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One of the important and challenging tasks in cloud computing is to obtain the usefulness of cloud by implementing several
specifications for our needs, to meet the present growing demands, and to minimize energy consumption as much as
possible and ensure proper utilization of computing resources. An excellent mapping scheme has been derived which maps
virtual machines (VMs) to physical machines (PMs), which is also known as virtual machine (VM) placement, and this
needs to be implemented. The tremendous diversity of computing resources, tasks, and virtualization processes in the cloud
causes the consolidation method to be more complex, tedious, and problematic. An algorithm for reducing energy use and
resource allocation is proposed for implementation in this article. This algorithm was developed with the help of a Cloud
System Model, which enables mapping between VMs and PMs and among tasks of VMs. The methodology used in this
algorithm also supports lowering the number of PMs that are in an active state and optimizes the total time taken to process a
set of tasks (also known as makespan time). Using the CloudSim Simulator tool, we evaluated and assessed the energy
consumption and makespan time. The results are compiled and then compared graphically with respect to other existing
energy-efficient VM placement algorithms.

cloud resources available [4-7]. Cloud workloads are
planned using VMs, which are assigned based on the
amount of traffic and requests. Users may benefit from on-
demand, high-quality programs and services from a shared

1. Introduction

In recent years, cloud computing has experienced a meteoric
rise in popularity. The latest advances in virtualization

technology have elevated it to a significant position cur-
rently. Cloud computing has given new life to a wide range
of applications, including speech and signal processing [1, 2],
thanks to the increased bandwidth and flexibility provided
by 5G [3]. A variety of applications are submitted to data
centers to obtain pay-per-use services. Because of resource
restrictions, on-demand workloads are shifted to other data
centers on a regular basis. As a result, workload scheduling
in a heterogeneous multicloud environment is a hot topic
and a challenging undertaking due to the wide variety of

pool of configurable computing resources without having to
worry about data storage and upkeep on their home com-
puters [8]. Due to the fact that users with weak computer
capabilities no longer have direct access to the outsourced
data, data integrity security in cloud computing is difficult
for them to maintain. Furthermore, users should be able to
use cloud storage as if it were local storage, without having to
worry about the integrity of the data stored there.

The application requires a secure infrastructure due to
the presence of sensitive data or proprietary procedures [8].
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As aresult, we treat sensitive requests differently and execute
them on a distinct VM. VM placement is an operating
mechanism in cloud computing that is implemented to map
the most appropriate server or PM to host VM. To improve
and enhance the utilization of computing resources, power
efficiency, and quality of service (QoS) in cloud computing,
choosing the best and most suitable host is crucial and
critical. Implementing VM placement in cloud computing is
highly difficult, time-consuming, and complex. This is be-
cause we cannot predict or forecast how VM starting re-
quests will arrive and study their patterns. Moreover, it is
often difficult to accurately find the most suitable and best
scenario due to the large size of the data center for the
required load.

The data centre resources can be optimised, and energy
consumption can be decreased with the use of a suitable VM
placement algorithm. This algorithm can manage job
scheduling , which helps in reducing the energy usage of data
centres. Each VM needs a guaranteed number of computing
resources such as memory, CPU, bandwidth, links, and much
more to manage the application’s security, isolation, and
overall performance. Costs can be minimized only when the
compute resources are exclusively made available for the
application, not based on the load of the work benchmark. To
run and maintain all applications’ efficiencies, it needs to
optimize, monitor, and measure continuously and in real time
the data traffic. The data center requires proper precision
planning of its network architecture to host hundreds of
thousands of devices, including routers, switches, and servers.
Until now, lots of advances have been made and have suc-
cessfully created energy-efficient networking devices and
compute servers. Up to 20% of energy conservation can be
accomplished by data centers, which also saves up to 30% of
the energy requirements that are used for cooling various
hardware devices. Currently, a common standard cloud
computing deployment model uses quite a large amount of
energy, which indirectly produces a large amount of carbon
dioxide (CO,).

