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Abstract

Formal analysis of the emergent structural properties of dynamic networks is largely uncharted 

territory. We focus here on the properties of forward reachable sets (FRS) as a function of the 

underlying degree distribution and edge duration. FRS are defined as the set of nodes that can 

be reached from an initial seed via a path of temporally ordered edges; a natural extension of 

connected component measures to dynamic networks. Working in a stochastic framework, we 

derive closed-form expressions for the mean and variance of the exponential growth rate of 

the FRS for temporal networks with both edge and node dynamics. For networks with node 

dynamics, we calculate thresholds for the growth of the FRS. The effects of finite population size 

are explored via simulation and approximation. We examine how these properties vary by edge 

duration and different cross-sectional degree distributions that characterize a range of scientifically 

interesting normative outcomes (Poisson and Bernoulli). The size of the forward reachable set 

gives an upper bound for the epidemic size in disease transmission network models, relating this 

work to epidemic modeling (Ferguson, 2000; Eames, 2004).
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1 Introduction

There is growing interest in diffusion over dynamic networks (a recent review may be found 

in Holme & Saramäki, 2012), but formal analysis of the emergent structural properties 

of dynamic networks is largely uncharted territory. In this paper, we focus on deriving 

properties of forward reachable sets (FRS), a natural temporal extension of the static concept 

of a connected component. The FRS is defined as the set of all nodes that can be reached 

from an origin node via a forward reachable path over some period of time; a forward 
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reachable path is a sequence of temporally ordered edges that connects two nodes within a 

specified time interval (Moody, 2002).

Our work is motivated by applications in epidemiology, where an infectious disease passes 

from one person to another in a population through a sequence of partnerships that form, 

have duration, and dissolve. Partnerships are different than “contacts” in this context; they 

represent repeated contact with the same person over time, and this temporal clustering 

of contacts can affect transmission dynamics. The duration of partnerships influences the 

stability of the underlying transmission network structure, and the cross-sectional degree 

distribution (the number of partners at one instant) influences how connectivity emerges 

over time. Long-term monogamous partnerships can isolate dyads, reducing epidemic 

potential, but if partnerships turn over rapidly or people have more than one partner at a 

time, epidemic potential increases. The impact of these pair formation features on epidemic 

outcomes has been recognized in the sexually transmitted infection (STI) literature for 

decades (Dietz & Hadeler, 1988; Watts & May, 1992; Morris & Kretzschmar, 1995; Morris 

& Kretzschmar, 1997; Kretzschmar & Dietz, 1998; Bauch & Rand, 2000; Ferguson & 

Garnett, 2000; Leung et al., 2014).

The FRS can be thought of as the upper bound for the transmission process on a partnership 

network: an idealized infectious disease for which the probability of transmission is 1, 

and transmission is instantaneous. We model the FRS as an emergent structural property 

of the dynamic network, generated by micro-level processes that govern node and link 

dynamics: the mean cross-sectional degree k, the edge dissolution rate α, and the node exit 

rate μ. Conditional on these parameters, we vary the cross-sectional degree distribution, 

comparing Bernoulli to Poisson. These two distributions are chosen because they map to 

the normative continuum that guides partnership dynamics. The Bernoulli, at one end, 

represents serial monogamy, where only one partner at a time is allowed so each partnership 

is entirely dependent on the presence of another, while the Poisson at the other end 

assumes all partnerships are formed and dissolved independently, so there is no restriction 

on the number of partners one can have at the same time. Populations with the same 

mean number of partners per person can vary along the continuum defined by these two 

distributions. Populations with a highly skewed partnership distribution, such as the power-

law distribution, are not represented in our analysis. However, long-tailed distributions are 

usually found for cumulative degree (e.g., number of partners in the last year) (Hamilton et 

al., 2008), rather than cross-sectional degree. We will discuss the implications of long-tailed 

distributions in Sections 3.1 and 7.3.

Our analysis focuses on the effect of the degree distribution on the properties of the FRS, 

conditional on mean degree, edge duration, and node exit rates. Working in a stochastic 

framework, we find analytic solutions for the threshold for growth of the FRS and the 

mean and variance of the active FRS size over time. Our analysis considers three phases 

in the evolution of the FRS: the initial exponential growth phase where we can make the 

approximation of an infinite size network, the logistic growth phase where the finite network 

effect kicks in, and the equilibrium where the active FRS is either extinct or varies around 

a non-zero size. We evaluate the stochasticity in the FRS by calculating the probability of 

extinction, and the variance of the FRS size in the initial growth phase.
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Focusing on the FRS allows us to greatly simplify the pair-formation and moment closure 

models found in the epidemics literature because we do not track the neighbors’ status in 

our equations. As a result, we are able to obtain closed-form analytic solutions to several 

traditional epidemic potential indicators, as a function of basic parameters that can be 

obtained from egocentrically sampled networks in standard sample surveys. The methods we 

develop here can therefore be used to empirically investigate epidemic potential with easily 

collected network data.

2 Definitions and setup

2.1 Precise definitions and assumptions

A dynamic network can be represented as a list of edges with activities over intervals 

(Holme, 2012): n1, n1′ , t1, t1′ , …, ni, ni′, ti, ti′ , … , where each 4-tuple contains the two 

endpoints of the edge ni, ni′ , the edge formation time ti, and the dissolution time ti′. The 

active intervals ti, ti′  of an edge must have positive length ti′ − ti ⩾ 0 , and may not overlap 

another interval on the same edge. The networks in our analysis are undirected.

We also model node entry and exit (analogous to birth and death in a dynamic population 

model). Once a node exits the network, all of its edges dissolve and it can no longer form 

edges; the exit is permanent. Each node has only one active lifetime, but each edge may be 

associated with multiple active intervals. The two endpoints of an active edge must both be 

active nodes.

The network is assumed to be homogeneous and in equilibrium. All nodes have the same 

rate of exit μ, regardless of their degree. All nodes i with degree Di have the same edge 

formation rate λ(Di). All active edges have the same rate of dissolution α. All rates 

are constant across time. All dynamics are assumed to follow a memoryless stochastic 

process with the specified rates, which determine how quickly the network is changing. The 

memoryless process implies that partnership durations are exponentially distributed.

Note that an edge dissolution may be caused by the death of one of the two endpoints, or 

by a separation process at rate σ. We can write the dissolution rate as α = σ + 2μ and the 

separation rate as σ = α − 2μ. Since the separation rate must be positive, there is a constraint 

that α/μ ⩾ 2.

We examine dynamic networks with two different cross-sectional degree distributions: 

Poisson (k) and Bernoulli (p). The Poisson degree distribution corresponds to a uniform 

edge formation process, where λ(Di) = λP for any node degree, resulting in an Erdős–Rényi 

random network at equilibrium when the number of nodes is infinite. This type of graph 

is also referred to as a “simple” or Bernoulli random graph in different literatures. The 

Bernoulli degree distribution restricts edge formation to nodes that have degree 0, meaning 

λ(Di) = λB if Di = 0 and λ(Di) = 0 for Di ⩾ 1. It corresponds to a strictly monogamous 

social network constraint. Let k be the mean degree of a cross-sectional network taken at 

equilibrium. Equivalently, k can be the mean instantaneous degree of a node at equilibrium.
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Given the set of node and edge activities, we can define a forward reachable path as a 

time-ordered sequence of active edges between an initial and a destination node, within 

a time interval. An equivalent definition using cross-sectional networks can be found in 

Nicosia et al. (2012). Our definition emphasizes the endpoints of the activity intervals, which 

are the events that form the basis of our analysis.

