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Abstract
Background.  Gliomas are complex tumors with several genetic aberrations and diverse metabolic programs con-
tributing to their aggressive phenotypes and poor prognoses. This study defines key metabolic features that can 
be used to differentiate between glioma subtypes, with potential for improved diagnostics and subtype targeted 
therapy.
Methods.  Cross-platform global metabolomic profiling coupled with clinical, genetic, and pathological analysis of 
glioma tissue from 224 tumors—oligodendroglioma (n = 31), astrocytoma (n = 31) and glioblastoma (n = 162)—
were performed. Identified metabolic phenotypes were evaluated in accordance with the WHO classification, IDH-
mutation, 1p/19q-codeletion, WHO-grading 2–4, and MGMT promoter methylation.
Results.  Distinct metabolic phenotypes separate all six analyzed glioma subtypes. IDH-mutated subtypes, ex-
pressing 2-hydroxyglutaric acid, were clearly distinguished from IDH-wildtype subtypes. Considerable meta-
bolic heterogeneity outside of the mutated IDH pathway were also evident, with key metabolites being high 
expression of glycerophosphates, inositols, monosaccharides, and sugar alcohols and low levels of sphin-
gosine and lysoglycerophospholipids in IDH-mutants. Among the IDH-mutated subtypes, we observed high 
levels of amino acids, especially glycine and 2-aminoadipic acid, in grade 4 glioma, and N-acetyl aspartic acid 
in low-grade astrocytoma and oligodendroglioma. Both IDH-wildtype and mutated oligodendroglioma and gli-
oblastoma were characterized by high levels of acylcarnitines, likely driven by rapid cell growth and hypoxic 
features. We found elevated levels of 5-HIAA in gliosarcoma and a subtype of oligodendroglioma not yet de-
fined as a specific entity, indicating a previously not described role for the serotonin pathway linked to glioma 
with bimorphic tissue.
Conclusion.  Key metabolic differences exist across adult glioma subtypes.

Key Points

•	 Glioma tissue exhibits subtype specific metabolic heterogeneity beyond IDH-mutation.

•	 Characterization of metabolic phenotypes provides molecular context to gliomagenesis.

•	 Novel metabolic markers may define previously unclassified glioma subtypes.

© The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Neuro-Oncology.
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Currently, there are limited approaches to glioma therapy 
and most approaches have a poor outcome. Although 
considerable progress has been made in understanding 
gliomagenesis, the molecular alterations driving differ-
entiation of gliomas into different subtypes remain un-
clear. Understanding these driving factors would improve 
our basic understanding of glioma subtype development, 
which could pave the way for better therapies. The use of 
molecular parameters in addition to histology, introduced 
in 2016 and updated in the 2021 WHO classification of CNS 
tumors,1,2 utilizes advances in cancer genomics and have 
enhanced stratification of brain tumor patients. Molecular 
subgrouping of tumors by methods such as isocitrate 
dehydrogenase (IDH) mutation, 1p19q-codeletion, and 
CDKN2A/B deletion are now facilitating an improved clas-
sification of adult gliomas, not only seen as tumor pheno-
typic differences, but also in clinical outcome. Additional 
attempts have been made to further characterize the glioma 
subtypes using somatic mutation patterns in TCGA,3 TERT 
promotor mutation,4,5 methylation array-based classifica-
tion of disease,6,7 RNA expression level,8 and proteomics.9 
These overarching studies have also tried to define prog-
nostic or predictive subgroups in glioblastoma, or mutation 
subgroups that could serve as pharmacological targets.

As metabolic reprogramming is a hallmark of cancer,10 
the progression and malignification of glioma may also 
be defined by metabolomic analysis, which enables 
comprehensive monitoring of the responses of endoge-
nous metabolites toward pathophysiological stimuli, in-
cluding genetic alterations. The shift in metabolic activity 
is also regulated by oncogenic signaling, which promotes 
cancer cell proliferation and survival.11 In glioma, meta-
bolic changes have been observed several years before 
the clinical presentation, indicating that metabolic repro-
gramming might be an early event in gliomagenesis.12,13 
Dysregulated mitochondrial metabolic pathways caused 
by somatic mutations in genes for metabolic enzymes, 
including IDH, succinate dehydrogenase, and fumarate 
hydratase, are clearly linked to brain tumorigenesis.14,15 
IDH1- or IDH2-mutations occur in over 70% of low-grade 
and about 10% of grade 4 gliomas, and are central molec-
ular markers in glioma subtype classification.1,15 The dis-
covery of the neomorphic activity of mutated IDH and the 
production of the oncometabolite D-2-hydroxyglutaric acid 
(2-HG) have clearly shown the power of metabolic analysis 
and its potential to discover novel mechanisms involved 
in oncogenic transformations in the brain. However, few 
larger scale investigations of subtype specific tumor me-
tabolism have been performed on the clinical tissue 
microenvironment.

Here, we performed a comprehensive cross-platform 
global metabolomics profiling analysis of tumor tissue 

derived metabolites, to identify subtype specific metabolic 
alterations in WHO classified glioma. Specific patterns out-
side of the well-known 2-HG pathway were detected for the 
six most common adult glioma subtypes, which could pro-
vide the basis for the development of noninvasive directed 
imaging techniques and targeted therapies.

Materials and Methods

Clinical Material

Tumor tissue samples were collected at the Department 
of Neurosurgery, Umeå University Hospital, according to 
a standardized protocol from 2004 as a collaboration in 
the Umeå brain tumor network and from 2010 as part of 
the U-CAN project.16 Samples were collected at surgery 
and stored at –80°C within 30–60 minutes. Tissue from 
224 WHO classified adult glioma tumors were included. 
Characteristics for included patients are summarized in 
Supplementary Table 1. All patients that were regarded as 
having a glioma in the clinical pathology report during the 
time period was included into the study. Tumor classifica-
tion was performed by an experienced neuropathologist 
(co-author T.B.) by weighing together histopathological in-
formation and molecular analyses (1p/19q-codeletion and 
IDH-mutation). Glioma classification was performed in 
accordance with 2016 WHO classification of tumors of the 
CNS and subsequent cIMPACT-NOW additions. Detailed 
methods for glioma classification and metabolite analyses 
are presented in methods supplement.

Ethics Statement

Ethical approval for this study was obtained from the 
Ethics Committee at Umeå University (218/2003; 2011/308-
31 M). Patients were included in the study after signed in-
formed consent according to good clinical practice and the 
Helsinki Declaration.

