiome 
can disrupt energy homeostasis and lipid metabolism. The gut mi-
crobiome can contribute to increased lipid accumulation in the in-
testinal epithelium. Most differentially expressed genes between 
conventional and GF zebrafish larvae are reportedly involved in lipid 
metabolism.65 After being colonized with gut microbiota from do-
nors disrupted by 12% palmitic acid (PA), the recipient GF zebrafish 
exhibited endoplasmic reticulum stress and liver injury. The trans-
plantation of the PA-altered microbiome in recipients boosted the 
continuous absorption of PA in vivo, resulting in increased PA, which 
entered the liver and exacerbated liver toxicity.66 Qiao et al. screened 
a panel of bacteria associated with host lipid deposition by gener-
ating a diet-induced fat accumulation zebrafish model.67 Then, gut 
microbiome samples were collected from the adult zebrafish of the 
control and the HF diet groups and transplanted into GF zebrafish. 
It was found that the intestinal microbiome from the donors fed the 
HF diet induced more lipid deposition in the recipient GF zebrafish. 
Nonetheless, to the best of our knowledge, few studies have sought 
to clarify the critical role of probiotics in modulating the gut microbi-
ome and their potential effects in the treatment of lipid turbulence. 

For instance, Falcinelli et al. found that L. rhamnosus supplementa-
tion led to increased Firmicutes and decreased Actinobacteria lev-
els. These variations induced the downregulation of genes related to 
triglyceride and cholesterol metabolism. Moreover, they regulated 
lipid processing, lowered lipid content, and increased fatty acid lev-
els in the host,68 finally attenuating metabolic disorders caused by 
the HF diet in zebrafish.69

The gut microbiome can metabolize amino acids and is con-
versely influenced by the amino acids.51,70,71 By observing the 
evolution of Aeromonas in gnotobiotic zebrafish experimentally, 
researchers found that Aeromonas could sense host-derived amino 
acid signals to modulate its motility via a process called chemoki-
nesis, and these bacteria subsequently enter the intestine.72 Wang 
et al. found that the abundance of Hyphomicrobium, Paracoccus, and 
Plesiomonas was significantly correlated with leucine metabolism 
in zebrafish after treatment with 300 μg/L sodium ρ-perfluorous 
nonenoxybenzene sulfonate.73 Another study demonstrated that 
the gut microbiome was significantly changed in T2DM adult ze-
brafish with downregulation of the metabolic pathways of arginine, 
proline, and phenylalanine, suggesting that the gut microbiome of 
T2DM zebrafish may adversely affect host health by inhibiting the 
metabolism of these amino acids.62 The gut microbial community of 
zebrafish supplemented with a gluten formulated diet displayed ac-
tivated metabolic KEGG pathways related to threonine, serine, and 
glycine metabolism.74 An increasing body of evidence suggests that 
upregulation of these metabolic pathways is associated with onco-
genesis.75,76 In addition, gut microbiota can ferment dietary fibers 
into SCFAs in the gut, among which butyric acid is a profoundly 
essential SCFA with anti-inflammatory properties. It was reported 
that both the levels of butyrate and the abundance of butyrate-
producing bacteria were generally low in inflammatory diseases as-
sociated with intestinal dysbiosis in mammals.77,78 To validate these 
findings, Cholan et al. first isolated 3 main SCFAs (butyrate, acetate, 
and propionate) from ferments of gut microbiome using a zebrafish 
model in vitro. Then, these 3 SCFAs were supplemented into the 
tanks of zebrafish that underwent tail wound injury. Importantly, 
butyrate could reduce the recruitment of neutrophils and M1-type 
proinflammatory macrophages to the wound and enhance the anti-
inflammatory ability of zebrafish.51 Furthermore, butyrate sensitiv-
ity was dependent on the maturity of the intestine. Moreover, a 
strain of Pediococcus pentosaceus isolated from the gut microbiome 
in zebrafish was used to demonstrate that the host’s resistance to 
Aeromonas hydrophila could be enhanced by increasing the abun-
dance of SCFA-produced bacteria, butyrate levels, and the expres-
sion of IL-1β.79 These findings provide compelling evidence that 
the gut microbiome can metabolize and produce SCFAs, and play 
a conservative role in the immunity of zebrafish. In return, SCFAs 
can regulate the composition of the gut microbiome. Li et al. found 
that dietary supplementation with SCFAs could induce inhibition of 
pathogens and enrichment of beneficial bacteria while improving 
innate immunity, enhancing antioxidative capacity, and increasing 
the host’s disease resistance (by protecting zebrafish against A. 
hydrophila).80

https://doi.org/10.1136/gutjnl-2018-316155
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4  |  E XOGENOUS E XPOSURE