Definition—There exists a forward reachable path from node i to itself in any time interval 

(reflexivity). There exists a forward reachable path from i to k in the time interval (t0, tmax) 

if there exists a node j such that the following two conditions hold:

• There is a path from i to j in the time interval (t0, tj), with tj ⩽ tmax.

• There is an active edge j, k, tk, tk′  where tk < tmax and tk′ ⩾ tj.

In our definition for the forward reachable path, there is no delay between lateral moves in 

the path, going from one node to another. In applications like disease transmission or airline 

connections, an incubation or transit period d can be specified by requiring that tk′ ⩾ tj + d.

Unlike connectivity on a static network, the forward reachable path is always directed, even 

if the network is undirected. Connectivity via forward reachable path is not symmetric: 

existence of a path from node i to k does not imply a path from k to i. However, it is 

transitive if we account for the time coordinate: if there is a path from i to j in the time 

interval (ti, tj) and a path from j to k in the time interval (tj, tk), then there is a path from i to 

k in the interval (ti, tk).

Definition—The FRS given (n0, t0, tmax) is the set of all nodes i where a forward reachable 

path exists between n0 and i in the time interval (t0, tmax). The active forward reachable set 
A(n0, t0, tmax) is the subset of nodes in the FRS that are still active at tmax.

One immediate consequence of the reflexivity in forward reachable path is that if there exists 

a path between n0 and i in the interval (t0, ti), then there exists a path between those two 

nodes for all intervals (t0, t) with t ⩾ ti. So, the FRS is non-decreasing in time. However, 

the active FRS can get smaller when nodes exit the network, and a node that has exited the 

network will not be able to form any more edges, so it will not participate in the growth of 

the FRS. When all nodes in the active FRS have exited, the active FRS becomes extinct, and 

its size will stay at zero.

The dynamics of the network (formation, dissolution, and death) is not influenced by 

whether a node is in the FRS, but the FRS is completely determined by the dynamic 

network. So, the FRS can be viewed as a structural property of the dynamic network, 

analogous to component size in a static network.

2.2 Goals for analysis

Our goal is to model the size of the forward reachable set over time on a random dynamic 

network, as a function of the network parameters: mean cross-sectional degree k, cross-

sectional degree distribution (Bernoulli versus Poisson), edge dissolution rate α, and node 

exit rate μ (Table 1). We want to define appropriate approximations and find analytic 
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solutions for the mean and variance of the FRS size, and compare the results to simulation 

results.

The networks in the model are finite size, undirected, with population dynamics (node entry 

and exit). The number of active nodes and edges of the network are assumed to be in 

equilibrium so that there is a balance between the node entry and exit rates, and between 

the edge formation rate λ and the edge dissolution rate α. This rate balancing will be the 

foundation of our analysis (Section 3).

The outcome variables of interest are the expected size and variance of the active part of the 

FRS A, as a function of time tmax. If there is no node exit μ, then A is equivalent to the FRS 

size. The variation is considered over all initial nodes in the network at t0. There are three 

phases in the evolution of the FRS: the initial exponential growth phase where we can make 

the approximation of an infinite size network, the logistic growth phase where the finite 

network effects kick in, and the equilibrium where the active FRS either becomes extinct or 

varies in size around a non-zero value.

We split our analysis into three sections. For the initial exponential growth, we make the 

approximation that a randomly selected node is already in the FRS with probability 0; 

this is equivalent to assuming an infinite network size. Given this assumption, we can 

derive exact solutions for the expectation and variance of the FRS size (Section 4). For the 

logistic growth phase, we modify our equations to include the finite network size effect, 

using a mean-field approximation (Section 5). For the equilibrium persistence, we use the 

mean-field approximation to derive the expected fraction of the network in the active FRS 

(A) (Section 6). We use simulations to show the probability of extinction in this stochastic 

process, and derive this probability analytically. Our main results will compare the behavior 

of the active FRS between Bernoulli and Poisson degree distributions, for various values of 

mean degree, dissolution rate, and node exit rate. This comparison has strong implications 

for the role of concurrent partnerships in the spread of a sexually transmitted disease in a 

sexual network (Section 7).

3 Preliminary analysis

In this section, we discuss the preliminaries for the derivation of the equations for the 

FRS growth in Section 4. These include calculating the size of the connected components, 

relating the rate of partnership formation to the network parameters, and deriving how the 

cumulative or “aggregate” degree of a node grows over time. A more rigorous derivation of 

these properties can be found in Leung et al. (2012).

Let C be a random variable denoting the size of the connected component attached to 

a randomly chosen node, on a cross-sectional (static) network. For a Bernoulli degree 

distribution, clearly E[C] = 1 + k. For Poisson (2007), when k < 1

E[C] = (1 − k)−1 (1)
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E C2 = (1 − k)−3
(2)

Var[C] = k(1 − k)−3 (3)

We do not consider the k ⩾ 1 case since it would lead to a giant connected component, with 

E[C] = ∞. These results are valid on a homogeneous network of infinite size. For finite or 

non-homogeneous networks, the component size can be obtained via simulation (Morris & 

Kretzschmar, 2000).

The total dissolution rate α is a combination of partnership separation σ and death of either 

partner, so α = σ + 2μ, and the expected partnership duration is 1/α. The separation rate is σ 
= α − 2μ.

Next, we derive the partnership formation rates per eligible node, λP and λB for the Poisson 

and Bernoulli cases, respectively, given the average degree k, edge dissolution rate α, and 

node exit rate μ. We focus on the degree D(t) over time of a random active node, and model 

D(t) as a Markov birth-death process on {0, 1, . . .} in the Poisson case and on {0, 1} in 

the Bernoulli case. Since the degree D(t) is only relevant when the node is alive, we are 

implicitly conditioning on that, so the death rate of the birth-death process (not the death rate 

of the node) is (σ + μ)D(t): An active node may lose a partner due to separation at rate σ, or 

partner death at rate μ.

In steady state, E[D(t)] = k, balancing the birth and death rates of the birth-death process. 

For the Poisson case where all nodes are eligible for formation, this balance is λP = (σ + 

μ)k. For the Bernoulli case, only the degree-0 nodes are eligible to form an edge, and only 

degree-1 nodes can dissolve an edge. Noting that fraction of nodes with degree 1 is k, and 

the fraction of nodes with degree 0 is 1 − k, the equilibrium balance is (σ + μ)k = λB(1 − k) 

and therefore, λB = (σ + μ)k/(1 − k).

3.1 Cumulative degree

As a final piece of the preliminaries, we look at the aggregate or cumulative degree. Often, 

surveys do not ask “how many partners do you have at this moment?” but commonly 

“how many partners (or new partners) have you had in [time period]?” The first is Deq, 

the equilibrium distribution of D(t). Here, we examine on the second. Let Da(t) be the 

cumulative number of partners of some node from its birth until a duration t later. In the 

Poisson case, the node acquires partners independent of its current number of partners, so 

Da(t) − Da(0) is just a Poisson process with rate λP. The Bernoulli case is slightly trickier 

since the time between new partners (i.e., when Da increases) is Exp(λB) + Exp(σ + μ). 

