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Chronic obstructive pulmonary disease (COPD) is a 
progressive and debilitating respiratory condition that 

causes substantial morbidity and mortality (1). CT cap-
tures the presence, pattern, and extent of phenotypic 
abnormalities associated with COPD. Both visual and 
quantitative CT assessments have been extensively vali-
dated and are considered complementary methods for 
the evaluation of COPD. Quantitative CT assessment 
based on lung densitometry is established both clinically 
and pathologically as an objective measure of emphysema 
severity (2–4). Although studies have demonstrated cor-
relations between the extent of emphysema at CT with 
pulmonary physiology and quality-of-life measures, CT 

densitometry provides no information about the morpho-
logic characteristics of the emphysema pattern.

Visual assessment of CT scans enables diagnosis of 
emphysema and direct assessment of its presence and 
distribution (5). Visual classification of emphysema sub-
types has been associated with mortality risk, lung cancer, 
and impaired function (6–10). The Fleischner Society 
published a system for visual grading of emphysema se-
verity that has been validated as an independent predictor 
of future progression and increased mortality risk (6,11). 
Standardized visual assessment, however, can be time 
consuming, is subjective, and requires dedicated training, 
making it impractical for routine use (12,13).

Background:  Visual assessment remains the standard for evaluating emphysema at CT; however, it is time consuming, is subjective, 
requires training, and is affected by variability that may limit sensitivity to longitudinal change.

Purpose:  To evaluate the clinical and imaging significance of increasing emphysema severity as graded by a deep learning algorithm 
on sequential CT scans in cigarette smokers.

Materials and Methods:  A secondary analysis of the prospective Genetic Epidemiology of Chronic Obstructive Pulmonary Disease 
(COPDGene) study participants was performed and included baseline and 5-year follow-up CT scans from 2007 to 2017. 
Emphysema was classified automatically according to the Fleischner emphysema grading system at baseline and 5-year follow-up 
using a deep learning model. Baseline and change in clinical and imaging parameters at 5-year follow-up were compared in partici-
pants whose emphysema progressed versus those who did not. Kaplan-Meier analysis and multivariable Cox regression were used to 
assess the relationship between emphysema score progression and mortality.

Results:  A total of 5056 participants (mean age, 60 years 6 9 [SD]; 2566 men) were evaluated. At 5-year follow-up, 1293 of the 
5056 participants (26%) had emphysema progression according to the Fleischner grading system. This group demonstrated pro-
gressive airflow obstruction (forced expiratory volume in 1 second [percent predicted]: –3.4 vs –1.8), a greater decline in 6-minute 
walk distance (–177 m vs –124 m), and greater progression in quantitative emphysema extent (adjusted lung density: –1.4 g/L vs 
0.5 g/L; percentage of lung voxels with CT attenuation less than 2950 HU: 0.6 vs 0.2) than those with nonprogressive emphysema 
(P , .001 for each). Multivariable Cox regression analysis showed a higher mortality rate in the group with emphysema progression,  
with an estimated hazard ratio of 1.5 (95% CI: 1.2, 1.8; P , .001).

Conclusion:  An increase in Fleischner emphysema grade on sequential CT scans using an automated deep learning algorithm was  
associated with increased functional impairment and increased risk of mortality.
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all clinical centers. Smokers were enrolled based on smoking his-
tory and classified using the Global Initiative for Lung Disease, 
or GOLD, spirometric criteria based on postbronchodilator 
spirometry. Participants self-identified as non-Hispanic African 
American or non-Hispanic white race. Those with respiratory 
conditions other than asthma and COPD were excluded from 
the study. Written informed consent was obtained from all study 
participants. In addition to CT, clinical evaluation included 
baseline spirometry, the 6-minute walk test, and standardized 
questionnaires including St George’s Respiratory Questionnaire 
and modified Medical Research Council dyspnea score (see  
Appendix E1 [online] for details) (19,20). Deaths were reported 
to the central study from clinical centers, and the Social Security 
Death Index was used to determine survival or censoring time 
for each participant (6).