4.1  |  Toxicity of environmental pollutants

Nowadays, environmental pollutants and their residuals are fre-
quently detected in water environments. They can accumulate 
in organisms, seriously harming the ecological environment and 
human health. It has been established that the gut microbiome 
is extremely sensitive to those xenobiotics found in the environ-
ment, including drugs, diet, and pollutants. The gut microbiome 
plays a pivotal role in the fate of xenobiotics, influencing host 
xenobiotic metabolism and preventing systemic toxin absorp-
tion.81 In recent years, the zebrafish model has been widely used 
for toxicological assessment from environmental pollutants to the 
intestinal microbiome by monitoring microbial richness, diversity, 
structure, and ecological behavior. Many studies have indicated 
that persistent exposure to hazards results in morphological alter-
ations or pathological changes in the intestinal tract and disturbs 
the abundance and structural composition of the intestinal micro-
biome in zebrafish. These disturbances led to nutrient uptake, en-
ergy metabolism, and immune function disorders in the host. The 
applications of the zebrafish model for the study of the effects 
of diverse environmental pollutants on intestinal microbiome are 
summarized in Table 2.

Bacterial transplantation or probiotic treatment has been ap-
plied to modulate gut microbiota dysbiosis and lipid metabolism 
disorders induced by xenobiotics exposure. Zang et al. discovered 
that the abundance and species of zebrafish gut microbiome were 
disrupted by triclosan, which could be restored by administration of 
L. plantarum ST-III, with alleviation of lipid metabolism disorder and 
a decreased number of inflammatory cells. Besides, intestinal meta-
bolic syndrome and neurodegenerative diseases caused by triclosan 
exposure were also attenuated by probiotic treatment.82 Chen et al. 
showed that perfluorobutane sulfonate (PFBS) exposure caused 
dysregulation of the gut microbial community, and maternal transfer 
of PFBS to offspring increased the risks to aquatic populations.83,84 
However, L. rhamnosus administration inhibited the disorders caused 
by PFBS and regulated the metabolic activities of the host indirectly. 
It was found that β-oxidation and fatty acid synthesis were in-
creased, and blood cholesterol levels were reduced.85 Furthermore, 
probiotic feeding can prevent PFBS-induced intestinal disturbances 
and ferroptosis.86

4.2  |  Pathogenic infections

Many pathogens have been investigated using the zebrafish model 
in recent years, including Aeromonas, Salmonella, Mycobacterium, 
Vibrio, etc. (Table 3). The zebrafish model, as a natural host model, 
provides a complete picture of the infection period from exposure 
to colonization since it allows high-clarity in vivo imaging com-
bined with genetic manipulation. Accordingly, a more comprehen-
sive understanding of the pathogen infection process and cellular 

response can be obtained in its entirety.122 Indeed, in recent years, 
with the increasing use of the zebrafish infection model, mecha-
nisms that underlie how the host cells first recognize microbiome 
and the initial communication among the various cell types (includ-
ing non-immune cells) during bacterial infection have been gradu-
ally unveiled.

In 2016, Caruffo et al. conducted research using in vitro co-
aggregation assays and in vivo infection experiments on larval ze-
brafish. It was suggested that the protective effect of yeast against 
Vibrio anguillarum was correlated with antipathogen effects and 
immune regulation in vivo, rather than modulation of the gut mi-
crobiome.133 Nevertheless, contrasting studies have suggested 
that probiotic treatment probably plays a pivotal role by modulat-
ing gut microbial composition to protect the host from infectious 
diseases. It has been demonstrated that gut bacteria themselves 
(endogenous bacteria) or exogenous addition of protective bacte-
ria in larvae could prevent or decrease the chance of pathogenic in-
fection and improve the survival rate of fish. Vargas et al. showed 
that V. anguillarum changed the gut microbial β-diversity, and pro-
biotic yeasts could inhibit the enrichment of Vogesella and Ensifer, 
which were identified as a negative predictive factor of survival rate 
in larvae.134 Besides, probiotics of selected bacteria with high sur-
face glycotope Galα1-3Galβ1-(3)4GlcNAc-R (α-Gal) content were 
effective and safe for Mycobacterium marinum. It was found that 
probiotics with high α-Gal content activated gut microbial structure 
modification, B-cell maturation, and anti-α-Gal antibody-mediated 
control of Mycobacteria. Meanwhile, they stimulated innate immune 
responses and reduced oxidative stress.135 Given the complexity of 
the gut microbiome, it was difficult to identify in situ endogenous 
bacteria that provided this protective effect. However, this prob-
lem has gradually been overcome with the rapid development of 
gnotobiotic zebrafish technology. He et al. discovered a significant 
correlation between the spatial position of Lactobacillus in the in-
testine and their protective activity in zebrafish infection, and they 
divided them into 3 types: mucus type (>70% in mucus), mucosa 
type (>70% in mucosa), and hybrid types (others).136 Interestingly, 
the hybrid types were more efficient in protecting zebrafish against 
pathogenic infections. Besides, Stressmann et al. explored whether 
native microbial communities could protect their host using GF, con-
ventional, and reconventionalized zebrafish infection models. Two 
independent protection strategies, individual-level protection by 
bacterium Chryseobacterium massiliae and community-level resis-
tance to infection, were identified against the same pathogen.137 On 
the basis of these studies, López-Igual et al. engineered toxins split 
by inteins and delivered them by conjugation into a mixture of bac-
teria. They found that the engineered toxin could specifically conju-
gate and kill antibiotic-resistant V. cholerae in the bacteria mixture in 
vitro. Furthermore, the in vivo study showed that their split toxin-
intein could also target specific strains of Vibrio species in zebrafish 
larvae that are well recognized natural hosts for the pathogens.138 
Importantly, these studies provide the basis for developing targeted 
probiotic strains or engineered toxins to protect the host against 
specific pathogenic infections.
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5  |  FUTURE RESE ARCH PROSPEC TS 
ON GUT MICROBIOME BY USING THE 
ZEBR AFISH MODEL