Note that the expectation of this time is still 1/λP as in the Poisson case, but the variance 

of this time is now λP
−2(1 − 2k(1 − k)), which is smaller than the variance in the Poisson 

case, λP
−2. Essentially, Da is a renewal process, specifically an equilibrium renewal process if 

Da(0) =D Deq. Thus,
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E Da(t) − Da(0) = λPt (4)

in both the Poisson and Bernoulli cases and

Var Da(t) − Da(0) = λPt (5)

in the Poisson case and asymptotically in the Bernoulli case,

Var Da(t) − Da(0) (1 − 2k(1 − k))λPt (6)

using standard renewal results. Note that both grow linearly with time, the expectations are 

the same for Poisson and Bernoulli, and the variance is smaller for the Bernoulli case.

For the Poisson case, the number of partners within a time interval would have a Poisson 

distribution, if the node is actively acquiring partners for the whole interval. If however the 

node became active during this period, then the number of partners within the time interval 

would be less. This heterogeneity would lead to a more skewed distribution for cumulative 

degree in our model.

One related calculation that is simple to perform is the lifetime number of partners, Da(L). In 

the Poisson case, the number has a Geometric distribution:

Da(L) − Da(0) Poisson λPL = Geo0 1/ 1 + λP /μ (7)

due to standard properties of these distributions. In either the Poisson or Bernoulli case, we 

can use iterated expectations to show that E Da(L) − Da(0) = E λPL = (α/μ − 1)k. Thus,

E Da(L) = kα/μ, (8)

assuming births have an equilibrium number of partners. Poisson and Bernoulli degree 

networks have the same expected lifetime number of partners.

3.2 Simulation setup

We will compare our analytic results to simulations on random dynamic networks, both to 

verify the analysis and to show differences between the theory and the actual stochastic 

process. The networks we simulated have 500 nodes over a range of parameters k, α, and 

μ. The random dynamic networks are simulated as continuous time Markov processes with 

three types of events, using the stochastic simulation algorithm (Banks et al., 2011). A 

formation event will create an active edge between the sender node and a random node in 

the set of eligible receiver nodes (all other nodes for Poisson, all nodes with degree zero for 

Bernoulli). Edge separation is defined as the dissolution of an edge that’s not due to the exit 

of one of the nodes. A separation event deactivates a random active edge in the network. 

A node exit event deactivates the node and all the edges incident on it. After the network 

simulation is completed, we calculate the active forward reachable set (A(t, i)) for every 

active node at t = 0. We used the R package “tsna” for this calculation (Bender-deMoll & 

Morris, 2015).
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In our simulations, a node that exits the network is immediately replaced by a new node 

(reincarnation). The new node enters the network with degree 0. This is significant for a 

social network interpretation, but it adds an inhomogeneity to the dynamic network. The 

new nodes do not have the same degree distribution as the rest of the network, which can 

affect the equilibrium size of the forward reachable set. However, new nodes do not affect 

the exponential growth phase: Even if they enter the network with non-zero degree, it is 

unlikely that they are in contact with the small initial FRS at birth. In Appendix B (Section 

7.7), we will modify our model to account for the fact that the newly born nodes have degree 

0.

To match the simulated network to the theoretical parameters, we adjust the rate of edge 

formation of each active node λ and the separation rate σ. To match the mean degree k, 

we set the formation rate for Poisson degree distribution to λ = kα/2, and for Bernoulli to 

λ = 1
2αk/(1 − k) for “eligible” nodes of degree 0. The total dissolution rate is split up into two 

processes, separation and node exit. The separation rate is set as σ = α − 2μ.

Figure 2 shows realizations of the growth of the FRS over time, for different initial nodes 

on a single dynamic network simulation. We can separate the growth dynamics into three 

phases. When the FRS size is small compared to the network, it exhibits exponential growth. 

When the active FRS size is the same order of magnitude as the network size, the growth 

curve becomes logistic and eventually hits a plateau. Although there is much variation in the 

time for the FRS size to take-off, eventually all the realizations starting at different nodes 

converge to an active FRS of the same size.

4 Exponential growth phase

For the exponential growth phase, the size of the forward reachable set is small compared to 

the size of the network. In the epidemiology context, this means the fraction of susceptibles 

in the population is close to 1 (Britton & Trapman, 2014). We will make the approximation 

that when an edge forms on a node in the FRS, it connects to a node not in the FRS with 

probability 1. This approximation is equivalent to having an infinite size network.

4.1 General ODE model

Our general approach models the forward reachable set as a continuous time Markov 

chain (CTMC). Consider a vector-valued Markov jump process with state variables V(t) 
and transition rate matrix Q. We assume all vectors are column vectors by default. The 

Kolmogorov backward equations (Karlin & Taylor, 2012) state that for any function b(V),

E[b(V (t))]′ = E[c(V (t))] (9)

where we define

c(υ) = ∑
w

Q(υ, w)b(w) (10)
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= ∑
w ≠ υ

Q(υ, w)(b(w) − b(υ)) (11)

The last equality is due to the ∑w ≠ υQ(υ, w) = − Q(υ, υ) property of transition matrices.

The processes of interest to us have special structure. They only have a few different types 

of jumps (i.e., transitions) and the jumps are of the following form. In state v we take jumps 

of type i at a rate linear in the state, hi
⊤v, where hi is a constant. Furthermore, a jump of 

type i transitions the state from v to v + ΔVi, where ΔVi may be random but is required to be 

independent of v.

With these assumptions and choosing the identity for a(v), we can write the backward 

equations as

E[V ]′ = ∑
i

E ΔV i hi
⊤V = H E[V ] (12)

where matrix

H = ∑
i

E ΔV i hi
⊤

(13)

In the next sections, we specify how our problem can be written in this form deriving 

the equations describing how the expected size of the FRS grows over time, first for the 

Poisson case, then for the Bernoulli case, before finally comparing the results. Derivations 

and results for the dynamics of the variance of the size of the FRS are in Appendix A.

4.2 Poisson degree networks

For the Poisson case, the state variables we need are A, the size of the active FRS, and R, 

the number of inactive (i.e., dead) nodes in the FRS, so in the vector notation from above, 

V = (A, R). There are two types of transitions. The first is the formation of an edge where 

one endpoint is in the FRS (formation). This happens at a rate of λP A and adds a connected 

component to the active FRS (A → A + C). Thus using the vector notation, h1 = (λP, 0) and 

ΔV1 = (C, 0). The second type of transition is node exit (death). It happens at a rate of μA, 

and removes a single node from the FRS (A → A − 1 and R → R + 1). Using the vector 

notation, h2 = (μ, 0) and ΔV2 = (−1, 1)

Thus, Equation (12) gives us the following differential equations:

E[A]′ = λPE[C] − μ E[A] (14)

E[R]′ = μE[A] (15)
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At time 0, R = 0 and A equals the size of the connected component of the initial node of the 

FRS. If the initial node is chosen at random, then E[A(0)] = E[C]. Node birth events are not 

counted here because new nodes have degree 0 and do not add to the active FRS.