Statistical Analysis

Metabolites with missing not at random values due to bi-
ological reasons or under the limit of quantification, in 
total 0.17% of all values, were imputed to half-minimum 
values.17 Metabolites with more than 10% missing values 
were excluded from the statistical analysis, as a quality 
control measure to avoid distorting the data by in-
cluding many half-minimum imputed values. Quantified 
peak areas were normalized using internal standards to 

Importance of the Study

This study includes a broad metabolic characterization 
of the most common adult glioma subtypes, and high-
lights the fact that a characteristic metabolic program 
is observed in each subtype. This knowledge could be 

used with directed imaging techniques for improved 
noninvasive subtype diagnostics, and to develop ther-
apies targeting key metabolic mechanisms, for im-
proved prognosis.

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac042#supplementary-data
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minimize influence of sample processing, batch effect, 
and/or instrument drift. Median RSD% for all quantified 
metabolites was 10.8 using gas chromatography (GC) and 
16.4 using liquid chromatography (LC) based mass spec-
trometry (MS). The deviation between platforms was due 
to higher RSD% for amino acids and peptides in LC-MS. 
Not normally distributed variables, based on kurtosis and 
skewness (–2 > × > 2), were log2-transformed. Quantified 
variables from GC-MS and LC-MS were merged into one 
dataset. Orthogonal projections to latent structures (OPLS) 
discriminant analysis (DA) were used for multivariate data 
analysis to establish quantitative relationships between 
metabolite concentrations and glioma subtypes. Data for 
OPLS-DA modeling was mean-centered and scaled to unit 
variance, by subtraction of the mean intensity and division 
by the pooled standard deviation, to give each variable 
equal importance. Data resampling was performed using 
both leave-one-out (LOO) cross-validation (CV) and leave-
k-out (7-fold) cross-validation, generating similar results. 
CVANOVA P-values, and goodness of prediction Q2-values, 
were calculated for all models based on the predicted re-
sponses.18 To prevent model overfitting, number of orthog-
onal components were set at the lowest CVANOVA P-value. 
This approach reduces the risk of overfitting the models 
as P-values are penalized by increasing number of compo-
nents. An OPLS model was considered nonsignificant at 
CVANOVA P-values > .05. Models were rejected if there was 
complete overlap of Q2 distributions (Q2(cum) < 0). Models 
with low classification rates (Q2(cum); < 0.1) were also 
considered unsatisfactory. The following terminology was 
used in this study to describe significant models (CVANOVA 
P < .05) in relation to Q2-values; 0.1–0.2  “marginal”, 0.2–
0.4 “satisfactory”, 0.4–0.6 “solid”, 0.6–0.8 “strong”, 0.8–1 “ex-
ceptional” model. The relevance of this terminology and 
Q2-values may vary to other studies, dependent on study 
design, the analyzed biological system, or analytical con-
ditions. Model similarities were analyzed by agglomeric 
hierarchical clustering using cosine similarity as prox-
imity type and single linkage for clustering of models with 
closest distance. Multivariate significant variables were 
calculated from each OPLS model using loadings w and 
p.12,19 Significance level was determined by correction for 
multiple testing by Benjamini-Hochberg20 false discovery 
rate at alpha < 0.05 for both loadings w and p. Thus, for all 
models based on 240 metabolites, we requested univariate 
significant loading w (P < .01), and significant cosine simi-
larity between the variable and the response estimated by 
the model, loading p (P < .01). Effect sizes were calculated 
as fold change between means for each metabolite. Effect 
sizes and significance levels for each metabolite are shown 
in volcano plots as log-ratios, i.e. log2 fold change versus 
-log10 P-valuew. All statistical calculations were done using 
SIMCA 16.0.2 (Sartorius AG), MATLAB R2017b (Mathworks 
Inc.) or XLSTAT 2020.5.1 (Addinsoft).

Supplementary Data

Detailed methods for glioma tissue classification, metab-
olite extraction and mass spectrometric analysis, MGMT 
methylation assay, and sources and manufacturers of spe-
cial reagents have been placed in Methods supplement. 

Additional data referred to in the manuscript text have 
been placed in Supplementary Figure S1, Supplementary 
Tables 1–6 and Supplementary Data S1.

Results

Distribution of Adult Glioma Tumors into Six 
WHO Classified Subtypes

In this study, we comprehensively characterize the meta-
bolic phenotype of 224 glial tumors resected from adult 
patients between 25 and 84 years of age (Supplementary 
Table 1). The majority of the tumors were histologically 
classified as WHO grade 4 glioblastoma (72.3%), while 
the number of tumors with lower WHO grades 2 and 3 
astrocytoma (13.8%) and oligodendroglioma (13.8%) 
were equal. The distribution of diagnosis and the sex ratio 
(62% males), were as expected for our population. No 
differences were observed in glioma metabolic pheno-
types based on sex. All histologically classified tumors 
were defined according to the WHO 2016 classification 
of tumors of the central nervous system, including mo-
lecular parameters for 1p/19q-codeletion, and mutation  
of the IDH1 or IDH2 genes.1 Where relevant, we harmon-
ized the nomenclature for the classified tumors according 
to the cIMPACT-NOW suggested updates in line with the 5th 
version of the WHO classification of tumors of the central 
nervous system released in 2021.2,21–23 According to this 
molecular classification, our material is distributed over six 
adult glioma subtypes: (1) glioblastoma, IDH-wildtype; (2) 
glioblastoma, IDH-mutant; (3) astrocytoma, IDH-wildtype; 
(4) astrocytoma, IDH-mutant; (5) oligodendroglioma, IDH-
mutant, and 1p/19q-codeleted; and (6) oligodendroglioma, 
NEC (IDH-wildtype, and 1p/19q-codeleted) (Figure 1A). 
Oligodendroglioma, NEC was the smallest group (2.7%) of 
all the tumors and was labeled “not elsewhere classified” 
as necessary assays were performed, but did not demon-
strate findings that allowed a more specific WHO subtype 
diagnosis.23 Histologically classified glioblastoma carrying 
an IDH1- or IDH2-mutation, was still termed “glioblastoma, 
IDH-mutant”, although the new WHO 2021 classification 
suggests renaming this entity to “astrocytoma, IDH-
mutant, grade 4”.2,21,22 We used mass spectrometry-based 
global metabolomics analysis to quantify 1132 metabol-
ites or metabolic features; of these, 240 metabolites were 
retained for the final comparisons and named as unique 
metabolites.