This report is based on 5056 COPDGene participants who 
had automatic scoring of emphysema at CT according to the 
Fleischner classification system using a deep learning algorithm, 
which has been previously described (16). Briefly, emphysema  
severity was graded as absent (score, 0), trace (score, 1), mild 
(score, 2), moderate (score, 3), confluent (score, 4), or advanced 
destructive (score, 5). Participants with baseline (phase I, 2007–
2012) and 5-year follow-up (phase II, 2013–2017) inspiratory 
CT scans and deep learning scores were included (Fig 1). Follow-
up for mortality analysis after the phase II scans continued up to 
10.6 years. Separate analysis was performed on 2087 participants 
who did not return for follow-up CT imaging at phase II. See 
Table E1 (online) for details.

Quantitative CT Analysis
All participants underwent volumetric noncontrast axial in-
spiratory and expiratory CT using a standardized protocol 

Advanced computerized assessments have shown promise for 
improved emphysema phenotyping at CT (14,15). Humphries 
et al (16) recently described a deep learning algorithm capable of 
automatic classification of CT emphysema severity using the Fleis-
chner Society scoring system (17). The deep learning algorithm, 
based on convolutional neural network and long short-term mem-
ory architectures, was trained to classify patterns of parenchymal 
emphysema according to Fleischner criteria. The algorithm was 
trained using baseline CT scans and visual scores on a subset 
of Genetic Epidemiology of COPD (COPDGene) participants.  
In validation testing using a nonoverlapping subset of 7143  
COPDGene baseline CT scans, deep learning scores showed 
moderate concordance with visual scores and stronger associa-
tions than visual evaluation when compared with physiologic 
impairment and mortality risk. Additional validation in an 
independent cohort (Evaluation of COPD Longitudinally to 
Identify Predictive Surrogate Endpoints, or ECLIPSE) showed 
similar results.

Our purpose was to evaluate the significance of increased em-
physema severity, as graded by a deep learning algorithm on se-
quential CT scans according to the Fleischner Society emphysema 
classification system in cigarette smokers. We sought to determine 
the relationship of clinical, physiologic, and imaging outcomes in 
those who progressed by one or more emphysema grades accord-
ing to the Fleischner system versus those who did not progress.

Materials and Methods

Study Participants
This study is a secondary analysis from COPDGene (Clinical-
Trials.gov identifier: NCT00608764), a prospective, multicenter 
study focused on the genetic epidemiology of COPD (18).  
Between 2007 and 2012, 10 192 individuals aged 45–80 years 
with at least a 10 pack-year smoking history were enrolled in this 
Health Insurance Portability and Accountability Act–compliant 
study at 21 clinical centers in the United States. Institutional 
review board approval of the research protocol was obtained at 

Abbreviations:
ALD = adjusted lung density, COPD = chronic obstructive pulmonary 
disease, FEV1 = forced expiratory volume in 1 second, FVC = forced 
vital capacity, LAA-950 = percentage of lung voxels with CT attenuation 
less than –950 HU

Summary
Emphysema progression on CT scans scored using a deep learning 
algorithm was associated with increased functional impairment and 
mortality at 5-year follow-up.

Key Results
	N A deep learning algorithm was used to classify emphysema at base-

line and 5-year follow-up in 5056 participants.
	N Of the 5056 participants, 1293 (26%) had an increase in emphy-

sema grade at 5 years; these participants had progressive airflow 
obstruction, greater decline in 6-minute walk distance, and greater 
progression in emphysema extent than those with nonprogressive 
emphysema (P , .001 for each).

	N Emphysema progression was associated with an increased mortality 
(hazard ratio: 1.5, P , .001).

Figure 1:  Flowchart of study population. DL = deep learning.
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(18,21). The scans were reconstructed with a section thick-
ness of 0.625, 0.75, or 0.9 mm depending on the CT manu-
facturer; corresponding section intervals were 0.625, 0.5, or 
0.45 mm, respectively, to achieve near-isotropic voxels (22). 
Quantitative analysis of emphysema extent was performed 
using a dedicated software program (LungQ, version 1.0.0; 
Thirona). Emphysema was quantified using the 15th percen-
tile lung density method adjusted for inspiratory lung volume 
and percentage of lung voxels with CT attenuation less than 
–950 HU (LAA-950) on inspiratory CT scans as previously 
described (23–26).