These differential equations are linear with constant coefficients, and thus have simple 

exponential solutions:

E[A(t)] = E[A(0)]egPt (16)

E[R(t)] = egPt − 1 E[A(0)]μ/gP (17)

where the exponential growth rate gP = α(k − x)/(1 − k), with x = μ/α. This makes sense 

from a dimensional analysis perspective: since g is a growth rate, it must be the product of a 

rate parameter such as α and a function of the dimensionless constants, k and x.

4.3 Bernoulli degree networks

For the Bernoulli case, in addition to A and R, we must add a variable W to keep track of 

the number of degree-0 nodes in the FRS. Only nodes in W are eligible to form active edges. 

The vector of state variables is now V = (A, W, R). Our Markov process has the following 

types of transitions:

• Formation: A → A + 1 and W → W − 1 at rate WλB.

ΔV1 = (1, −1, 0), h1 = (0, λB, 0).

• Dissolution: W → W + 2 at rate σ(A − W)/2. Here (A − W)/2 counts the number 

of partnerships in the FRS.

ΔV2 = (0, 2, 0), h2 = (σ/2, −σ/2, 0).

• Death of a degree-0 node in the FRS: A → A − 1, W → W − 1, and R → R + 1 

at rate μW.

ΔV3 = (−1, −1, 1), h3 = (0, μ, 0).

• Death of a degree-1 node in the FRS: A → A − 1, W → W + 1, and R → R + 1 

at rate μ(A − W).

ΔV4 = (−1, 1, 1), h4 = (μ, −μ, 0).

This leads to the following set of differential equations:

E[A]′ = λBE[W ] − μE[A] (18)

E[W ]′ = − λB + μ E[W ] + (σ + μ)(E[A] − E[W ]) (19)

E[R]′ = μE[A] (20)
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As in the Poisson case, the equation for E[R]′ decouples from the rest; none of the other 

equations rely on E[R]. Thus, we end up with a two-dimensional linear system with constant 

coefficients, where the growth rate of the solution is determined by the largest eigenvalue of 

the coefficient matrix. The eigenvalues are (α − μ)( ± 1 + 4k(1 − k) − 1)/(2(1 − k)) − μ. Since 

1 − k > 0 and α − μ > 0, the growth rate is:

gB = (α − μ) 1 + 4k(1 − k) − 1
2(1 − k) − μ

= α 1 + 4k(1 − k) − 1
2(1 − k) (1 − x) − x

where again x = μ/α. Thus E[A(t)] = O egBt  and the same for E[R]. In fact in both the 

Poisson and Bernoulli cases, the differential equation for E[R] is the same and thus, 

E[R(t)] E[A(t)]μ/g as t ∞. This growth rate has simple edge cases: gB = −μ for k = 0 

and gB = σ for k = 1.

4.4 Key results

Since k and x are both dimensionless, dimensional analysis tells us that we can write the 

growth rate in the form g = αf(k, x). Equivalently, we can arbitrarily choose α = 1 and plot 

g as a function of k for various choices of μ. Figure 3 shows this. From this, we see that the 

Poisson growth rates go to infinity as k → 1, because most nodes are connected as part of 

a giant component in the cross-sectional network. The Bernoulli degree network has a max 

component size of 2, so its FRS growth is limited by the edge dissolution rate. We can show 

that the growth rate for Poisson degree distributed network is faster than Bernoulli, gP ⩾ gB, 

given any parameter values.

Lemma 4.1—gP ⩾ gB for all parameter values.

Proof—Let x = μ/α. Then, (gP−gB)2(1−k)/(α(1−x)) = 2k+1−y, where y = 1 + 4k(1 − k). 
Now, (2k + 1)2 = 4k2 + 4k + 1 ⩾ −4k2 + 4k + 1 = y2, proving the claim. □

In simulations, the exponential growth rate of the expected FRS size matches up well with 

the analytic results Figure 2. The growth rate is higher for larger cross-sectional mean degree 

k and larger values of the dimensionless parameter α/μ, which is proportional to the number 

of formations per node lifetime (Section 3). We can make the comparison between Poisson 

and Bernoulli degree distributions for different values of k and α/μ. Figure 4 shows that 

the FRS growth rate is always larger for a Poisson degree network compared to a Bernoulli 

degree network, given the same parameter values. A Poisson degree network can achieve the 

same growth rate with a smaller mean degree, or fewer formations per node lifetime.

We can define a growth threshold, g > 0, that separates the parameter values where the 

FRS grows exponentially from those where it shrinks or does not grow. From dimensional 

analysis, we can write the threshold as f(k) > μ/α for some function f or equivalently R := 

f(k)α/μ > 1 to write it in a form similar to the standard form for R0. In the Poisson case, 

gP = α(k − x)/(1 − k), so gP > 0 is equivalent to k > μ/α. For the Bernoulli case, we have 

1 − 2(1 − k)/( 1 + 4k(1 − k) + 1 − 2k) > μ/α. The thresholds are similar for small k because for 
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small values of k, the left-hand side of the Bernoulli threshold is k + o(k), matching the 

Poisson threshold. In addition, Lemma 4.1 of course implies that the Bernoulli threshold is 

always greater than the Poisson one (i.e., gB > 0 implies gP > 0). Figure 5 plots the two 

thresholds as functions of k and the dimensionless quantity α/μ.

5 Logistic growth phase

When the size of the forward reachable set grows to a significant fraction (about 10%) of 

network size, the assumptions we used for the exponential growth phase are no longer valid. 

When a new edge is formed, the probability that the node in the FRS connects to a node 

not already in the FRS is no longer approximately 1; it is reduced to 1 − E[A]/n. This 

saturation effect is captured by the mean-field models that modify the differential equations 

from Section 4.

For Poisson degree networks, the differential equation becomes

E[A]′ = E[A](1 − E[A]/n)λPE[C] − μE[A] (21)

For the Bernoulli case, we get

E[A]′ = (1 − E[A]/n)λBE[W ] − μE[A] (22)

E[W ]′ = − λB + μ E[W ] + (σ + μ)(E[A] − E[W ]) (23)

We can solve the equations above numerically to approximate the expected FRS growth in 

the logistic phase. The growth rate decreases as the FRS gets larger, but it never drops below 

0. Figure 6 shows how the average FRS size in simulations matches up with the mean-field 

solutions for a 500 node network, up until the equilibrium.

Setting the right-hand side to zero allows us to solve for an approximation to the equilibrium 

expected size. Figure 7 shows the dependence of the mean-field equilibrium on the 

parameters.

6 Equilibrium phase

At equilibrium, the FRS size distribution becomes bimodal (Figure 6). For some of the 

initial nodes, the FRS takes off and reaches a persistent equilibrium value. For other initial 

nodes, the FRS shortly becomes extinct, and will remain at zero, even when the network 

parameters are above the threshold for growth. Our mean-field model is deterministic and 

does not account for extinctions of the FRS, which happens stochastically. The mean-field 

solutions match up with the average persistent FRS size (for the set of initial nodes that do 

not have their FRS go extinct).
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6.1 Persistent FRS size

The logistic mean-field equations from Section 5 allow us to calculate the equilibrium FRS 

fraction for the Poisson case, by setting the growth rate to zero:

aP = E[A]/n = 1 − μ/ λPE[C] = (k − x)/(k(1 − x)) (24)

where x = μ/α. Note that the threshold for a positive steady state, aP > 0, coincides with the 

threshold for a positive growth rate in the exponential growth phase, k > μ/α.