Metabolic Differences in IDH-Wildtype and 
IDH-Mutated Tumors

We initiated our statistical analysis by first comparing all 
glioma subtypes together, and simply comparing differ-
ences between IDH-wildtype (n  =  172) and IDH-mutated 
(n = 52) tumors. As metabolites are not independent vari-
ables, we used multivariate regression modeling by or-
thogonal projections to latent structures (OPLS)24 to find 
features that were discriminant for each data set using 
all variables simultaneously. Our analysis shows that 
IDH1-R132- and IDH2-R172-mutated tumors group together 
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Fig. 1  Characterization of metabolic phenotypes for WHO classified glioma subtypes. A. Histology and molecular parameters for WHO diagnosed 
glioma subtypes, used for characterization of metabolic phenotype. B. Cross-validated OPLS-DA score plot for IDH-wildtype (WT) and IDH1- or 
IDH2-mutated tumors. The score plot illustrate the first predictive (tcv[1]) and orthogonal (tocv[1]) components for the OPLS-DA model using 
quantified metabolic features. C. Table summarizing two-class OPLS-DA comparisons of each of the six glioma subtypes defined in A. LOOCVANOVA 
P-values and LOOCV Q2-values for each comparison using; 240 identified unique metabolites (ID metab.); identified unique metabolites ex-
cluding 2-hydroxyglutaric acid (ID w/o 2-HG); and all of the 1,132 quantified metabolic features (all feat.). n; number of tumors for each subtype, 
P, LOOCVANOVA P-value; Q2, LOOCV goodness of prediction value Q2(cum), ns, nonsignificant class separation (P > .05), GBM; glioblastoma. Color 
grading indicate significant models (P < .05) and the models predictive ability (Q2-value). D–F. Dendrograms showing model similarities by use of 
hierarchical clustering of OPLS models based on; (D) 240 identified metabolites; (E) 239 identified metabolites excluding 2-hydroxyglutaric acid; 
and (F) all 1,132 quantified metabolic features.
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Fig. 1  Characterization of metabolic phenotypes for WHO classified glioma subtypes. A. Histology and molecular parameters for WHO diagnosed 
glioma subtypes, used for characterization of metabolic phenotype. B. Cross-validated OPLS-DA score plot for IDH-wildtype (WT) and IDH1- or 
IDH2-mutated tumors. The score plot illustrate the first predictive (tcv[1]) and orthogonal (tocv[1]) components for the OPLS-DA model using 
quantified metabolic features. C. Table summarizing two-class OPLS-DA comparisons of each of the six glioma subtypes defined in A. LOOCVANOVA 
P-values and LOOCV Q2-values for each comparison using; 240 identified unique metabolites (ID metab.); identified unique metabolites ex-
cluding 2-hydroxyglutaric acid (ID w/o 2-HG); and all of the 1,132 quantified metabolic features (all feat.). n; number of tumors for each subtype, 
P, LOOCVANOVA P-value; Q2, LOOCV goodness of prediction value Q2(cum), ns, nonsignificant class separation (P > .05), GBM; glioblastoma. Color 
grading indicate significant models (P < .05) and the models predictive ability (Q2-value). D–F. Dendrograms showing model similarities by use of 
hierarchical clustering of OPLS models based on; (D) 240 identified metabolites; (E) 239 identified metabolites excluding 2-hydroxyglutaric acid; 
and (F) all 1,132 quantified metabolic features.
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and are completely separated from IDH-wildtype tumors 
(cross-validated ANOVA P-value = 4.7E-89, cross-validated 
goodness of prediction Q2-value  =  0.88) (Figure 1B).  
The named metabolites discriminating IDH-wildtype and 
IDH-mutated tumors, irrespective of glioma subtype, are 
shown as supplementary data (Supplementary Figure S1, 
Supplementary Table 2).

Glioma Subtypes Displays Unique Metabolic 
Phenotypes

In our analysis, the vast majority (89%) of IDH-wildtype 
tumors were WHO grade 4 glioblastomas, and the lower 
WHO grade 2 and 3 astrocytoma and oligodendroglioma 
constituted the majority (83%) of IDH-mutated tumors. 
Therefore, we compared metabolic phenotype for IDH-
wildtype and IDH-mutated glioma between the con-
tributing glioma subtypes. A  systematic comparison of 
subtype specific metabolic hallmarks was performed for 
each of the six glioma subtypes defined above. Figure 1C 
shows the CVANOVA P-values and Q2-values for each com-
parison, using all of the 1,132 quantified metabolic fea-
tures (all feat.), the 240 identified unique metabolites (ID 
metab.), or the identified unique metabolites, excluding 
2-HG (ID w/o 2-HG) as 2-HG was expected to be excessively 
accumulated due to IDH-mutation. Generally, the strongest 
separation of glioma subtypes - i.e., the lowest CVANOVA 
P-value and highest Q2-value - were found using all quanti-
fied metabolic features. However, comparisons using only 
identified unique metabolites did not substantially change 
the separation, indicating that these metabolites contained 
most of the predictive information. All subtype compari-
sons generated significant OPLS model with satisfactory 
or even strong predictive values, except the calculated 
model comparing oligodendroglioma, NEC with glioblas-
toma, IDH-wildtype (P > .05 and Q2 < 0.1).

To illustrate phenotypic similarities between each of 
the glioma subtypes, we used agglomerative hierarchical 
clustering for each calculated comparison (Figure 1D–F). 
Clustering separated clearly the IDH-wildtype from IDH-
mutated subtypes. However, the model comparisons also 
show similarities between oligodendroglioma, IDH-mutant, 
and astrocytoma, IDH-mutant followed by glioblastoma, 
IDH-mutant. Thus, the metabolic phenotype of lower grade 
IDH-mutated astrocytoma and oligodendroglioma are 
more similar to high-grade glioblastoma, IDH-mutant than 
to astrocytoma, IDH-wildtype and oligodendroglioma, 
NEC. The similarity between IDH-mutated astrocytoma and 
oligodendroglioma to glioblastoma, is in line with the sug-
gestion in the WHO 2021 classification that glioblastoma, 
IDH-mutant tumors can be termed “astrocytoma, IDH-
mutant, grade 4”, rather than “glioblastoma, IDH-mutant”.2,21 
However, the link between glioblastoma, IDH-mutant to 
lower grade gliomas, is highly dependent on accumulated 
2-HG as removal of 2-HG from the data unlinks this subtype 
from the lower grade tumors (Figure 1E).