Deep Learning Algorithm Development and Training
A deep learning model was developed and validated using Py-
thon (version 3.6; Python Software Foundation, https://www.
python.org/) and PyTorch (version 0.4.1; https://pytorch.org) as 
previously reported (16). The model source code can be ac-
cessed at https://gitlab.njhealth.org/qil_public/emphysema_v1_
public/-/tree/main. Briefly, our deep learning algorithm was 
trained on categorical visual scores assigned by two trained 
research analysts, with disagreements greater than one grade 
adjudicated by a thoracic radiologist with more than 30 years 
of experience (D.A.L.). The model architecture includes con-
volutional layers and a long short-term memory component to 
process 25 axial sections sampled from each volumetric CT ex-
amination, outputting a probability (on a scale of 0.0–1.0) for 
each Fleischner emphysema classification category. This output 
was treated as a discrete probability distribution, and the final 
classification was calculated as the probability-weighted aver-
age of the categories rounded to the nearest integer.

Statistical Analysis
Descriptive statistics between emphysema scores and demo-
graphic and functional parameters were computed. One-way 
analysis of variance was used to test for significant differences in 
percent predicted forced expiratory volume in 1 second (FEV1), 
ratio of FEV1 to forced vital capacity (FVC), St George’s Respi-
ratory Questionnaire score, quantitative CT emphysema value, 
and smoking history stratified according to emphysema scores. 
Quantitative emphysema value was computed as LAA-950. x2 
tests of independence were used to compare Global Initiative 
for Lung Disease stage and other categorical characteristics be-
tween emphysema severity scores.

The median length of follow-up after the phase II scan 
in this data set was 4.9 years (range, 30 days to 10.6 years). 
Kaplan-Meier plots were used to visualize mortality according 
to emphysema scores. Multivariable analysis of risk of death 
according to emphysema grade was performed using shared 
frailty models, an extension of Cox proportional hazard mod-
els that account for variability between study sites. A normally 
distributed random effect was included as a linear predictor to 
account for correlation in the data due to clustering of partici-
pants by study site.

Statistical calculations were performed using R software 
(version 3.4.4; R Foundation for Statistical Computing). 
P , .05 was considered to indicate a statistically significant 
difference.

Results

Participant Characteristics
A total of 5056 current and former smokers (2566 men and 2490 
women) were evaluated (Table 1). A total of 2087 participants 
did not return for CT imaging at phase II; these patients were  
excluded from our primary analysis (Fig 1). See Table E1 (online) 
for additional details. The mean age at enrollment was 60 years 
6 9 (SD), with a mean age of 60 years 6 9 for men and 59 years 
6 9 for women. The emphysema score increased by one or more 
Fleischner categories in 1293 of the 5056 participants (26%) and 
did not progress at phase II in 3763 (74%). Compared with par-
ticipants whose emphysema grade did not progress, those who 
progressed were older and more likely to be current smokers with 
a higher tobacco exposure at baseline. An increase in emphysema 
score was also associated with lower baseline percent predicted 
FEV1, lower FEV1/FVC ratio, shorter 6-minute walk distance, 
lower disease-specific quality of life, and more dyspnea. Radiologi-
cally, participants with emphysema grade progression at phase II 
had a higher LAA-950 and lower adjusted lung density (ALD).

Within the group whose emphysema score progressed at phase 
II, most of the progression was by one category and predomi-
nantly in participants with absent, trace, or mild baseline emphy-
sema scores (Table E2 [online]). An example of two participants 
who progressed according to the deep learning model are shown in 
Figure 2. Figure 3 shows a representative example of a participant 
without emphysema progression. In the group with nonprogres-
sive emphysema scores at phase II, the score in 693 of 3763 par-
ticipants (18%) decreased by one or more categories (Table E2 
[online]). Most of these occurred in participants with trace or mild 
baseline emphysema scores.

