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Abstract. Studies have indicated that anticancer drugs 
targeting cholesterol metabolism have clinical significance. 
From the perspective of the mechanism of cholesterol 
excretion from cells, ATP‑binding cassette (ABC)A1 has an 
essential role that cannot be ignored. ABCA1 is located on 
the cell membrane and able to mediate the efflux of lipids, 
such as intracellular cholesterol, thereby initiating reverse 
cholesterol transport to reduce the intracellular cholesterol 
level. Therefore, inducing the expression of ABCA1 may 
become a new breakthrough point in cancer therapy.
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1. Introduction

Certain studies have indicated that cancer cells have an 
enhanced ability to proliferate and invade caused by changes in 
their metabolism, among which abnormal cholesterol metabo‑
lism has a key role. It is mainly manifested as abnormally 
increased or abnormally accumulated cholesterol in cancer 
cells, and inhibiting the increase of cholesterol levels may slow 
down the proliferation of cancer cells. An important factor 
affecting intracellular cholesterol levels is protein transport (1). 

ATP‑binding cassette (ABC) transporters are localized to the 
plasma membrane and function as a class of lipid transporters. 
Energy is obtained by hydrolyzing ATP, thereby mediating the 
efflux of intracellular phospholipids and free cholesterol, which 
combine with non‑fat or low‑fat apolipoprotein A‑I (apo A‑I) 
on the cell surface to form high‑density lipoprotein (HDL) to 
then initiate the reverse cholesterol transport process (2,3). 
When exploring the association between cholesterol and 
malignant cancers, it was observed that the accumulation of 
excessive intracellular cholesterol may promote the devel‑
opment of cancer cells to a certain extent (4). Phillips (5) 
indicated that high cholesterol levels were positively associated 
with the aggressiveness of prostate cancer. Abnormally active 
cholesterol metabolism in cancer cells leads to proliferation, 
survival, invasion, metastasis and enhanced adaptation to the 
cancer microenvironment (6). ABCA1 is also closely related to 
cancer resistance mechanisms (7); thus, inducing the expres‑
sion of ABCA1 may provide novel therapeutic strategies for 
cancer prevention, inhibition and even treatment, bringing new 
hope for the treatment of cancer patients (8).

2. Influence of intracellular lipid microenvironment on 
cancers

As mentioned earlier in the introduction, cholesterol has an 
important role in the development of cancers, such as partici‑
pation in the proliferation, migration and invasion of cancer 
cells. Luo et al (9) indicated that the abnormal cholesterol 
metabolism of cancer cells leads to proliferation, survival, 
invasion, metastasis and enhanced adaptability to the cancer 
microenvironment, thereby promoting the occurrence and 
development of cancers. Changes in membrane cholesterol 
and cholesterol‑rich membranes have been observed to affect 
the progression and invasion of cancers (9). Cholesterol 
homeostasis is critical for cellular function and survival, and 
dysregulated cholesterol homeostasis is known to be associ‑
ated with a variety of cancers, including prostate cancer (10), 
and alterations in lipid metabolism are increasingly recognized 
as a hallmark of prostate cancer cells (11). A large number of 
studies suggested that a variety of genes related to cholesterol 
synthesis exhibit increased activity in cancer cells, thereby 
promoting the growth, migration and metastasis of various 
cancer cell types, including gastric cancer, glioma and prostate 
cancer (12‑14). In addition, it was reported that the expression 
of low‑density lipoprotein receptors (LDLR) is upregulated 
in various cancer cells, which was significantly associated 
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with poor clinical prognosis in patients with small cell lung 
cancer (15‑18). Elevated expression of LDLR in patients with 
pancreatic cancer was associated with an increased recurrence 
rate. However, silencing of HDLR by short hairpin RNA in 
pancreatic cancer cells significantly reduced the cholesterol 
uptake, thereby inhibiting the proliferation of pancreatic 
cancer cells. Treatments related to the synthesis, uptake and 
esterification of cholesterol may alleviate cancer progres‑
sion (19‑21). It was reported that altering the intracellular lipid 
microenvironment by affecting various metabolic pathways of 
cholesterol has an important role in the proliferation and inva‑
sion of certain types of cancer cell (22,23). Table I summarizes 
the specific effects of intracellular cholesterol levels on cancer; 
as one of the major efflux pathways of cellular cholesterol, 
ABCA1 may be an important determinant of prostate cancer 
aggressiveness and a potential therapeutic target (24,25).