Subtype Specific Metabolic Hallmarks

The overall analysis shows that there are major metabolic 
differences between most classified glioma subtypes. We 

used volcano plots to illustrate effect size and probability 
values for each of the identified metabolites and to high-
light key metabolites that contribute the most to these phe-
notypic differences. For all comparisons, we show volcano 
plots highlighting metabolites with over 2-fold difference 
between the compared subtypes, and a P-value below .01 
to limit false discoveries. As expected, exceptionally high 
levels of 2-HG were observed in all glioma subtypes with 
IDH-mutation but also several additional significant me-
tabolites were detected (Figure 2). In addition, a summary 
of increased or decreased metabolites discriminating IDH-
wildtype and IDH-mutated tumors according to subtype 
are listed as supplementary data. Supplementary Table 3  
lists the significant metabolites shared by all subtypes 
(panel A), only astrocytoma and oligodendroglioma (panel 
B), and only glioblastoma and oligodendroglioma (panel 
C). All glioma subtypes with an IDH-mutation had higher 
levels of 2-HG, glycerol-2-phosphate, and erythritol, and 
lower levels of sphingosine and lysoglycerophospholipids. 
Higher levels of inositols and glycerol-3-phosphate were 
also evident in IDH-mutated oligodendroglioma and glio-
blastoma compared to IDH-wildtype oligodendroglioma 
and glioblastoma.

Metabolic Heterogeneity Among IDH-Mutated 
Subtypes

We continued the characterization of metabolic pheno-
types by investigating glioma subtype specific metabolites 
among IDH-mutated tumors. As summarized in Figure 1C,  
all comparisons between IDH-mutated astrocytoma, 
oligodendroglioma or glioblastoma generated signif-
icant multivariate models with satisfactory or even 
solid prediction values: oligodendroglioma vs. astrocy
toma (P =  .026, Q2 = 0.32); glioblastoma vs. astrocytoma 
(P = .0012, Q2 = 0.43); glioblastoma vs. oligodendroglioma 
(P =  .0091, Q2 = 0.52). To visualize what metabolites con-
tributed the most to these phenotypic differences, we 
made use of volcano plots using the same stringent effect 
size and significance limits as above (Figure 3). Especially 
N-acetyl aspartic acid (NAA) was high in both grade 2 and 
3 astrocytoma, IDH-mutant, and oligodendroglioma, IDH-
mutant as compared to glioblastoma, IDH-mutant. On 
the contrary, several amino acids, including glycine and 
2-aminoadipic acid (α-aminoadipate), were particularly 
high in glioblastoma (Supplementary Table 4). Most ev-
ident were the low levels of lysine and proline, and low 
levels of a broad range of acylcarnitines found in mutated 
astrocytoma compared to mutated oligodendroglioma 
and glioblastoma, where acylcarnitine levels were high  
(Figure 3, Supplementary Table 4).

Metabolic Heterogeneity Among IDH-Wildtype 
Subtypes

With a similar approach, we characterized metabolic 
phenotypes of IDH-wildtype glioma subtypes. Comparison 
of oligodendroglioma, NEC, and astrocytoma, IDH-
wildtype generated a significant multivariate model with 
strong prediction value (P = .0006, Q2 = 0.60). Separation 
of glioblastoma, IDH-wildtype from astrocytoma, 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac042#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac042#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac042#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac042#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac042#supplementary-data
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IDH-wildtype was also significant although with low pre-
dictive ability (P =  .0007, Q2 = 0.085). However, the meta-
bolic phenotype of astrocytoma, IDH-wildtype was readily 
distinguished from glioblastoma, IDH-wildtype, and 
oligodendroglioma, NEC, primarily by the low levels of 
a broad range of acylcarnitines in astrocytoma (Figure 4, 
Supplementary Table 5). As discussed above and summar-
ized in Figure 1C, the model separating glioblastoma, IDH-
wildtype from oligodendroglioma, NEC (IDH-wildtype and 
1p/19q-codeleted, WHO grade 3)  was not significant. The 
generated volcano plots clearly show that there are very 
few phenotypic differences and metabolites discriminating 
glioblastoma, IDH-wildtype from oligodendroglioma, NEC 
(Figure 4). The only major features significantly higher in 
oligodendroglioma, NEC tumors were 2-deoxyguanosine 
and 5-hydroxyindoleacetate (5-HIAA), a product of ser-
otonin catabolism. Although we had few oligodendro-
glioma, NEC tumors, these results indicate that the 
metabolic phenotype of this group of tumors is very close 
to glioblastoma, IDH-wildtype. However, a previous study 
has reported elevated levels of 5-HIAA in brain tumors; 
specifically, 9L gliosarcoma cell xenotransplanted into 
the white matter of feline brain.25 This finding prompted 
us to investigate metabolic differences, especially 5-HIAA 
levels, in an additional set of patient-derived tumor tis-
sues, containing gliosarcoma IDH-wildtype tumors (n = 8). 
We found that 5-HIAA levels are highly elevated in both 
oligodendroglioma, NEC, and gliosarcoma compared to 
other IDH-wildtype tumors (Figure 5A). We also observed 
that oligodendroglioma, NEC and gliosarcoma have very 
similar metabolic phenotypes (Figure 5B) as they had 
nonsignificant model separation. This finding indicates 
that 5-HIAA may be a novel marker for the sarcomatoid 
components usually seen as a bimorphic tissue pattern in 
both gliosarcoma and gliosarcoma with oligodendroglial 
components (oligosarcoma).

Metabolic Differences Among Age Stratified 
Glioblastoma, IDH-Wildtype

As shown in Figure 1C, our comparison of WHO grade 2 
and 3 astrocytoma, IDH-wildtype and glioblastoma, IDH-
wildtype generated a significant model but with low pre-
dictive ability (P = .0007, Q2 < 0.1), a finding that suggests 
an overlap of the astrocytomas with a subpart of the glio-
blastoma tumors. As this overlap warranted further anal-
ysis, we subdivided the glioblastoma subtype into groups 
according to age of the patient at glioma diagnosis. As our 
metabolism changes with age, we were not surprised to 
find that the <45-year-old age group of glioblastoma, IDH-
wildtype was metabolically different from the older glio-
blastoma age groups, especially to the >70-year-old age 
group (Figure 5C, 5D, Supplementary Table 6). However, no 
OPLS models were obtained that could separate the older 
age groups (45–60 y, 60–70 y or >70 y) from each other, 
indicating very similar metabolic phenotypes for older gli-
oblastoma patients. Interestingly, our analysis shows that 
the metabolic phenotype of the <45-year glioblastoma, 
IDH-wildtype age group is not statistically different from 
the metabolic phenotype of lower grade astrocytoma, IDH-
wildtype (Figure 5E). Furthermore, hierarchical clustering 

analysis of the underlying metabolic profiles show that 
astrocytoma, IDH-wildtype (mean age 60.8 years), and the 
<45-year glioblastoma age group together separate from 
the older glioblastoma, IDH-wildtype age groups (Figure 
5F, 5G). While older glioblastoma, IDH-wildtype age groups 
form a cluster including oligodendroglioma, NEC. Younger, 
<45-year-old glioblastoma, IDH-wildtype patients have sig-
nificantly better 5-year survival rate than older glioblas-
toma patients.26 This finding indicates that the <45-year-old 
glioblastoma age group might carry less aggressive tu-
mors more similar to lower grade astrocytoma, which is in 
line with our metabolomic characterization.