Univariable Analysis
At 5-year follow-up, participants with an increase in emphysema 
grade demonstrated progressive airflow obstruction measured by 
mean percent predicted FEV1 (23.4 vs 21.8, respectively; P , 
.001) and FEV1/FVC ratio (20.02 vs 20.01, P , .001), a greater 
decline in mean 6 minute walk distance (2176.8 m vs 2123.8 m, 
P , .001), and greater progression in mean quantitative emphy-
sema extent (ALD, 21.4 g/L vs 0.5 g/L; LAA-950, 0.6 vs 0.2; P , 
.001 for each) than those with nonprogressive emphysema (Table 
2). We found no evidence of a difference in disease-specific impact 
on quality of life between the two groups (St George’s Respiratory 
Questionnaire score, 0.6 vs 0.1; P = .50).

Multivariable Survival Analysis
There were 527 deaths in the cohort (171 deaths in the partici-
pants whose emphysema grade progressed). Survival follow-up 
continued up to 85 months after phase II. Figure 4 shows the 
Kaplan-Meier plot for survival stratified according to change in 
emphysema score from phase I to phase II, and Figure 5 shows 
the Kaplan-Meier plot based on emphysema severity grade at 
phase II. Of the 5056 participants included for analysis, 30 were 
missing vital status and were not included for survival analysis. At 
multivariable analysis adjusted for age, race, sex, weight, height, 
smoking pack-years, smoking status at enrollment, and educa-
tion level, increasing emphysema grade classified by deep learn-
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ing at baseline was associated with a higher mortality rate com-
pared with the referent group of absent emphysema (Table E3, 
model 1 [online]). Estimated hazard ratios were 1.5 (95% CI: 
0.9, 2.4), 1.7 (95% CI: 1.1, 2.8), 2.4 (95% CI: 1.5, 3.9), 4.4 
(95% CI: 2.7, 7.2), and 5.7 (95% CI: 3.0, 11.0) for trace, mild, 

moderate, confluent, and advanced destructive emphysema, re-
spectively. An increase by at least one emphysema grade at phase 
II was associated with a higher mortality rate than the referent 
group of nonprogressive emphysema, with an estimated hazard 
ratio of 1.5 (95% CI: 1.2, 1.8; P , .001) (Table 3, model 1). 

Table 1: Mortality, Demographics, and Baseline Functional Parameters in Study Cohort according to Change in Emphysema 
Grade at 5-year Follow-up

Characteristic No. of Participants

Change in Emphysema Grade

P ValueNo Increase (n = 3763) Increase of at Least One Grade (n = 1293)
Emphysema score at baseline 5056 ,.001
  Absent 363 (9.6) 269 (21)
  Trace 1589 (42) 392 (30)
  Mild 793 (21) 318 (25)
  Moderate 590 (16) 226 (17)
  Confluent 356 (9.5) 88 (6.8)
  Advanced destructive 72 (1.9) …
No. of deaths 5026 356 (9.5) 171 (13) ,.001
Age (y)* 5026    59 6 9    60 6 9 ,.001
BMI (kg/m2)* 5026 29.1 6 6.1 29.1 6 6.3 .77
Sex 5026 .37
  M 1897 (51) 669 (52)
  F 1846 (49) 614 (48)
Education 5026 .89
  College 2470 (66) 844 (66)
  High school or less 1273 (34) 439 (34)
Race 5026 .20
  African American 1144 (31) 368 (29)
  Non-Hispanic White 2599 (69) 915 (71)
Smoking status 5026 .02
  Never 3 (,0.1) 2 (0.2)
  Former 1960 (52) 618 (48)
  Current 1780 (48) 663 (52)
No. of pack-years smoked* 5024    42 6 23    44 6 25 .002
GOLD stage 5000 ,.001
  Nonsmoker control 3 (,0.1) 2 (0.2)
  PRISM 441 (12) 148 (12)
  0 1905 (51) 505 (40)
  1 314 (8.4) 124 (9.7)
  2 671 (18) 305 (24)
  3 327 (8.8) 145 (11)
  4 64 (1.7) 46 (3.6)
FEV1 (mL)* 5000 2.41 6 0.85 2.22 6 0.82 ,.001
FEV1 (% predicted)* 5000    82 6 22    76 6 23 ,.001
FEV1/FVC ratio* 5000 0.70 6 0.13 0.66 6 0.15 ,.001
6MWD (m)* 4993  439 6 113  432 6 109 .04
SGRQ score* 5026    22 6 21    25 6 22 ,.001
MMRC dyspnea score* 5017 1.14 6 1.35 1.28 6 1.38 .01
LAA-950 (%)* 5026      5 6 8      6 6 8 ,.001
Adjusted lung density (g/L)* 5026    87 6 24    85 6 25 .006