3. Effect of ABCA1 on the intracellular lipid 
microenvironment

ABCA1 and plasma membrane remodeling and lipid redis-
tribution. ABCA1 is known as the main efflux channel of 
intracellular cholesterol. Although there is still no perfect 
model to explain the mechanism, the latest efflux mechanism 
is widely recognized (8). Multiple studies suggested that the 
binding of apo A‑I to ABCA1 may lead to the redistribu‑
tion of phospholipids and cholesterol on the outside of the 
plasma membrane, thereby changing the intracellular lipid 
microenvironment and remodeling the plasma membrane, 
which facilitated the binding of apo A‑I to lipids and main‑
tained intracellular cholesterol homeostasis (26‑29). After the 
combination of the two, the plasma membrane is remodeled 
in two ways: Horizontal and vertical. The vertical remodeling 
promotes the net transport of phospholipids to the outer leaf‑
lets of the plasma membrane through ABCA1, resulting in 
an imbalance in the packing density of the two leaflets of the 
phospholipid bilayer, thereby regulating the lipid density of the 
plasma membrane (30). In horizontal remodeling, ABCA1 is 
enabled by hydrolysis of ATP, causing the phospholipid and 
cholesterol molecules that constitute the plasma membrane 
to translocate laterally on the cell membrane, resulting in 
the redistribution of lipids from non‑lipid rafts to lipid rafts, 
which in turn changes the lipid distribution of the entire 
plasma membrane (31‑33). Therefore, it may be speculated 
that ABCA1 changes the intracellular lipid microenvironment 
through plasma membrane remodeling and lipid redistribution.

ABCA1 and intracellular lipid efflux. All cells in the body 
are able to synthesize cholesterol, but most of them lack effec‑
tive metabolic pathways and may only be excreted from cells 
through a series of transporters (34). Among them, ABCA1 is 
able to use the energy provided by ATP to promote the efflux of 
free cholesterol and phospholipids in cells, and combine with 
apo A‑I on the cell surface to form new HDL, which in turn 
initiates the reverse cholesterol transport process to transport 
cholesterol from peripheral tissues back to the liver (35‑37). At 
this stage, it has been indicated that numerous factors (such as 
IGF‑1), are able to directly or indirectly regulate the expression 
level of ABCA1 to affect the intracellular cholesterol level (38). 
The importance of ABCA1 for cholesterol efflux is currently 

widely recognized, but the pathway to the plasma membrane 
remains to be fully elucidated (39). Yoshioka et al (40) provided 
three models of cholesterol efflux mechanisms. They are the 
channel transport model, the mushroom‑like protrusion model 
and the endocytosis‑exocytosis transport model. The channel 
transport model is widely accepted and is presented in Fig. 1 
to indicate how ABCA1 is able to regulate the intracellular 
microenvironment by transporting intracellular lipids.