Similarities Among Diffuse and Anaplastic 
Glioma, and MGMT Promoter Methylation Status

Prior to the implementation of molecular classification, 
significant prognostic differences for diffuse (WHO grade 
II) and anaplastic (WHO grade III) tumors have been re-
ported. As described in Supplementary Table 1, we 
also histologically classified the tumors into diffuse or 
anaplastic astrocytoma and oligodendroglioma. Our anal-
ysis, however, did not find any difference in metabolic 
phenotypes between histologically classified diffuse and 
anaplastic astrocytoma, IDH-mutant, diffuse and anaplastic 
astrocytoma, IDH-wildtype or between diffuse and 
anaplastic oligodendroglioma, IDH-mutant, and 1p/19q-
codeleted. The lack of metabolic differences between 
histologically classified diffuse and anaplastic tumors, is in 
line with more recent studies that show insignificant prog-
nostic differences between WHO grade II and III tumors, 
especially for IDH-mutated tumors.27,28 Furthermore, we 
also analyzed MGMT promoter methylation status in the 
analyzed tumor tissues. No distinct or significant meta-
bolic pattern could be detected within any of the subtypes 
based on MGMT promoter methylation status. However, 
we observed a clear shift towards enhanced MGMT pro-
moter methylation in IDH-mutated tumors (Figure 5H), 
which may be a consequence of the global CpG island 
hypermethylation phenotype found in IDH-mutated cells.29

Discussion

Our exploratory metabolomics analysis describes distinct 
metabolic phenotypes for WHO classified adult glioma 
subtypes. To our knowledge, this is the first study com-
paring subtype specific metabolic differences between 
astrocytoma, oligodendroglioma, and glioblastoma tu-
mors dependent or independent of IDH-mutation. One 
distinct metabolic feature is that both IDH-wildtype and 
IDH-mutated astrocytoma have low levels of a broad 
spectrum of acylcarnitines compared to glioblastoma 
and oligodendroglioma, indicating that glioblastoma and 
oligodendroglioma relies more heavily on fatty acid oxida-
tion as an energy source. To summarize our key findings, 
a schematic dendrogram illustrating the most prominent 
phenotypic differences and discriminating metabolites are 
shown in Figure 6A. Here, we also show that characteriza-
tion of glioma subtypes with distinct metabolic differences 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac042#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac042#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac042#supplementary-data


 1462 Björkblom et al. Metabolic hallmarks of glioma subtypes

  

Chenodeoxycholic acid glycine conjugate
Hydroxymyristoyl-carnitine (C14:0-OH)

Hydroxylauroyl-carnitine (C12:0-OH)
Eicoseneoyl-carnitine (C20:1)

Cervonyl-carnitine (C22:6)

Stearoylcarnitine (C18)
Myristoylcarnitine (C14:0)
Palmitoylcarnitine (C16:0)

Oleoylcarnitine (C18:1)
Linoleoylcarnitine (C18:2)

Hexadecenoyl-carnitine (C16:1)
Hexadecadienoyl-carnitine (C16:2)

Linoleneoyl-carnitine (C18:3)

Myristoleoylcarnitine (C14:1)
Laurylcarnitine (C12:0)

Decanoylcarnitine (C10:0)
Octanoyl-carnitine (C8:0)

Dodecenoyl-carnitine (C12:1)
Tetradecadienyl-carnitine (C14:2)

Hexanoylcarnitine (C6:0)

cis-4-decenoyl carnitine (C10:1)

Hydroxyoctadecenoyl-carnitine (C18:1-OH)

Octenoyl-carnitine (C8:1)

Eicosadieneoyl-carnitine (C20:2)

Proline

Isoleucine/Leucine

5-hydroxyindoleacetate

Lysine
AlanineGlycine

Disaccharide, Glc-Glc (Cellobiose/Laminaribiose/Maltose)

1-arachidonoyl-GPC (20:4)

2-Amino-Adipic acid

Hydroxypalmitoleoyl-carnitine (C16:1-OH)
Hydroxylinoleoyl-carnitine (C18:2-OH)

Glutaric acid

Deoxycholic acid
Ornithine (Arginine/Citrulline)

Asparagine
2-Hydroxypalmitate

Aminomalonic acid
Isoleucylisoleucine

Valine

2'-Deoxyguanosine

Fumaric acid

2-Hydroxystearate
Asparagine [-H2O]

3-Hydroxylaurate
1-docosahexaenoyl-GPC (22:6)

0

2

4

6

8
–L

og
10

 (
P

-v
al

ue
 (

w
))

Oligo NEC vs. Astro IDH WT 
Higher in Oligo, NEC Higher in Astro, IDH WT

Chenodeoxycholic acid glycine conjugate

Proline
3-Hydroxydecanoate

Pipecolic acid
Disaccharide, Glc-Glc (Cellobiose/Laminaribiose/Maltose)

Ornithine (Arginine/Citrulline)
Glycoursodeoxycholic acid

5-hydroxyindoleacetate

Disaccharide, Glc-Glc (Maltose/Laminaribiose/Sakebiose)

2-Hydroxypalmitate

Alanine

3-Carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF)

Glycocholic acid

Urea

Aldopentose (Xyl/Lyx/Ara/Rib) #1

Erythritol

myo-Inositol

0

2

4

6

8

–L
og

10
 (

P
-v

al
ue

 (
w

))

GBM IDH WT vs. Astro IDH WT
Higher in GBM, IDH WT Higher in Astro, IDH WT

5-hydroxyindoleacetate (5-HIAA)

2'-Deoxyguanosine

0

2

4

6

8

–8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8

–L
og

10
 (

P
-v

al
ue

 (
w

))

Log
2
 (fold-change)

GBM IDH WT vs. Oligo NEC
Higher in GBM, IDH WT Higher in OLIGO, NEC

(Serotonin (5HT))