For the Bernoulli case, setting the differential equations (22)–(23) to 0 gives the equilibrium 

FRS size:

aB = E[A]/n = 1 − x(1 − kx)/(k(1 − x)2) (25)

Again, the threshold for a positive persistent FRS size at equilibrium coincides with the 

threshold for positive FRS growth.

Lemma 6.1—aB ⩽ 0 iff gB ⩽ 0.

Proof—k(1 − x)2aB = 2kx(x − 1) + k − x. Rearranging gB, 

α(1 − x) 1 + 4k(1 + k) = α(1 − 2k − 1 x + 2 1 − k gb. So, gB ⩽ 0 iff (1 − x)2(1 + 4k(1 

+ k)) ⩽ (1 − (2k − 1)x)2. Expanding, this is equivalent to 4(1 − k)(2kx(x − 1) + k − x) ⩽ 0, 

proving the claim. □

The persistent FRS size at equilibrium, like the growth rate, is higher for larger cross-

sectional mean degree k and larger values of the dimensionless parameter α/μ (the circle 

sizes in Figure 8).

If we compare the equilibrium behavior for Poisson degree networks versus Bernoulli in 

Figure 7, there is a region of parameter values between the respective thresholds where a 

persistent FRS is possible for Poisson degree networks, but not for Bernoulli. For a specific 

value of the mean degree k, this region is between

1/k < α/μ < 4k/ 1 + 2k − 1 + 4k(1 − k) (26)

which coincides with the region in Figure 5 for positive growth rates.

For all parameter values, the equilibrium persistent size should be larger for Poisson degree 

distributed networks. Similar to Lemma 4.1 proving that gP ⩾ gB, we can prove for 

the mean-field models that aP ⩾ aB. This is also illustrated in Figure 7 that shows the 

steady-state fractions, aP and aB, as functions of x and k. However, we do not see this in 

simulations, because the simulated networks are not actually homogeneous.

Lemma 6.2—aP ⩾ aB.
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Proof—Note that k(1 − x)2 = aP = x(x − k)+k − x and k(1 − x)2aB = x(k(2x − 1) − k) + k − 

x. Since x ⩽ 1/2, 2x − 1 ⩽ 0, proving the claim. □

The above result assumes that nodes entering the network have the same degree distribution 

as the rest of the network. In our simulations, nodes enter the network with degree-0, which 

causes the network to have a non-homogeneous degree distribution. The degree-0 entry 

has important interpretations for social networks, and is common for network models with 

population dynamics (Leung et al., 2012). We show that there is a significant effect on the 

equilibrium size of the FRS. The equilibrium FRS size increases for Bernoulli networks, and 

decreases for Poisson networks, switching their relative positions from our homogeneous 

model (Figures 6 and 9). We make adjustments to our model and derive the FRS outcome in 

Appendix 7.7.

6.2 Stochastic behavior and extinction

We can model the FRS extinction as a branching process, a technique common in 

epidemiology. Let the population be the nodes in the active FRS. Let the “offspring” of 

a node be the non-FRS nodes it contacts, during the time interval when it is in the active 

FRS. Because stochastic extinctions mostly occur within the first few generations, the FRS 

is small compared to the network, as in the exponential growth phase (Section 4). So, we 

can approximate the number of offspring by the cumulative degree of a node, Da(L). This 

approach is similar to the concept of basic reproduction number R0 in epidemiology (Leung 

& Kretzschmar, 2015).

Let G(z) be the probability generating function (PGF) of the offspring distribution Da(L). 

Then, the probability of extinction is the smallest non-negative root of the equation (Karlin 

& Taylor, 2012)

G(z) = z . (27)

There are two parts to a node’s cumulative degree Da(L): the initial neighbors Da(0) at the 

time it enters the FRS, and the number of formations over its lifetime Da(L) − Da(0). The 

initial degree Da(0) has a distribution specified by the model (either Poisson or Bernoulli). 

From Section 3.1, we know that for Poisson degree distributions, the cumulative number of 

formations Da(L) − Da(0) has a geometric distribution (7).

So, the PGF of Da(L) is

G(z) = p(1 − (1 − p)z)−1exp(k(z − 1)) (28)

where p = (1+λp/μ)−1. We can solve this equation numerically to find the extinction 

probability for different values of the parameters for a Poisson degree network. As expected, 

the extinction probability goes to 1 for parameter values below the growth threshold 

(Section 4.4). We lack the distribution of lifetime number of formations for Bernoulli degree 

networks for this calculation.
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For parameter values below the threshold, the FRS will go extinct for most initial nodes. For 

high values of k and α/μ, the FRS will go to persistence most of the time. But in a band of 

parameter values just above the threshold, the FRS exhibits high variability, where there is 

large uncertainty in the equilibrium outcome (Figure 8).

7 Discussion

We developed analytic expressions and simulation tools for exploring the properties of 

forward reachable sets in stochastic dynamic networks with open populations. Our model 

provides insight into the thresholds, rates of growth, and equilibrium states of the FRS, 

representing these as emergent features of more basic network properties: degree means 

and distributions, edge dissolution rates, and node exit rates. All of these are properties that 

can be measured in sample surveys, which allows our methods to be grounded in empirical 

data when desired. We find that the two degree distributions compared here, Bernoulli and 

Poisson, produce quantitative and qualitative differences in the properties of the FRS when 

conditioning on all other parameters. The epidemic threshold is lower and the growth rate is 

faster in Poisson networks than in Bernoulli networks, for a wide range of underlying mean 

degrees and partner acquisition rates. There is also a broad band of parameter values around 

the threshold for both network types where the variability in the growth rate and extinction 

process is maximal. In this band, the possibility of extinction leads to a bimodal equilibrium 

FRS size distribution, one that emerges at the beginning of the process, not just over the long 

term.

A natural application of these findings is in epidemiology, where the FRS represents 

the maximal epidemic potential in a population. There is a substantial literature on the 

population dynamics of infectious disease, and a smaller but growing literature on the 

impact of partnership network structure on these dynamics. Most of this work relies on 

deterministic models and mean field approximations for analytic results. Our work therefore 

contributes to this literature in several ways. First, our stochastic analysis describes the 

variance of the size of the FRS (maximal disease prevalence) on a non-trivial network over 

time. Second, we derive analytic solutions for the expected growth rate and growth threshold 

for this stochastic process. Third, we are able to derive a mean field approximation for 

the equilibrium prevalence from our stochastic process of pair formation and dissolution 

with both vital dynamics and non-trivial network structure; and compare this to stochastic 

simulations. And fourth, under these conditions we derive an analytic expression for the 

extinction probability for the Poisson degree distribution case. The methods we present are 

specifically designed to capture the impact of stochastic variability in a systematic way, so 

that its practical implications can be evaluated.