4. ABCA1 and cancer cell proliferation, invasion and 
metastasis

The above studies proved that a series of life activities of 
cancer cells are closely related to the level of intracellular 
cholesterol and ABCA1 indirectly affects the proliferation, 
metastasis and invasion of cancer cells by regulating the level 
of intracellular cholesterol (41‑44). ABCA1 mediates the 
transmembrane transport of free intracellular cholesterol and 
phospholipids to apo A‑I, which has an important role in main‑
taining the normal metabolism of intracellular cholesterol. 
As indicated by Prochazka et al (45), in non‑small cell lung 
carcinoma H1299 cells, overexpression of ABCA1 enhanced 
drug resistance. ABCA1 is strongly expressed in normal breast 
epithelium and the reduced expression of ABCA1 in breast 
cancer appears to be associated with poor prognosis (46). 
Activated liver X receptor and overexpression of ABCA1 have 
been reported to reduce cholesterol levels and cancer growth 
in mouse prostate cancer xenografts (47). Maslyanko et al (48) 
also indicated that high cholesterol levels may promote the 
proliferation of breast cancer cells in a mouse transgenic 
model, specifically by upregulating the protein expression of 
ABCA1 to maintain the cholesterol balance in the body and 
inhibit the proliferation of cancer cells. It was also indicated 
that cholesterol efflux has an important role in the treatment 
of lung cancer. Downregulation of ABCA1 was evident in 
all prostate cancers. It has been reported that when prostate 
cancer metastasizes, the cells contain high levels of choles‑
terol (49). Studies suggested that cancer‑specific ABCA1 
methylation and loss of protein expression directly led to 
elevated intracellular cholesterol levels in cancer cells, thus 
forming a microenvironment favorable for cancer progres‑
sion (50). Liu et al (51) indicated that microRNA‑200b‑3p acts 
as an oncogene in lung adenocarcinoma samples and in the 
human lung adenocarcinoma cell lines A549 and H1299 by 
targeting ABCA1, and overexpression of ABCA1 significantly 
inhibited the proliferation, migration and invasion of lung 
adenocarcinoma cells. Huang et al (52) demonstrated that 
ABCA1 may protect the normal function of cells by main‑
taining low levels of cholesterol in mitochondria and have a 
certain inhibitory effect on the proliferation of cancer cells. 
Prostate cancer bone metastases exhibit clear metabolic differ‑
ences from bone metastases of other cancer types, including 
increased levels of cholesterol. Regulation of cholesterol in the 
plasma membrane has been indicated to modulate the ability 
of cells to migrate (53). Furthermore, cholesterol‑rich lipid 
rafts were reported to have an important role in the adhesion 
and migration of cancer cells (54,55). The activity of phos‑
phoinositide 3‑kinase is able to regulate the surface protein 
expression of ABCA1, which significantly increases the risk 
of cancer cells entering the blood to form metastases (56). 
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In Tables I and II, the specific effects of ABCA1 in cancer 
cells are summarized, linking abnormal cholesterol levels to 
aberrant ABCA1 expression, regulation of ABCA1 expression 
levels, which may be utilized for inhibiting cancer cells to 
proliferate, metastasize and invade.

5. ABCA1 and cancer therapy

It is promising to treat cancer by regulating the expression 
level of ABCA1, thereby regulating the level of intracellular 
cholesterol. Of note, cancer cells require excess cholesterol to 
maintain high levels of proliferation, which has been widely 
accepted (57). Available epidemiological data indicated that 
low serum cholesterol as well as statins reduce the risk of pros‑
tate cancer, demonstrating that cholesterol metabolism has a 

role in the development of aggressive prostate cancer (58). 
Therefore, it may be speculated that high expression of ABCA1 
is able to mediate cholesterol efflux, resulting in the reduction 
of intracellular cholesterol in prostate cancer cells to achieve 
the purpose of inhibiting cancer growth. Ovarian cancer is a 
common gynecological malignancy. Although chemotherapy 
is able to delay the disease, the post‑operative survival rate is 
not high. Studies have indicated that ABCA1 has a key role 
in drug resistance and prognosis (59). According to the latest 
research, patients with ovarian cancer with high methylation 
of RASSF1C (functions as an oncogene in cancer cells) and 
low ABCA1 expression have shorter survival (60). In conclu‑
sion, existing studies suggest that moderately high expression 
of ABCA1 has a positive effect on the treatment of prostate 
cancer and breast cancer.

Table I. Effect of cholesterol levels on cancers.

Cancer type Cholesterol intake Cholesterol synthesis ABCA1 expression Function (Refs.)

Prostate cancer HDLR high expression High expression of Low expression High cholesterol (44,46)
  squalene  (methylation) promotes tumor
  monooxygenase  development
Glioblastoma ‑ High expression of Low expression High cholesterol (25)
  HMGCR  promotes tumor 
    development
Pancreatic cancer LDLR high expression ‑ Low expression High cholesterol (31,32)
    promotes tumor 
    development
Breast cancer LDLR high expression ‑ Low expression 27‑HC promotes (43)
    cell proliferation 
    and metastasis
Lung cancer ‑ ‑ Low expression HDL‑C is negatively (48,67)
    correlated with the 
    occurrence and 
    development of lung 
    cancer
Ovarian cancer ‑ High expression of Low expression High cholesterol (56,57)
  cholesterol synthase (methylation) promotes tumor 
    development

ABC, ATP‑binding cassette; LDLR, low‑density lipoprotein receptor; HDL‑C, high‑density lipoprotein cholesterol.

Table II. ABCA1 and cancer cell proliferation, invasion and metastasis.

Cancer type Cancer cell proliferation, invasion and metastasis (Refs.)