Hence, the goal for cloud providers is to conserve energy
as much as possible by implementing highly advanced
energy-efficient algorithms, protocols, and top-notch
highly advanced techniques. Cloud computing is built to
be energy-efficient inherently since it has the features of
scalability, meaning it can scale multitenant usage and
compute resources automatically. It is also to be noted that
low-quality VM placement implemented in data centers
results in maximum energy consumption. A Service Level
Agreement (SLA) is an agreement that bonds the cloud
provider and the customer. This agreement guarantees that
at least a minimum level of service is being provided. In
VM placement, the allotment of task requested to a set of
VMs that are running/computing on several different
hosts while following the agreements that contain terms
and conditions is declared in SLAs. In this article, we focus
on the problem of mapping and allocating VMs to PMs in
the data center.

This pertains to decision-making like, when a VM is
allocated, which VMs are to be reallocated, which PMs are to
be switched off, and which VM is to be allocated to which PM.
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The VMs are then grouped/clustered based on the type of
resources they require. The output is later used as the ref-
erence for making decisions for the customized VM instances.
These decision-making processes are crucial because they help
in saving the energy usage of the entire system by modifying
the state of nonactive PMs into disabled mode. The men-
tioned solution in this article helps in conserving resources
and reducing resource wastages in cloud computing system
models. This is made possible with the help of virtualization
mechanisms and allocating suitable policies for efficiency. We
have also formed varieties of subtypes of VMs based on the
capability of their resources. The total load of inputs in the
data center is calculated by the definite number of input tasks
where each individual task is associated with many VMs for
execution. During this work, my primary and main aim was
to allocate an input task to an already existing VM or else
make or create a new VM based on the task and allocate the
newly created VM to a currently active host or PM. Because
new VMs must be given to the right hosts on a regular basis,
there are problems with assigning tasks.

As a result, to deal with the problem of job assignment,
we employ the concepts of consolidation and optimal so-
lution. The primary aim is to reduce energy consumption
while also appropriately allocating resources in cloud-based
applications. To handle this task assignment problem while
decreasing energy consumption and ensuring optimal re-
source allocation in a cloud system, we employ the concept
of consolidation and optimum solution approach developed
by the authors. Data center time and energy consumption
can also be cut down because of the consolidation method.

Consolidation techniques are divided into four subap-
proaches: server underload detection, server overload de-
tection, VM placement, and VM selection. Each of these
subapproaches is discussed in detail below. Consolidation is
a tough and time-consuming task; thus, heuristic and meta-
heuristic approaches are used to obtain solutions as quickly
as possible. The system model proposed in our work is
shown in Figure 1, where multiple users can make the re-
quest simultaneously.

The proposal made by users will reside in the task queue,
which will be allocated to the VM based on the requirements.
The critical point here is that, in the IaaS$ system architecture,
the user request can either be a program, task, software, or
the operating system itself. The task manager can divide the
schedule and tasks and distribute them among multiple VMs
to execute the parts of them. In addition, if the request is for
system software or an operating system along with a pro-
gram, then the division of those requests cannot be done in
multiple VMs. Therefore, our system model should assign
those VMs requests to anywhere in the physical system but
not in total allocation. The VM request is being handled by
the host as it is requested, depending upon the availability of
the resource. The host manager uses a machine learning
classifier to ensure the optimal allocation of resources at any
moment. We can summarize our contribution as follows:

(1) A new cloud system model has been developed in
which the input tasks are interpreted as user requests
and the cloud computing resources are heterogeneous.
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FiGure 1: Cloud system model developed.

(2) To produce a VM Placement Algorithm named
“Energy-Efficient VM  Placement Algorithm”
(EEVMPA) based on task requests, where this al-
gorithm helps in reducing energy consumption,
minimizing the rejection rate of tasks, and reducing
the makespan time.

(3) In cloud computing, various requests are common
and frequently made. The tasks can be classified
based on their parameters, such as platform, space,
priority, type, and sensitivity. We are preparing our
data set to build a compatible situation for any given
task and its required environments. Based on this, we
prepare the decision tree to optimize the allotment.
We are using multiple entries, out of which 20% will
be used for training and 80% of the data will be used
for validation.

(4) An overall evaluation of the algorithm is made with
the help of the CloudSim tool, and graphical analysis
is also done and compared with the other existing
energy-efficient algorithms currently available in the
market.