(Sucrose)

(Cystathionine)

(IDH WT)  

(IDH WT) 

Eicoseneoyl-carnitine (C20:1)
Dodecenoyl-carnitine (C12:1)
Hydroxymyristoyl-carnitine (C14:0-OH)

Hydroxyoctadecenoyl-carnitine (C18:1-OH)
Hydroxylauroyl-carnitine (C12:0-OH)

Hexadecadienoyl-carnitine (C16:2)

(N-acetyl-L-Aspartic acid (NAA))

cis-4-decenoyl carnitine (C10:1)
Decanoylcarnitine (C10:0)

Stearoylcarnitine (C18)
Deoxycholcholic acid

Palmitoylcarnitine (C16:0)
Eicosadieneoyl-carnitine (C20:2)

Laurylcarnitine (C12:0)
Oleoylcarnitine (C18:1)

Linoleoylcarnitine (C18:2)

Myristoylcarnitine (C14:0)
Hexadecenoyl-carnitine (C16:1)

Myristoleoylcarnitine (C14:1)

Linoleneoyl-carnitine (C18:3)
Cervonyl-carnitine (C22:6)

Octenoyl-carnitine (C8:1)
Tetradecadienyl-carnitine (C14:2)

Hydroxylinoleoyl-carnitine (C18:2-OH)
Octanoyl-carnitine (C8:0)

Fig. 4  Volcano plots highlighting the most discriminating identified metabolites separating IDH-wildtype glioma subtypes only. Green dashed line 
indicate cutoff values set at P < .01 and >2-fold difference between compared IDH-wildtype glioma subtypes.
  



1463Björkblom et al. Metabolic hallmarks of glioma subtypes
N

eu
ro-

O
n

colog
y

  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
im

ila
rit

y

Dendrogram, ID metab. (240)

45–60 y
GBM

IDH WT

60–70 y
GBM

IDH WT

>70 y
GBM 

IDH WT

<45 y
GBM

IDH WT

Astro
IDH WT

Oligo, NEC
IDH WT

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
im

ila
rit

y

Dendrogram, All feat. (1132)

>70 y
GBM

IDH WT

60–70 y
GBM

IDH WT

45–60 y
GBM 

IDH WT

<45 y
GBM

IDH WT

Astro
IDH WT

Oligo, NEC
IDH WT

Pipecolic acid

Isoleucylisoleucine

2-Hydroxystearate
2-Hydroxypalmitate

5-hydroxyindoleacetate

3-Carboxy-4-methyl-5-propyl-
2-furanpropanoate (CMPF)

Cholic acid

Hypotaurine

Stearoylcarnitine (C18)

Eicosadieneoyl-carnitine (C20:2)

Eicoseneoyl-carnitine (C20:1)

Tiglyl carnitine (C5:1)

Hydroxyoctadecenoyl-carnitine (C18:1-OH)

Deoxycholic acid

Erythritol

Hydroxymyristoyl-carnitine (C14:0-OH)

Palmitoylcarnitine (C16:0)

Hydroxylauroyl-carnitine (C12:0-OH)
Oleoylcarnitine (C18:1)

Hexadecenoyl-carnitine (C16:1)

Linoleoylcarnitine (C18:2)
Myristoylcarnitine (C14:0)

Cervonyl-carnitine (C22:6)
Hydroxylinoleoyl-carnitine (C18:2-OH)

N-acetyl-L-Aspartic acid (NAA)

Serotonin (5HT)

Aldopentose (Xyl/Lyx/Ara/Rib) #1

Aldopentose (Xyl/Lyx/Ara/Rib) #2

0

2

4

6

8

10

–6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6

–L
og

10
 (

P
-v

al
ue

 (
w

))

Log2 (fold-change)

GBM IDH WT >70 y vs. GBM IDH WT <45 yHigher in >70 y Higher in <45 y 

DC

E

GF H

GBM, IDH WT Astro, IDH WT

GBM, IDH mut Astro, IDH mutOligo, IDH mut

Unmethylated

Low methylation

High methylation

MGMT promoter

2'-Deoxyguanosine

Chenodeoxycholic acid glycine conjugate

0

2

4

6

8

10

–8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8

–L
og

10
 (P

-v
al

ue
 (

w
))

Log2 (fold-change)

Gliosarcoma IDH WT vs. Oligo, NEC

Higher in Gliosarcoma, IDH WT Higher in Oligo,NEC(IDH WT)

BA

Astro 
IDH WT

GBM 
IDH WT

Gliosarcoma 
IDH WT

Oligo, NEC 
IDH WT

0

20 000

40 000

60 000

80 000

100 000

120 000

140 000

160 000

A
.U

 p
ea

k 
ar

ea
 (

5-
hy

dr
ox

yi
nd

ol
ea

ce
ta

te
)

Box plots, 5-HIAA in IDH WT tumors

ns
**

**

GBM IDH WT
<45 y (n = 17)

GBM IDH WT
45–60 y (n = 47)

GBM IDH WT
60–70 y (n = 49)

GBM IDH WT
>70 y (n = 40)

All feat. 

P 0.17ns 0.051ns 

Q2 0.22 0.31 

All feat. 

P 0.0006 0.002 

Q2 0.23 0.20 

All feat. 

P 0.0003 0.001 

Q2 0.24 0.21 

All feat. 

P 0.0001 0.0003 

Q2 0.30 0.28 

Oligo, NEC 
IDH WT 
(n = 6) 

ID 
metab. 

All feat. 

P 0.014 0.016 

Q2 0.48 0.48 

ID 
metab. 

All feat. 

P 0.49ns 0.42ns 

Q2 0.028 0.034

ID 
metab. 

All feat. 

P 0.33ns 0.25ns 

Q2 0.042 0.051

ID 
metab. 

All feat. 

P 0.70ns 0.87ns 

Q2 0.016 0.006 

GBM IDH WT
<45 y (n = 17)

All feat. 

P 0.022 0.0036 

Q2 0.30 0.36 

ID 
metab. 

All feat. 

P 

Q2

0.0007 0.090ns 

0.27 0.074 

All feat.

P 0.098ns 0.11ns 

Q2 0.073  0.070  

GBM IDH 
WT >70 y 
(n = 40) 

GBM IDH 
WT 60–70 y 
(n = 49) 

GBM IDH 
WT 45–60 y 
(n = 47) 

ID 
metab. 

ID
metab.

Astro  
IDH WT 
(n = 13) 

ID 
metab. 

ID 
metab. 

ID 
metab. 

ID 
metab. 