There are many different types of infectious diseases; HIV, in particular, motivated our 

work, and this influenced several aspects of the analysis. We note some of the resulting 

implications and limitations below.

7.1 Disease states

Since nodes do not leave the FRS and nodes cease forming ties after they exit, this model 

is analogous to an “SI” (susceptible-infected) epidemic, and the findings are not relevant for 
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diseases with recovery, either back into susceptible status (SIS) or with immunity (SIR). Our 

model is appropriate for HIV, but not for other diseases such as measles or chlamydia.

7.2 Parameter values

We examined a range of parameter values that are both plausible for sexual partnership 

networks and bound the transitional region for the FRS. The mean active lifetime 1/μ 
is set to be 40 years; 35–40 is often used in HIV simulation analyses (Baggaley et al., 

2006; Hallett et al., 2008; Eaton & Hallett, 2014). Mean relationship duration 1/α ranges 

from 2.5 to 15 years, and the exponential distribution results in both a large fraction of 

shorter relationships as well as a right-skewed exponential tail (Leung et al., 2012). Mean 

cross-sectional degree k ranges from 0.2 to 0.6 partners, similar though a bit lower than that 

reported in a study of young adults in the United States (Morris et al., 2009). Combining 

these parameters, the average lifetime number of partners ranges from 0.5 to 10, similar to 

the range reported in many surveys, both in the United States and elsewhere (Morris, 1993; 

Morris et al., 2010; Hamilton & Morris, 2010).

7.3 Degree distribution comparison

In the context of sexual partnership networks, the Bernoulli degree distribution represents 

a restrictive rule of serial monogamy for partnerships, while the Poisson instead allows 

individuals to have multiple concurrent partners. While these distributions do not 

represent any specific population, they bracket a reasonable range for general heterosexual 

populations. Our results provide additional support to the growing literature that finds 

concurrent partnerships increase both epidemic potential and variability (Goodreau et al., 

2012; Morris & Kretzschmar, 1997; Eaton et al., 2011; Leung & Kretzschmar, 2015).

There is extensive literature documenting a highly skewed, power-law-like cumulative 

degree distribution in sexual partnership networks, reviewed in Hamilton et al. (2008). 

However, the degree distributions in our model refer to the number of partners at one 

moment in time, rather than cumulative over the last year. Although our model would not 

reproduce a power-law network, we can get closer to a long-tailed distribution by relaxing 

the homogeneity assumptions in Section 2.1. Specifically, if we allow each node to form 

connections at different rates (but still constant over time), the network will have more 

nodes with a large cumulative degree, given the same network density. The impact of such 

heterogeneity on the FRS will be a topic of further investigation.

7.4 Additional heterogeneity

A realistic model would need to account for a wide range of additional demographic details 

that influence partnership network structure and dynamics: group-specific mean-degree, 

dissolution, and mortality rates, and differences in behavior based on disease status. For 

example, if nodes in the FRS have a reduced partnership formation rate, or an increased 

mortality rate, then the FRS growth rate will obviously decrease, and the threshold for 

growth would shift toward larger parameter values for mean degree and dissolution rate. If 

these demographic details only affect the dynamic network, our model can account for it by 

adding more compartments, at the cost of additional equations (Ferguson & Garnett, 2000), 

and the loss of closed-form results.
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Additionally, a memoryless stochastic process (Markov assumption) does not account for 

different types of relationships. In real networks, partnership durations are often bi-modal 

(long and short term relationships), and partnership durations and type may both depend 

on the presence of other partnerships for each node. As such, our framework seems better 

suited for gaining broad intuition into the impact of network structure and dynamics on 

reachability, than for making detailed predictions for specific epidemics.

7.5 Partnership status at entry

In the finite population models and in our simulations, we assume that new nodes enter the 

network as non-FRS with degree zero (Section 3.2). As a result, nodes in the FRS have 

higher mean degree than nodes outside. In the context of disease spread, this would mean 

that infected individuals will on average have more contacts than the non-infected. The 

implications are derived in Appendix B. For Bernoulli networks (i.e., under the assumption 

of serial monogamy), the implication is that the fraction of singles inside the FRS is lower, 

especially when the FRS size is large. As a result, a node in the FRS has a higher chance of 

pairing with an outside node, which leads to a higher rate of discordant contact, and shifts 

the equilibrium prevalence higher. For Poisson networks, the implications is that the mean 

degree is lower outside the FRS, leading to smaller components outside the FRS, which 

reduces the FRS growth rate and shifts the equilibrium prevalence lower. This produces 

the outcome seen in Figure 9: a higher expected equilibrium FRS size for the Bernoulli 

networks. If we instead let the new nodes have the same mean degree as the existing 

ones, the rankings are reversed, and Poisson networks have the higher equilibrium FRS 

size (as we derive analytically in Lemma 6.2). We were a bit surprised that this seemingly 

innocuous assumption would have such an impact on a key outcome of interest. It suggests 

that both analytic and simulation studies of epidemic dynamics should pay attention to this 

assumption in order to avoid inappropriate artifacts.

7.6 Reachability versus epidemic spread

Reachability implicitly defines “transmission” as incorporation into the FRS—it is 

instantaneous with probability 1 on first contact between discordant nodes (i.e., an infinite 

transmission rate). This represents the theoretical maximum any transmission process could 

reach on a specific network. A model for the spread of any specific pathogen would 

require finite, possibly heterogeneous and possibly time-varying transmission rates across 

discordant pairs. For example, a model for HIV transmission would need to capture variation 

in transmission probability by stage of infection, demographic subgroup, treatment status, 

and the use of prophylaxis.

Some of the implications of a finite transmission rate are obvious: It would increase the 

probability of epidemic extinction and the parameter values needed to cross the persistence 

threshold, and would reduce the growth rate and equilibrium prevalence. There is no reason 

to expect that the qualitative results for the Bernoulli versus Poisson comparison would 

be changed—a Poisson network will always offer multiple pathways for transmission, and 

larger connected components for any fixed parameter value set—but the range of parameter 

values in which this difference matters will change to reflect the new region of epidemic 

persistence.
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Deriving analytic results for stochastic models with a finite transmission rate will be more 

complicated. The epidemic growth rate is proportional to the number of discordant edges, 

and we need to keep track of these over time until transmission occurs. Deterministic 

models that keep track of discordant edges, like the pairwise moment closure model (Eames 

& Keeling, 2002), pair-formation model (Kretzschmar & Dietz, 1998), and edge-based 

compartmental model (Miller et al., 2012), offer analytic approaches and some solutions for 

the growth rate, threshold, and final prevalence of an epidemic. However, these models often 

assume that the network is static, that the degree distribution is binomial (equivalent to our 

Poisson model for large networks) or regular (everyone has the same number of partners), or 

that triad closure is negligible, and all of them ignore stochasticity. Triad closure is clearly 

important for finite transmission rates since a node can only be infected once in an SI 

process, and we have already discussed the importance of the other factors.

7.7 Stochasticity of epidemic outcome

Most previous papers on transmission processes did not provide any insight into the 

stochastic variability of epidemic outcomes, or did so for a restrictive model (for example, 

Dangerfield et al., 2009 calculated the variance of the outcome on a static regular network). 