2. Literature Surveys

Mousa and Hussein proposed an unmanned aerial vehicles
(UAVs)-based oftloading system; this research goal is re-
ducing the latency and the energy consumption of the UAV.
There are two distinct subproblems for the suggested system
that are looked into. The suggested offloading method di-
vides the ground devices into clusters, and the UAV passes
over each cluster head to perform the tasks that have been
oftfloaded for the members of the cluster. This leads to the
first subproblem, which is the clustering of IoT devices, the

shortest route for the UAV to travel through the cluster
heads [9]. Cloud computing has enormous potential with the
advancement of virtualization technologies. Large hardware
resources are frequently virtualized. Clients are then
assigned to these tiny units. However, these services must be
resource-efficient. Many scheduling, allocation, and provi-
sioning issues are framed as optimization issues. Many al-
gorithms were introduced in the past that focused on
resource allocation, consumption of energy, and issues faced
during scheduling. A detailed literature survey was the need
of the hour. Gabhane et al. [10] describe the meta-heuristic
model that is extensively studied for VMP in cloud com-
puting. Based on a lot of research and surveys, we found
some of the most common related works, like this one. We
also looked at their workings, benefits, and drawbacks.
Karmakar et al. proposed [11] high-performance computing
requires many VMs to meet user demand (VMs). This
computation generates a lot of VM-to-VM traffic. Therefore,
to satisfy user expectations, VMs must be deployed on actual
computers in a way that reduces communication costs and
delays. By consolidating VMs into less active physical
computers, service providers can reduce operational costs.
Finding the best way to reduce deployment or communi-
cation costs is NP-Hard. Moreover, focusing on one without
the other may result in a cheaper but slower solution (or vice
versa). Ant colony optimization is used to manage VM
consolidation. The performance of this algorithm was
compared with existing mono- and multiobjective
algorithms.

Omer et al. [12] focused on large number of complex
applications with varying priorities, and resource demands
are arising in recent telecommunication paradigms like big
data, IoT, UEC, and machine learning. Most researchers use
a set of VMs with a set traffic load. Cloud data centers



(CDC), a key component of UEC, perform differently
depending on how they are placed. VM placement is NP-
hard; therefore, no optimal solution exists. This study
presents a priority, power, and traffic-aware VM placement
strategy in a CDC. A fat-tree topology and the proposed
approach were compared. The proposed method decreases
total network utilization by 29%, electricity consumption by
18%, and resource waste by 68% compared to the second best
findings. Raman et al.’s [13] study is focused on knowing the
makespan, and execution cost is required for workflow
scheduling efficiency. Optimal workflow scheduling is tough
in the cloud since estimating makespan and cost is tricky.

Cloud resources are scheduled to suit user demand. The
virtualization approach provides for scalability. This study
proposes the PBF-NN hybrid scheduling approach for
calculating makespan and execution cost. The backfill al-
gorithm schedules work. This method decreases migration
compared to First Come, First Serve. It is then used for
resource allocation equity. The system assigns jobs fairly. An
energy-efficient VM placement approach is provided by the
backpropagation neural network-genetic algorithm (BPGA).
By distributing tasks dynamically, it saves resources. Ex-
perimental research illustrates how the recommended
technique saves money and time. Salami et al. [14] highlight
that the VMPP is a frequent provisioning issue. VMPP hosts
VM requests on a small number of real computers. The
VMPP is solved via Cuckoo Search (CS) and creates new cost
and perturbation functions. Using two popular benchmark
data sets, Reordered Grouping Genetic Algorithm, Best-Fit
Decreasing, and MultiCSA also performed well. Ghar-
ehpasha et al. [15] work on store applications, data, and files;
cloud computing employs a vast network of systems which
reduces power computation, application hosting, content
storage, resource waste, and delivery costs. By focusing on
corporate goals rather than increasing consumer hardware
resources, cloud computing helps organizations achieve
their goals. VMs with real equipment in cloud data centers
are challenging to place. Cloud data centers may better
manage resources by putting VMs ahead of real ones. They
also propose a hybrid discrete multiobject whale optimi-
zation method with a multiverse optimizer and chaotic
function. The suggested method reduces the number of
active physical computers in cloud data centers. VMs over
real machines in cloud data centers decrease resource
consumption. This approach slows the VM to PM migration.
A final comparison was made using first fit, virtual machine
placement ant colony system (VMPACS) and Modified Best
Fit Decreasing (MBFD). Bouhank and Daoudi [16] use
placing VMs on appropriate servers in a cloud context for
NP-hard issue. They propose a Non-dominated Ranking
Biogeography Based Optimization (NRBBO) algorithm to
decrease the overall resource waste and power consumption
across all servers in a VM installation. To test the approach’s
efficacy, many experiments were run using generated data
from the literature. The findings demonstrate that NRBBO
outperforms other multiobjective systems in terms of effi-
ciency, convergence, and coverage.