Fig. 5  Comparison of 5-HIAA expression in IDH-wildtype glioma and metabolic hallmarks of age stratified glioblastoma IDH-wildtype. A. Box 
plot illustrating quantifications of 5-HIAA in IDH-wildtype glioma tumors. ** >2-fold difference and P < .01. B. Volcano plots highlighting identified 
metabolites separating IDH-wildtype gliosarcoma from oligodendroglioma, NEC, note: nonsignificant model (P = .29). C. Table summarizing two-
class OPLS-DA comparisons of age stratified glioblastoma, IDH-wildtype tumors based on; 240 identified metabolites (ID metab.); and all 1,132 



 1464 Björkblom et al. Metabolic hallmarks of glioma subtypes

are clinically relevant by evaluating the outcome for the 
patients after surgery (Figure 6B). As expected, we ob-
served better median and overall survival for all IDH-
mutated subtypes. However, differences in survival time 
were apparent among all six glioma subtypes, highlighting 
the relevance and importance of characterizing subtype 
specific metabolic features. Several studies have demon-
strated metabolic changes in glioma tumors and their mi-
croenvironment.30–36 A  limiting factor for many previous 
studies is that several histologically different glioma sub-
types are combined into one larger group simply based on 
WHO grade or IDH-mutation status. A dominant effect seen 
in one subtype can then contribute the overall observed ef-
fect, and important differences in less common subtypes 
are masked. In this study, we kept histologically different 
WHO classified glioma subtypes separate throughout the 
analysis to specifically sequester subtype specific meta-
bolic phenotypes. We did however not separate WHO grade 
2 and grade 3 gliomas, as no metabolic differences for 
these grades could be observed within defined subtypes. 
The difference between grades 2 and 3 astrocytoma is also 
currently rather subjective, as it is based on a histologically 
defined mitotic threshold in only a few cells, which might 
be difficult to capture.21

Our comparison of IDH-wildtype and IDH1- or IDH2-
mutated glioma subtypes confirms many of the metabolic 
patterns recently reported by Zhou and colleagues,33 but 
we also found subtype specificity (Figure 2, Supplementary 
Table 3). All the investigated glioma subtypes with an IDH-
mutation, compared to IDH-wildtype, had higher levels 
of 2-HG, glycerol-2-phosphate, and erythritol, and lower 
levels of sphingosine. We also found significantly higher 
levels of myo-inositol, scyllo-inositol, epi-inositol, and 
glycerol-3-phosphate, and lower alanine levels in mutated 
oligodendroglioma and glioblastoma, but the significance 
level was not reached for mutated astrocytoma. In mutated 
astrocytomas and oligodendroglioma we found lower 
levels of especially; ornithine, serine, asparagine, and 
uracil. In addition to these changes, all IDH-wildtype sub-
types had significantly higher levels of proinflammatory 
lysoglycerophospholipids, characterized by a single 
carbon chain and either glycerophosphocholine (GPC) 
or glycerophosphoethanolamine (GPE) as polar head 
group, and plasmenyl glycerophospholipids in the form of 
1-steroylplasmenylethanolamine. In addition, ketohexose, 
aldopentoses, and corresponding 5-carbon sugar alcohols, 
were higher in all IDH-mutated subtypes.

Our study also shows distinct metabolic separation 
within IDH-mutated subtypes (Figure 3, Supplementary 
Table 4). Focusing on the differences between low- and 
high-grade glioma, we saw significantly higher levels of 

NAA and aldopentoses in astrocytoma and oligodendro-
glioma compared to glioblastoma. NAA, predominantly 
synthesized and stored in neurons, is a well-accepted sur-
rogate marker for neuronal density and viability.37 NAA 
levels decline with destruction of neurons and is currently 
used for in vivo magnetic resonance spectroscopy (MRS) 
examinations of the CNS. In line with our finding, MRS 
examinations show that NAA levels are high in low-grade 
glioma and decline with increasing tumor grade.38 In the 
glioblastoma, IDH-mutant tumors, a range of amino acids 
were significantly elevated, especially glycine, but also in-
cluding asparagine, proline, valine, ornithine, threonine, 
tyrosine, methionine, branched chain amino acids (i.e., 
valine, isoleucine, and leucine), and 2-aminoadipic acid. 
A study analyzing interstitial fluids from high-grade glioma 
and from adjacent nontumoral brain tissue, also found 2- 
to 8-fold higher concentration of the same panel of amino 
acids in high-grade glioma tissue,39 and many amino acid 
metabolizing enzymes have been shown to be differen-
tially expressed in glioblastoma.40 The highly elevated 
levels of glycine can easily be detected by in vivo MRS, and 
high levels of glycine are seen in high-grade gliomas com-
pared to low-grade gliomas or healthy controls.41 Glycine 
consumption and synthesis have been shown to correlate 
with rapid cell proliferation in various cancer cells,42 and 
high glycine synthesis in glioma cells have been linked to 
activated serine hydroxymethyltransferase (SMHT)43; espe-
cially the mitochondrial SMHT2 isoform.44 SHMT2 is highly 
expressed in glioblastoma tumors but is low in astrocytes, 
and is upregulated by hypoxia due to increased HIF-1α and 
c-Myc activity.40,45 On the other hand, 2-aminoadipic acid 
is an intermediate in lysine degradation via the pipecolate 
or the saccharopine pathways present in the brain. Several 
steps in these pathways are catalyzed by 2-oxoglutarate 
(α-ketoglutarate) dependent enzymes (2OG oxygenases) 
that potentially are inhibited by the presence of 2-HG in IDH-
mutated cells.46,47 The TCA cycle intermediate fumarate (fu-
maric acid), was also higher in IDH-mutated glioblastoma 
compared to low-grade gliomas. Mutation of the fumarate 
hydratase gene is linked to cancer, and fumarate accumu-
lates to millimolar levels in fumarate hydratase deficient 
cells.48 Various studies have shown that 2-HG, fumarate, 
and other TCA cycle intermediates inhibit 2OG oxygenases 
with varying degrees of potency.46,47 These discoveries may 
open up novel therapeutic possibilities for cancer treatment 
by targeting of 2OG oxygenases. However, 2OG dependent 
oxygenases comprise a large and diverse enzyme super-
family, with functional roles in biomedicinally-important 
processes such as the hypoxic response, nucleic acid re-
pair and modification, fatty acid metabolism, carnitine syn-
thesis, and chromatin modification.49,50