When infections (like HIV) have a slow transmission rate or networks (like sexual 

partnership networks) have slow link turnover, the stochasticity of the initial epidemic 

growth will be important, and the epidemic outcome cannot be cleanly partitioned by the 

growth threshold. For parameters above the threshold, there is still a chance that an epidemic 

can go extinct. Conversely, when the parameters are below the threshold, there is a chance 

that an epidemic can persist for a long time.

Our findings suggest that this stochastic variability is important, especially in the band 

around the persistence/growth threshold. The practical implications are that one may find 

very different dynamics and outcomes in populations with nearly identical network structure 

and dynamics. This variability makes it more difficult to infer epidemic potential from 

observed epidemic outcomes alone, and more difficult to predict epidemic outcomes going 

forward. Quantifying this uncertainty, in the context of a finite transmission rate, is an 

important subject for further investigation.

Appendix A: Variance analytics

We now describe how to determine ODEs for variances, Var[X]′. Note that 

Var[X] = E X2 − E[X]2 and thus, Var[X]′ = E X2 ′ − 2E[X]E[X]′. More generally, for a 

vector-valued process,

Var[V ] = E V V ⊤ − E[V ]E[V ]⊤ (A1)

Var[V ]′ = E V V ⊤ ′ − E[V ]′E[V ]⊤ − E[V ]E[V ]′ ⊤ (A2)
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From Section 4, we already have equations for E[V ]′. We then use the approach in Section 

4.1 to derive equations for E V V ⊤ ′. Recall, for jumps of type i, v → v+ΔVi at rate hi
⊤υ. 

Thus,

E V V ⊤ ′ = ∑
i

E[((V + ΔV i V + ΔV i
⊤ − V V ⊤)hi

⊤V ] (A3)

= ∑
i

E ΔV iV ⊤ + V ΔV i
⊤ + ΔV iΔV i

⊤ hi
⊤V (A4)

This (Equations (12) and (A4)) is still a set of linear differential equations. Specifically, 

component (j, k) of (A4) is a linear combination of an extended set of state variables 

υ = E[V ], E V V ⊤ ,

E V V ⊤
jk
′ = ∑

i
E[( ΔV i jV k + V j ΔV i k + ΔV i j ΔV i k)hi

⊤V ] (A5)

A.1 Poisson case

Applying this framework to the transitions in the Poisson case (see Section 4.2), we derive 

the following equations:

E A2 ′ = E[λPA((A + C)2 − A2)] + E[μA((A − 1)2 − A2)] (A6)

= 2 λPE[C] − μ E A2 + λPE C2 + μ E[A] (A7)

whereas before we ignore R since it does not influence the other variables. Together with the 

original equation for E[A]′, this is a linear system of differential equations with eigenvalues 

gP and 2gP. This reasonably suggests that the standard deviation of A grows at the same rate 

as the expectation. Specifically, we have the closed-form solutions

E A2(t) = e2gPt E[A(0)]E C2 λP + μ /gP
+E A2(0) − E[A] E C2 λP + μ /gP

(A8)

Var[A(t)] = e2gPt E[A(0)]E C2 λP + μ /gP
+ Var[A(0)]) − E[A] E C2 λP + μ /gP

(A9)

If we add in the equations relating to R,

E[AR]′ = λPE[A((A + C)R − AR)] + μE[A((A − 1)(R + 1) − AR)] (A10)
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= − μE[A] + μE A2 + gPE[AR] (A11)

E R2 ′ = μE[A((R + 1)2 − R2)] (A12)

= μ(2E[AR] + E[A]) (A13)

then the largest eigenvalue of the system for [A, R, A2, AR, R2] remains gP as before.

A.2 Bernoulli case

We now apply the framework to the transitions for the Bernoulli case (see Section 4.3 for a 

list of the transitions). We again ignore R as it does not affect the other variables, and derive 

the following equations:

E A2 ′ = E[W (2A + 1)]λB + μE[A( − 2A + 1)] (A14)

= μE[A] + λBE[W ] − 2μE A2 + 2λBE[AW ] (A15)

E[AW ]′ = μE[W ((A − 1)(W − 1) − AW )]
+ μE[(A − W )((A − 1)W − AW )]
+ λBE[W ((A + 1)(W − 1) − AW )]
+ (σ/2)E[(A − W )(A(W + 2) − AW )]

(A16)

= μE[W ( − A − W + 1)] + μE[(A − W )( − W )]
+ λBE[W ( − A + W − 1)]
+ (σ/2)E[(A − W )(2A)]

(A17)

= μ − λB E[W ] + σE A2

+ −2μ − λB − σ E[AW ] + λBE W 2 (A18)

E W 2 ′ = λB + μ E[W ( − 2W + 1)] + (σ/2)E[(A − W )(4W + 4)
] (A19)

= 2σE[A] + λB + μ − 2σ E[W ]
+ 2σE[AW ] − 2 λB + μ + σ E W 2 (A20)

The largest eigenvalue of a 3×3 system involves the solution to a cubic equation and is thus a 

mess. Nevertheless, we conjecture that the largest eigenvalue here is less than 2gB based on 

numerical experiments.
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For completeness, here are the equations involving R (the equation for E R2  is omitted as it 

is the same as for the Poisson case):

E[AR]′ = λBE[W ((A + 1)R − AR)] + μE[A((A − 1)(R + 1) − AR)] (A21)

= − μE[A] + μE A2 + λBE[W R] − μE[AR] (A22)

E[W R]′ = λBE[W ((W − 1)R − W R)]
+ μE[W ((W − 1)(R + 1) − W R)]
+ (σ/2)E[(A − W )((W + 2)R − W R)]

(A23)

= − λBE[W R] + μE[W (W − R − 1)] + (σ/2)E[(A − W )2R] (A24)

= − μE[W ] + μE W 2 + σE[AR] − λB + μ + σ E[W R] (A25)

Appendix B: Adjustments to the mean field approximation

In our simulations, nodes enter the network with degree-0, which causes the network to 

have a non-homogeneous degree distribution. Leung et al. (2012) showed that the effect on 

the network is negligible if the partnership dissolution rate is fast compared to the lifetime 

of each individual node. However, we show that there is still a significant effect on the 

equilibrium size of the FRS. The equilibrium FRS size increases for Bernoulli networks, and 

decreases for Poisson networks, switching their relative positions from our homogeneous 

model (Figure 9). We make adjustments to our model and derive the FRS outcome below.

Table B1.

Two-way table of relationship status versus FRS status.

In FRS Not in FRS

“Single” W V W + V

“Paired” A − W n − A − V n − W − V

A n − A n

B.1 Bernoulli degree networks

In a homogeneous Bernoulli degree network, the probability for a degree-0 node (“single”) 

in the FRS to connect with a single not in the FRS is (1 − E[A]/n), where A is the active 

FRS size, and n is the network size (Equation (22)). If nodes enter the network as a single 

(and non-FRS), the percent of singles is higher for the non-FRS group, compared to the 

FRS group. So, a single in the FRS has a higher chance of finding an eligible partner not in 

the FRS than in a homogeneous network, and we get a larger equilibrium prevalence than 
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expected. This effect is negligible when the FRS size is small compared to the network size, 

so it will not affect the exponential growth phase.