Mousa and Hussein proposed a UAV-Assisted Com-
puting Mobile-Edge Computing UCMEC system to increase

Computational Intelligence and Neuroscience

the performance of offloading workloads from mobile de-
vices and reduce task latency and system energy con-
sumption. The suggested method divides the ground devices
into regions so that the UAV can fly over each zone and
complete the jobs. The partitioning technique employs a VD.
Using a Graphics Processing Unit (GPU)-based Particle
Swarm Optimization PSO, the UAV’s trajectory over the
areas is optimised. Authors' algorithm shows the best result
among the compared algorithms [17].

Farzaneh and Fatemi’s [18] work focused on the critical
optimization challenge in cloud architecture that is VM
placement (VMP). The solution impacts prices, energy, and
performance. PM processing power and VM workloads have
powered VMP. The semiconductor industry is also inter-
ested in chips having numerous homogeneous or hetero-
geneous PEs. The newest chip has general-purpose cores
with reconfigurable fabric (RF). This study provides a
random PE design technique for VMP algorithms. In the
given solution, VMP employs RF components in the cloud
infrastructure. It’s a heuristic to tell the difference. Perfor-
mance depends on parameter extraction. The obtained
parameters are utilized to determine which PM should host
the VM. Others outperform our suggested VMP algorithm
in our proposed cloud architecture model.

Ghetas [19] proposed a multiobjective Monarch But-
terfly Algorithm to manage the VM placement. This study
helps to find the location of VMs to place the load.

Gohil et al.’s [20] works on the cloud computing load
management is a new way to deliver web services. People,
businesses, and academics have all noticed demand-based
resource allocation in cloud computing. Rapid data com-
putation and storage expansion in the cloud may produce
workload imbalances that breach SLAs and degrade system
performance. Workload balancing is crucial in cloud
computing. When creating a new VM, the best PM in a
cloud data center is chosen. This study examines VM
placement in cloud data centers to maximize resource usage.
This problem has many solutions. Most available methods
balance cloud resources due to inefficient resource con-
sumption. We describe an algorithm that minimizes re-
source imbalances, waste, and leakage while maximizing
resource consumption. Our system selects a host for an
incoming VM from a list of hosts based on cosine similarity.
The simulation findings show significant gains over existing
algorithms like Round-Robin and the default Worst Fit.
Chen et al’s [21] work focuses on reducing energy con-
sumption and thermal costs. It also reduces the number of
hot spots in the cloud computing system platform. In this
research, Jayanetti et al. proposed a novel hybrid actor-critic
technique for resource scheduling in an edge-cloud setting,
together with a novel hierarchical state space simulation. The
resulting deep reinforcement learning system dramatically
decreases the size of the action space handled by each actor
network while simultaneously encouraging a distinct sep-
aration between edge and cloud nodes, with numerous actor
networks directed by a single critic network.

Authors also used proximal policy optimization to get
around known issues with conventional actor-critic ap-
proaches. In order for the deep reinforcement learning
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framework agent to develop a balanced trade-oftf between
latency and energy consumption, we also made use of
existing works to break down workflow deadlines into in-
dividual task deadlines. These were then used as soft upper
bounds during the training process. Results from simulation
experiments show that the deep reinforcement learning
framework works better than all other comparison algo-
rithms by consuming less energy while keeping an algo-
rithm’s total execution time that is comparable to other
algorithms. [22]. Scheduling problems is proposed by work
done by Casas et al. [23] which focuses on the problems of
scheduling of scientific workflows in cloud computing
systems. Allocation of computing resources is proposed by
work done by Hameed et al. [24], which mostly explains how
different resource allocations in cloud computing work and
gives information on how they work. Kloh et al.’s [25] re-
search work contributes to optimizing running time and
lowering costs. This scheduling mechanism is much better
than an approach called “join the shortest queue,” but it does
not guarantee the best utilization of resources. Deng et al.’s
[26] work on a scheduling algorithm for Bag-of-Task (BoT)
applications gives us an idea of how scheduling algorithms
work in BoT applications. It is a priority based on the tasks
and VMs. It then selects the best and most appropriate VM
group/cluster for a distinct task cluster. Mosa and Paton’s
work focused on the management and optimization of
energy usage through lower SLA rate violations.