Given that the longest survival time of GF zebrafish is 30 days,22 
it remains difficult to obtain adult GF zebrafish. Accordingly, more 
emphasis should be placed on improving our current understand-
ing of the nutrient ratio required to feed sterile zebrafish to prolong 
their lifespan. Among the studies on the role of intestinal microbes 
in host tissue development and physiological function, few have as-
sessed their influence on vascular development and hematopoiesis. 
Importantly, during early development stages, the zebrafish embryo 
is transparent and has simple vasculature. These features can be har-
nessed to establish transgenic zebrafish lines with fluorescent vas-
cular or hematopoietic stem cells. Then, through manipulating the 
intestinal microbiome and in vivo imaging, the microbial influence 
on vascular development and hematopoiesis can be investigated. 
Likewise, in gut-brain axis studies, it is necessary to develop new be-
havioral models of neurobehavioral diseases based on the intestinal 
microbiome to explore the relationship among microbiota, intesti-
nal disease, and brain function, delve into the gut-microbiome-brain 
axis, and enhance human cognition in neurobehavioral diseases.

Furthermore, the zebrafish model can be helpful to explore dis-
ease causes; for instance, metagenomic sequencing can be used to 
compare the composition and abundance of bacteria in disease and C
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TA B L E  3  Summary of the studies on zebrafish model for 
pathogenic bacteria infection

Relevant 
diseases Infectious agent Age

Route of 
administration Ref.

Tuberculosis Mycobacterium 
marinum

Larvae Injection 123

Embryos 
and 
adult

Injection 124

Larvae Injection 125

Salmonellosis Salmonella Adult Immersion 126

Fish motile 
aeromonad 
septicemia

Aeromonas veronii 
and Aeromonas 
hydrophila

Larvae 
and 
adult

Immersion 
for larvae, 
immersion 
and 
injection 
for adult 
zebrafish

127

Aeromonas sp. and 
Vibrio sp.

Larvae 
(5 dpf)

Immersion 128

Cholera 
diarrhea

Vibrio cholerae Larvae Immersion 129

Adult Immersion 130

Diarrheal illness, 
hemolytic 
uremic 
syndrome

Enterohemorrhagic 
Escherichia coli

Larvae 
(4 dpf)

Immersion 131

Streptococcosis, 
meningitis, 
sepsis

Streptococcus 
agalactiae

Adult Injection 132
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healthy states. It is expected that analysis of the heterogeneity in in-
testinal microbial composition can be used to establish a pathologi-
cal classification to assist clinicians in disease diagnosis. Importantly, 
unveiling the molecular communications between animals and their 
resident gut microbiome in pathogenic states could yield further in-
sights into the mechanisms of the influences of the gut microbiome 
on human health and the etiology of diseases. Moreover, it is urgent 
to determine which groups of bacteria residing in the gut microbi-
ome are responsible for the pathological changes in the host state 
and evaluate beneficial groups of bacteria. The use of GF zebrafish 
model to study the effects of intestinal bacterial colonization is still 
subject to many limitations that need to be overcome for future re-
search on probiotics and prebiotic-driven studies.

Interestingly, Schlomann et al. found significant differences in 
spatial distribution and cohesion of bacterial strains in zebrafish via 
bacterial colonization and in vivo imaging experiments. Importantly, 
this research provided a framework for precise microbial engineer-
ing.139 Theoretically, it is possible to selectively displace bacterial 
communities in some intestinal regions or remove them altogether 
by controlling cohesion. Indeed, this study inspires us to explore the 
relationships between spatial structure, cohesion, and flow that may 
help to clarify diseases caused by microbial imbalance. Disorders 
caused by changes in community composition can be treated by tar-
geted changes in bacterial aggregation, providing new targets and 
horizons for human disease prevention and control.
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