Table 2. Comparison of the performance of the MDConv module with previous applications of conditional convolutional modules on the backbones of object detectors on the SIXray10 and CargoX datasets.
Method | Backbone | Addition Module | mAP | mAP50 | mAP75 | |||
---|---|---|---|---|---|---|---|---|
SIXray10 | CargoX | SIXray10 | CargoX | SIXray10 | CargoX | |||
Cascade R-CNN [33] | ResNeXt-101 w FPN | - | 52.5 | 70.2 | 78.3 | 95.9 | 60.6 | 81.1 |
ResNeXt-101 w FPN | SAC [25] | 43.0 | 63.9 | 67.9 | 92.8 | 47.0 | 71.3 | |
ResNeSt (s101) [24] | - | 51.4 | 67.1 | 75.4 | 94.1 | 58.6 | 74.8 | |
ResNeXt-101 w FPN | DCN [26] | 54.2 | 72.1 | 78.8 | 96.4 | 62.8 | 82.4 | |
ResNeXt-101 w FPN | MDconv | 55.4 | 72.5 | 79.6 | 96.5 | 63.2 | 82.2 |