Note.—Except where indicated, data are numbers of participants, with percentages in parenthesis. P values were calculated with the 
Pearson x2 test, Wilcoxon rank sum test, or Fisher exact test. BMI = body mass index, FEV1 = forced expiratory volume in 1 second, FVC 
= forced vital capacity, GOLD = Global Initiative for Obstructive Lung Disease, LAA-950 = percentage of lung voxels with CT attenuation 
less than 2950 HU, MMRC = Modified Medical Research Council, PRISM = preserved ratio impaired spirometry, 6MWD = 6-minute 
walk distance, SGRQ = St George’s Respiratory Questionnaire.
* Except where indicated, data are means 6 SDs.
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The mortality associations for all baseline emphysema grades 
persisted after adjustment for change in emphysema grade at 
phase II. Change in emphysema grade remained a predictor 
of mortality after adjustment for baseline ALD and change in 
ALD, with an estimated hazard ratio of 1.4 (95% CI: 1.1, 1.7;  
P = .002) (Table 3, model 2).

Additional Kaplan-Meier analysis and curves of the 2087 par-
ticipants who did not return for CT at phase II are provided in 
Figure E1 (online). Of note, given that the Fleischner categories 
are bounded observations, progression of emphysema in partici-
pants in the highest risk category (ie, advanced destructive) can-
not be measured. Results 
of univariate analysis 
accounting for this limi-
tation by excluding par-
ticipants with advanced 
destructive emphysema 
at phase I are shown in  
Table E4 (online).

Discussion
Using a previously vali-
dated computer algorithm 
for automatic grading of 
emphysema pattern ac-
cording to the Fleischner 
Society criteria, we dem-
onstrated that an increase 
in emphysema grade on 
sequential CT scans is as-
sociated with substantial 
disease progression and 
increased risk of mortality. 
In our current study, the 
1293 participants whose 
deep learning emphysema 
score increased by one or 
more Fleischner catego-
ries demonstrated more 
airflow obstruction and 
dyspnea at baseline and 

had shorter 6-minute walk distances, greater extent of quantitative 
emphysema, and lower quality of life compared with those who 
did not progress. At 5-year follow-up, they had a more substantial 
increase in airflow obstruction and quantitative emphysema extent 
and a greater reduction in 6-minute walk distance than those who 
did not progress. Our findings extend the results of prior stud-
ies that have established the significance of baseline parenchymal 
emphysema pattern according to the Fleischner Society scoring 
system using visual methods, and its role in predicting future em-
physema progression and mortality (6,11). They also underscore 
the significance of the automated deep learning algorithm, which 

Figure 2:  Inspiratory axial noncontrast CT scans obtained at baseline and 5-year-follow-up in two participants demonstrate em-
physema progression according to the deep learning automated method. (A) Baseline scan shows mild emphysema in a 49-year-
old man. (B) Image obtained at 5-year follow-up shows progression to moderate emphysema. Forced expiratory volume in 1 
second (FEV1) decreased by 677 mL. (C) Baseline scan shows moderate emphysema in a 62-year-old man. (D) Image obtained 
at 5-year follow-up shows progression to confluent emphysema. FEV1 decreased by 502 mL.