Prostate cancer High levels of cholesterol can modulate the ability of cells to migrate (49)
Breast cancer Reduced expression of ABCA1 in breast cancer appears to be associated with poor prognosis (46)
Non‑small cell lung Upregulation of the expression level of ABCA1 enhances drug resistance (45)
carcinoma
Lung Overexpression of ABCA1 significantly inhibits the proliferation, migration and invasion of lung (53)
adenocarcinoma adenocarcinoma cells

ABC, ATP‑binding cassette.
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6. ABCA1 and drug resistance of cancer

ABCA1, as a research hotspot in recent years, has received 
extensive attention due to its function, and as a major trans‑
porter regulating intracellular cholesterol, its role in cancer 
resistance has attracted much attention (8). Chemotherapy, as 
one of the most important cancer treatment methods, is still 
not able to completely remove cancer cells. Chemotherapy 
tolerance is one of the most common problems in chemo‑
therapy failure. Therefore, overcoming the resistance of 
cancer cells to chemotherapeutic drugs is an important issue 
in cancer treatment (61). Multidrug resistance generally refers 
to the adaptability of cancer cells to increase drug output and 

decrease drug uptake, and drug transporters have a key role in 
pre‑targeted drug resistance (62). Existing studies suggested 
found that chemotherapy failure is directly related to ABC 
transporters and preventing the induction of ABC transporters 
in cancer cells may help avoid drug resistance (63). The high 
expression of transporters in cancer cells results in a variety of 
anticancer drugs being transported out of cells and unable to 
exert their anticancer effects (64,65), which has been observed 
in the drug resistance to curcumin, doxorubicin and nitidine in 
the treatment of breast and lung cancer (66‑68). Chen et al (69) 
indicated that ABC transporters have a certain role in cancer 
stem cells through the reversal of inhibition of ABC trans‑
porter expression. There are numerous ways to overcome the 

Figure 1. Mechanism of lipid efflux mediated by ABCA1. ① Low‑density lipoprotein binds to ABCA1 to form a complex. ② The complex is internalized, 
part of it is transferred to the lysosome for degradation and the rest is located to the endosome. ③ The complex on the endosome combines with lipid to form 
the apoA‑l/lipid complex. ④ The lipid complexes are resecreted through exocytosis, and after dissociation, they are conducive to the formation of high‑density 
lipoprotein complexes. Apo, apolipoprotein; ABC, ATP‑binding cassette.

Figure 2. Roles of ABCA1 in various cancer types and cancer treatment (64,65,69,71,72). ABC, ATP‑binding cassette; shRNA, short hairpin RNA; LDLR, 
low‑density lipoprotein receptor; MRP2, multidrug resistance‑associated protein 2.
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drug resistance that depends on high expression of ABCA1, 
such as valproic acid downregulating the expression level of 
ABCA1 through histone deacetylase 2, thereby enhancing the 
sensitivity of non‑small cell lung cancer cells to cisplatin (70). 
ABCA1‑dependent resistance to α‑tocopheryl succinate 
in mitochondria‑targeted therapy of lung cancer was also 
reported (71). However, certain studies also indicated that when 
the expression level of ABCA1 in cancer cells was generally 
decreased, cholesterol accumulated and increased the order of 
bilayer phospholipids, thereby reducing the permeability of the 
membrane and finally promoting the resistance of cancers to 
membrane‑active anticancer drugs (72). As indicated in Fig. 2, 
the role of ABCA1 in multidrug resistance has been widely 
recognized and measuring the expression of ABCA1 may be 
used to predict the response to anticancer drugs.

7. Conclusion and perspective

Cholesterol efflux minimizes the potential harm to cells by 
excess cholesterol, but cancer cells have evolved to exploit this 
link to promote malignancy. As one of the main transporters 
of intracellular cholesterol efflux, ABCA1 has been widely 
recognized and used in anti‑atherosclerosis treatment (73); 
its ability to transport cholesterol also has great potential in 
cancer treatment (74). Further research on ABCA1 will help 
elucidate its transport function and mechanisms to inhibit the 
transport of chemotherapeutic drugs, as well as the related 
effects of its reduced expression level on cancer cells, so as 
to achieve the purpose of cancer treatment. By modifying and 
inhibiting this gene, mechanisms of cancer cell growth and 
efflux of chemotherapeutic drugs may be interfered with. This 
provides novel directions for research on lipid metabolism and 
offers new effective targets for cancer prevention, inhibition 
and treatment. ABCA1 in cancer and provides a new avenue 
for drug discovery and therapy.
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