We need to keep track of the number of singles not in the FRS (V), and use the conditional 

probability in the “Single” column in Table B1, instead of the marginal probability.

We add V to the state variables of our Markov process, along with the new transition types 

in Table B2. Note that all deaths in our simulations are automatically replaced with a new 

birth as V, to keep the network size constant.

We also need an additional differential equation to track changes in V. The modified 

equations are

E[A]′ = E[W λV /(V + W ) − μA]

E[W ]′ = E[ − W (λ + μ) + (σ + μ)(A − W )]

E[V ]′ = E[ − λV + (n − A − V )(σ + μ) + μn]

and the initial conditions are E[A] = 1 + k, E[W ] = 1 − k, E[V ] = n(1 − k). Replace the state 

variables A, W, V on the right hand side with their expectations to obtain the deterministic 

mean-field equations. These equations can be solved numerically.

B.2 Poisson degree networks

In a Poisson degree network, nodes connect to any other node in the network with equal 

probability, so we do not have the same situation as above. However, the mean degree in 

a network with degree-0 births is different for nodes in the FRS versus those not in the 

FRS. Since nodes enter the network as degree-0 and non-FRS, the mean degree for non-FRS 

nodes will be lower than for the overall network. For a Poisson distributed network, lower 

mean degree leads to lower mean component size, so we need to adjust Equation (14) to the 

following:

E[A]′ = λPE[C ∣ nonFRS ] − μ E[A]

Table B2.

New transition types for Bernoulli degree networks.

Transition Rate Change in state (A,W,V)

WV formation (infection) Wλ[V/(V + W)] (1, −1, −1)

WW formation Wλ[W/(V + W)]/2 (0, −2, 0)

VV formation Vλ[V/(V + W)]/2 (0, 0, −2)

WW separation (A − W)σ/2 (0, 2, 0)
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Transition Rate Change in state (A,W,V)

VV separation (n − A − V)σ/2 (0, 0, 2)

W death μW (−1, −1, 1)

V death μV (0, 0, 0)

FRS paired death μ(A − W) (−1, 1, 1)

Non-FRS paired death μ(n − A − V) (0, 0, 2)

The logistic mean-field equation (21) can be adjusted in the same way. We can obtain 

the mean component size for non-FRS nodes, E[C ∣ nonFRS], via simulation, and solve the 

differential equation as before. Since this adjustment lowers the number of nodes added to 

the FRS in a formation event, it will lower the equilibrium prevalence for a Poisson degree 

network.
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Fig. 1. 
Forward reachable path: The black horizontal lines represent nodes, and the blue shaded 

regions represent active edges. The red line is a forward reachable path from node 1 to 4, 

within [t0, tmax]. There is a path even though the cross-sectional network at t1 has no active 

connecting edges. The dotted path also connects node 1 to 4, but takes a longer time.
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Fig. 2. 
Growth of the active forward reachable set (FRS) for network parameters k = 0.5, α = 1/6, 

μ = 1/40, and network size 500. The thin blue lines show the FRS trajectories starting at 

different initial nodes on a single simulated network with Poisson degree distribution; the 

lighter orange lines, for Bernoulli. The circles along the bottom represent FRS extinctions, 

and the thick lines are for the corresponding mean FRS sizes.
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Fig. 3. 
Growth rate, g. Black lines are for the Poisson case and blue lines for the Bernoulli case. 

Here, α = 1 and we show μ = 0, 1/4, 1/2. For other α values, scale g and μ accordingly.
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Fig. 4. 
Comparison of the FRS growth rate across simulated networks with different parameter 

values. The size of the circles represent the mean FRS size at t = 30, which we can us as a 

proxy measure of the exponential growth rate. We only show circles for FRS sizes >3%. The 

two lines highlight the theoretic contours of equal growth rate.
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Fig. 5. 
Growth threshold. Above the threshold, growth is positive. There is a range of parameters 

(the blue shaded region) with positive growth for Poisson, but not for Bernoulli degree 

networks. Note α/μ < 2 is not possible (Section 2.1).
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Fig. 6. 
Long-term behavior of the active forward reachable set for a simulated network with 

parameters k = 0.5, α = 1/6, μ = 1/40, and network size 500 (the same as in Figure 2). The 

non-logged y-axis shows the logistic growth curve; the mean-field logistic approximations 

match up with the persistent FRS size. The different trajectories show the FRS growth 

for different starting nodes. At equilibrium, the FRS size distribution is bimodal, with the 

lower mode showing the extinction probability (right panel). All the trajectories that persist 

eventually converge to an active FRS of the same size.
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Fig. 7. 
Mean-field equilibrium forward reachable set size for μ = 1. Black lines are for the Poisson 

case and blue lines for the Bernoulli case. Lines are shown for α = 2, 4, 20, ∞.
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Fig. 8. 
The persistent FRS size, plotted as circle size, across different network parameter values 

at equilibrium. The band of blue circles shows the region where extinction probability is 

between 25% and 75%. In the lower left corner, the FRS goes extinct for most initial nodes. 

In the upper right, the FRS will grow to the persistent size most of the time.
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Fig. 9. 
Comparing the persistent FRS size from the homogeneous model (Section 5) versus the 

adjusted degree-0 entry model (Appendix 7.7). For network parameters k = 0.5, α = 1/6, μ 
= 1/40, and network size 500 (the same simulations as in Figure 2), the homogeneous model 

shows higher equilibrium FRS size for Poisson degree networks than Bernoulli. However, in 

the degree-0 entry model, and in our simulations (thin lines), the equilibrium prevalence for 

both are nearly the same.

ARMBRUSTER et al. Page 33

Netw Sci (Camb Univ Press). Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

ARMBRUSTER et al. Page 34

Table 1.

Parameters and notation.

Parameter Definition

k Mean instantaneous degree

α Edge dissolution rate, per edge

μ Node exit rate, per active node

σ Edge separation rate, per edge (derived)

λ Edge formation rate, per eligible node (derived)

g FRS growth rate (derived)
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Table 2.

Closed-form expressions for our key results.

Poisson Bernoulli

Edge separation rate σ = α − 2μ σ = α − 2μ

Edge formation rate λP = (σ + μ)k λB = (σ + μ)k/(1 − k)

Expected lifetime partners E Da(L) = kα/μ E Da(L) = kα/μ
Initial FRS growth rate gP = αk − x

1 − k gB = α 1 + 4k(1 − k) − 1
2(1 − k) (1 − x) − x

Threshold for growth μ/α < k μ/α < 1 − 2(1 − k)
1 + 4k(1 − k) + 1 − 2k

Equilibrium prevalence* E[A]/n = k − x
k(1 − x) E[A]/n = 1 − x(1 − kx)

k(1 − x)2

Extinction probability z = pexp(k(z − 1))
1 − (1 − p)z , solve for z

The expressions depend only on the network parameters k (mean degree), α (edge dissolution rate), and μ (node exit rate). For simplicity, we 

defined x = μ/α and p = (1 + λp/μ)−1.

*
The equilibrium prevalence is shown for the base model, where new nodes are indistinguishable from existing nodes. The prevalence in our 

simulations, where new nodes enter with degree 0, is derived in Appendix B.
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