Figure 3:  Inspiratory axial noncontrast CT scans obtained at (A) baseline and (B) 5-year follow-up in a 73-year-old woman. There was no 
change in emphysema grade according to the deep learning automated method. Both baseline and 5-year follow-up scans show mild emphysema. 
Forced expiratory volume in 1 second did not change at follow-up.
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previously was shown to more strongly correlate with clinical pa-
rameters than visual assessment (16).

One of the challenges of studying COPD is that the rate of 
progression is often slow, and the rate of FEV1 decline is tradi-
tionally used to quantify disease progression, despite changes on 
CT scans often predating spirometric impairment. Emphysema-
specific and more sensitive parameters are needed to monitor 
disease progression and treatment effects. Quantitative CT using 
lung densitometry has been successfully used to prospectively de-
tect changes in emphysema progression (27,28). A recent study 

by Ash et al (29) showed that in ever-smokers with  
emphysema, a decrease in adjusted lung density on 
sequential CT scans was associated with increased 
all-cause and respiratory mortality. Additional studies 
have tried to more fully characterize CT emphysema 
beyond its extent using texture-based methods and 
cluster analysis (30–32). Virdee et al (33) expanded 
on low-attenuation cluster analysis by investigating 
the spatial arrangement of emphysematous voxels 
within clusters and showed that so-called compact-
ness of the CT emphysema voxels corresponded to 
the severity of COPD and better correlated with  
visual emphysema scores and lung function measure-
ments than traditional CT densitometry methods.

Despite these established and newer quantitative 
methods, qualitative visual scoring continues to be 
the standard for emphysema assessment. Visual as-
sessment, however, is time consuming, is subjective, 
requires training, and suffers variability that may limit 
sensitivity to longitudinal change (34). The deep 
learning technique used in our study mitigates these 
issues by automating image classification, which ef-
fectively eliminates the time burden and subjectivity 
of visual assessment. Moreover, the trained algorithm 
embodies the expert knowledge of the Fleischner 
scoring system, potentially allowing for distribution 
of the criteria at a global level and use as a training 
aide to foster wider adoption.

The classifier-based change in emphysema grade 
at 5 years proved to be more robust than the lung 

densitometry technique, remaining an independent predictor of 
mortality in multivariable models. The mortality association also 
persisted in models that included baseline emphysema grade strat-
ified according to the Fleischner criteria, suggesting that longitudi-
nal assessment of emphysema pattern provides added information 
that is independent of, and complementary to, lung densitometry 
and baseline emphysema score.

Of note, in the nonprogressive emphysema group, 18% (693 
of 3763 participants) showed an apparent decrease in emphysema 
score at 5 years. Given that emphysema is defined as irreversible 

Table 2: Changes in Functional Parameters at 5-year Follow-up according to Change in Emphysema Grade

Characteristic No. of Participants

Change in Emphysema Grade

P ValueNo Increase (n = 3763) Increase of at Least One Grade (n = 1293)
Change in FEV1 (mL) 4911   20.21 6 0.28   20.24 6 0.30 ,.001
Change in FEV1 (% predicted) 4911     21.8 6 10.28     23.4 611.30 ,.001
Change in FEV1/FVC ratio 4910   20.01 6 0.06   20.02 6 0.07 ,.001
Change in adjusted lung density 

(g/L)
4853          0.5 6 13.63     21.4 6 13.89 ,.001

Change in LAA-950 (%) 4853          0.2 6 3.3          0.6 6 4.6 ,.001
Change in 6MWD (m) 4896 2123.8 6 352.9 2176.8 6 367.0 ,.001
Change in SGRQ score 5014          0.1 6 15.4          0.6 6 15.4    .50

Note.—Except where indicated, data are means 6 SDs. P values were determined with the Wilcoxon rank-sum test. FEV1 = forced 
expiratory volume in 1 second, FVC = forced vital capacity, LAA-950 = percentage of lung voxels with CT attenuation less than 2950 HU, 
6MWD = 6-minute walk distance, SGRQ = St George’s Respiratory Questionnaire.

