Skip to main content
. 2022 Sep 1;17(9):e0272961. doi: 10.1371/journal.pone.0272961

Table 2. Comparison of the performance of the MDConv module with previous applications of conditional convolutional modules on the backbones of object detectors on the SIXray10 and CargoX datasets.

Method Backbone Addition Module mAP mAP50 mAP75
SIXray10 CargoX SIXray10 CargoX SIXray10 CargoX
Cascade R-CNN [33] ResNeXt-101 w FPN - 52.5 70.2 78.3 95.9 60.6 81.1
ResNeXt-101 w FPN SAC [25] 43.0 63.9 67.9 92.8 47.0 71.3
ResNeSt (s101) [24] - 51.4 67.1 75.4 94.1 58.6 74.8
ResNeXt-101 w FPN DCN [26] 54.2 72.1 78.8 96.4 62.8 82.4
ResNeXt-101 w FPN MDconv 55.4 72.5 79.6 96.5 63.2 82.2