quantified metabolic features (All feat.). D. Volcano plots highlighting the most discriminating identified metabolites separating <45-year-old glio-
blastoma, IDH-wildtype tumors from >70-year-old glioblastoma, IDH-wildtype tumors. Cutoff values at P < .01 and >2-fold difference are indicated 
with green dashed lines. E. Table summarizing two-class OPLS-DA comparisons of tumor metabolic phenotypes for; astrocytoma, IDH-wildtype; 
oligodendroglioma, NEC; and age stratified glioblastoma, IDH-wildtype tumors. Table summarize calculations based on; identified metabolites (ID 
metab.); and all quantified metabolic features (All feat.). F-G. Dendrograms showing model similarities for IDH-wildtype glioma subtypes with age 
stratified glioblastoma, by use of hierarchical clustering of OPLS models based on; (D) 240 identified metabolites; (E) all 1132 quantified metabolic 
features. H. Pie charts illustrating numerical proportions of MGMT promoter methylation levels in WHO classified glioma subtypes. n; number of 
tumors for each subtype, P, LOOCVANOVA P-value, Q2; LOOCV goodness of prediction value Q2(cum), ns; nonsignificant class separation (P > .05).
  

Fig. 5    Continued

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac042#supplementary-data
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Hypoxia, a common feature in high-grade glioma, can 
transform cellular building blocks, including lactate and 
fatty acids, as well as disrupt oxidative phosphorylation. 
These understandings are confirmed in our findings, which 
show significantly lower levels of long-chain acylcarnitines 
in low-grade IDH-mutated astrocytoma compared to both 
IDH-mutated oligodendroglioma and glioblastoma (Figure 
3, Supplementary Table 4). The most striking difference 
among IDH-wildtype subtypes were also significantly 
lower levels of long-chain acylcarnitines in astrocytoma, 
IDH-wildtype, and high concentrations of acylcarnitines 
in glioblastoma, IDH-wildtype, and oligodendroglioma, 
NEC (Figure 4, Supplementary Table 5). Similarly, Prabhu 
et  al. found lower levels of fatty acids and long-chain 
acylcarnitines (C14 to C16) in low-grade astrocytoma tu-
mors compared to glioblastoma.51 The primary function of 
carnitine in cells is fatty acid metabolism. Acylcarnitine es-
ters are transported into mitochondria, for subsequent fatty 
acid oxidation and energy production. Upon fast tumor 
growth and failure of proper blood supply, cancer cells 
lack a sufficient supply of oxygen for metabolism of energy 

sources. In the glycolytic pathway, cytosolic glucose is 
normally converted to pyruvate in aerobic conditions and 
lactate when oxygen is insufficient.52 Although glucose is 
thought of the primary energy source for the normal adult 
brain, model studies have shown that close to 20% of the 
total oxidative energy produced comes from medium-
chain fatty acid oxidation,53 and that the hypoxic environ-
ment prompts cancer cells to synthesize fatty acids and to 
use fatty acid oxidation as a primary energy source.54–56 
Therefore, the subtype specific changes in long-chain 
acylcarnitines reported here might reflect an adaptation 
to the tumor microenvironment with mild hypoxic condi-
tions in low-grade astrocytoma, compared to more severe 
hypoxic conditions in oligodendroglioma and glioblas-
toma. PET imaging using the hypoxia tracer [18F]-FMISO, 
other markers of hypoxia (CAIX, HIF-1α), and angiogenesis 
markers (VEGF, Ang2, rCBV) show that hypoxic conditions 
are closely linked to tumor grade, with the highest levels in 
glioblastoma and that hypoxic tumors are associated with 
a poor prognosis.57 On the genetic side, mutation in CPT1C, 
a brain specific atypical carnitine palmitoyltransferase that 
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conjugates fatty acids with carnitine, has been identified as 
a potential targetable oncogene.58

Among IDH-wildtype subtypes, we additionally found 
lower levels of amino acids; proline, lysine, alanine, or-
nithine, and valin in astrocytoma, but higher levels of 
myo-inositol, erythritol, and aldopentoses in astrocytoma 
compared to glioblastoma. Myo-inositol is considered a 
glial marker molecule, mainly synthesized in astrocytes, 
that is involved in osmoregulation and maintenance of 
brain volume.59,60 High levels of myo-inositol are detected 
mainly in low-grade gliomas with better prognosis while 
its progressive decrease is noted in higher level gliomas.61 
Elevated levels of myo-inositol are found in nontumoral 
brain tissue, surrounding high-grade glioma tumors.39 
Higher levels of myo-inositol have also been detected in 
prediagnostic serum and plasma samples, especially from 
glioblastoma patients, highlighting myo-inositol as an 
important molecular marker for high-grade glioma.12,13 
Therefore, myo-inositol may be included in clinical PET im-
aging for discrimination of mutated high-grade glioma.

Minimal metabolic differences were observed between 
glioblastoma, IDH-wildtype, and oligodendroglioma NEC, 
WHO grade 3, indicating that these subtypes may in fact be-
long to the same class of tumors. The only clear difference 
was the catalysis of serotonin to 5-HIAA, which was signif-
icantly upregulated in oligodendroglioma, NEC. Although 
depression is a common among glioma patients, a link be-
tween enhanced serotonin catabolism and high 5-HIAA con-
centrations in certain glioma subtypes have, to the best of 
our knowledge, not previously been reported. However, the 
serotonin pathway has been implicated in gliomatogenesis 
in several ways.62 Monoamines, including serotonin are 
central in regulating proliferation of stem cells in the sub 
ventricular zone, which has been suggested as an important 
part of the development of glioblastoma. Furthermore, inhi-
bition of monoamine oxidase A activity has been described 
as cytotoxic to glioma cells in vitro and has recently been 
shown to reduce proliferation, microvessel density, and 
invasion of glioma tissue in a rat model.63 Variation in the 
gene coding for monoamine oxidase A has also been linked 
to glioblastoma development in males.64

This comprehensive study clearly shows that adult 
glioma subtypes can be differentiated by their metabolic 
profiles. As the metabolism is a flux system, several ge-
netic aberrations may contribute in concert to the specific 
glioma subtype and a unique metabolic program. However, 
metabolic reprogramming is also bidirectional as it can 
lead to the modification of the cancer genome and onco-
genic pathways, through epigenetic, transcriptional, and 
posttranslational modifications. As metabolic reprogram-
ming defines glioma subtypes, an approach towards new 
therapies targeting metabolic-related mechanisms that 
are not dependent on a single genetic tumor event might 
be effective. In addition, many metabolites are detectable 
through noninvasive imaging techniques that would allow 
discrimination of glioma subtypes before surgery.
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