Figure 4:   Kaplan-Meier plot shows the relationship between deep learning emphysema 
grade progression and survival. Lower survival is associated with emphysema progression in 5026 
participants included in mortality analysis.
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parenchymal destruction, we speculate that these find-
ings are primarily due to technical factors, specifically 
under- or overestimation of the emphysema grade 
possibly due to differences in CT lung volume be-
tween baseline and follow-up scans. Our deep learn-
ing algorithm was trained on categorical visual scores; 
pattern differentiation at the extremes of the grading 
scale is subject to greater interobserver variation. The 
output of the deep learning model is essentially a pre-
diction probability for each category that is rounded to 
the nearest integer for final output. Most of the “im-
proved” cases occurred in the trace and mild catego-
ries (Table E2 [online]). It is likely that many of these 
“improved” cases represented no significant change in 
emphysema grade at interval imaging in participants 
who straddle the borderline between two categories.

Our study had some limitations. First, by including 
only smokers who returned for 5-year follow-up, we 
may have introduced selection bias by excluding those 
who were too ill or deceased. Second, because the deep 
learning algorithm was trained using only COPD-
Gene data, our model could have been influenced by 
the specific CT protocol and selection biases present 
in this cohort. In addition, the multicenter design of 
our study could have introduced sources of variability, 
which are known to affect measures of lung densitom-
etry and may also influence our deep learning system 

Figure 5:  Kaplan-Meier plot shows survival according to emphysema grade assessed at 
5-year follow-up chest CT. Adv. = advanced.

Table 3: Cox Multivariable Models for Predicting Mortality in Study Cohort

Model and Parameter Hazard Ratio 95% CI P Value
Model 1: baseline emphysema grade plus change in emphysema
  Baseline emphysema grade
    Trace 1.6 1.0, 2.6 .04
    Mild 1.9 1.2, 3.1 .01
    Moderate 2.6 1.6, 4.2 ,.001
    Confluent 5.1 3.1, 8.3 ,.001
    Advanced destructive 7.2 3.7, 14.1 ,.001
  Change in emphysema  

  grade at 5 years
    Increase of at least one grade 1.5 1.2, 1.8 ,.001
Model 2: baseline emphysema grade plus ALD plus change in ALD plus change in emphysema
  Baseline emphysema grade
    Trace 1.6 1.0, 2.6 .05
    Mild 1.8 1.1, 2.9 .02
    Moderate 2.2 1.3, 3.6 .002
    Confluent 3.5 2.0, 6.2 ,.001
    Advanced destructive 4.3 2.0, 9.2 ,.001
  Baseline ALD (g/L) 0.99 0.99, 1.0 .01
  Change in ALD at 5 years (g/L) 0.99 0.98, 1.0 .07
  Change in emphysema grade at 5 years
    Increase of at least one grade 1.4 1.1, 1.7 .002

Note.—Data are for 5056 participants and 527 events. Models are adjusted for age, race, sex, weight, height, smoking pack-years, current 
smoking status at enrollment, and education level. Referent groups for baseline emphysema grade and change in emphysema grade at 5 
years are those without emphysema at baseline and those without emphysema grade progression at 5 years, respectively. ALD = adjusted 
lung density.
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as they are trained on visual scores. Finally, deep learning methods 
are sometimes criticized for lacking interpretability. However, by 
anchoring the algorithm to a well-established and validated visual 
scoring system, classification outputs are clearly defined and can 
be intuitively understood by clinicians.

In conclusion, we applied a previously validated deep learning 
algorithm that automatically classifies emphysema pattern at CT 
according to the Fleischner classification system and demonstrated 
that an increase in emphysema severity score at 5 years was an 
independent predictor of disease progression and mortality. These 
results suggest the clinical value of automatic, structured grad-
ing of emphysema severity at CT for identification of patients at 
greater risk. Possible applications include lung health assessments 
at lung cancer screening or entry criteria for clinical trials.
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