Mosa and Paton developed a self-managing VM
placement solution in cloud data centers that dynamically
assigns VMs to hosts in accordance with resource use that
was provided in this work. It is built on utility functions. The
approach’s major objective is to maximize an IaaS provider’s
profit by lowering energy consumption costs and the price of
various SLAV sources. The effectiveness of the proposed
utility-based approach and an existing heuristic-based so-
lution have been compared through experiments. The
proponents of the heuristic method were demonstrated to
perform well after applying it to a comprehensive review in
comparison to other heuristics.

In both lightly loaded and more heavily loaded cloud
data centers, analysis revealed that the suggested utility-
based solution beat the current heuristic-based method in
terms of energy savings and SLAV minimization [27]. In this
paper, we explored the energy consumption optimization of
service provisioning within a volunteer cloud. We give a
comprehensive solution that includes the service provi-
sioning problem modelling, a hardness analysis, alternative
resolution approaches, and experimental examination of
those ways. Our investigation demonstrated that we can find
effective algorithms for the real-time optimization of our
service supply [28]. Belgacem et al. proposed an Intelligent
Multi-Agent Reinforcement Model (IMARM) for optimiz-
ing cloud resource distribution in cloud. It provides a
comprehensive solution for cloud service providers since it
addresses the problem of resource allocation from several
angles.

Using mechanisms for checkpointing and VM migra-
tion, the suggested approach achieves load balancing and
provides fault tolerance. Sensor agents transmit system

failure status, energy use, and workload on a periodic basis to
track system reaction (recovery, downtime, migration, etc.).
Q-Learning enables the indication of the action to be taken
in each system state, recognizing that the weight of the
virtual machines, overall energy consumption, and quantum
time are the major factors employed to optimize the system.
With the option to choose whether a task or virtual machine
should be moved, restored, or shut down, it offers a fasci-
nating new approach for determining the optimal response
to shifting cloud settings. The outcomes and experimental
analyses of proposed algorithm work better than other
methods. By providing a minimal execution time while
utilising resources effectively, it demonstrated a positive
influence on the execution time [29]. Work of Mastroianni
et al.’s [30] research is based on the idea of Bernoulli trials,
and it works on two main principles: self-organization and
adaptability. This makes it more efficient at managing large
data centers.

3. Materials and Methods

Based on SLA policies agreed upon between the cloud
provider and users, VM placement can dynamically map
VMs onto PMs/hosts. Inside the PM/host, VMs are con-
trolled and managed by a specific layer, which is a software
known as the Hypervisor. There are two types of VM
placement schemes. Those are as follows: (i) Static VM
Placement: this is a VM mapping methodology in which the
mapping technique is fixed and cannot be recomputed for
an extended period of time. (ii) Dynamic VM Placement: it
is a mapping methodology of VMs in which the initial
placement can be changed because of some changes (dy-
namics) that occur during the system computing load or
other types of loads. A Dynamic VM with a placement
mechanism is used in this research due to its flexibility
during execution and its ability to minimize energy con-
sumption. To create the energy-efficient algorithm, we first
developed a cloud system model, which is a scheduling
model where the tasks are advanced through various en-
tities, such as task queue, task manager, task segregator,
various VM-type allocation, host manager, and various
hosts. These are all included in a cloud data center. The
cloud computing system has m hosts (H={H1, H2, . .., Hm)
which are heterogeneous in nature with respect to the
capacity of resources. Initially, tasks are received from the
users over the Internet. These tasks are known as “service
requests.” A cloud service provider (CSP) provides these
services to users when they request any service. Users
present their tasks to the task queue, and the task manager
separates and clusters the tasks into four main, uniquely
different categories of tasks. These four categories are CPU-
based, memory-based, I/O-based, and communication-
based. These tasks are separated into four types because it
could map similar types of tasks to VMs quite easily. Hence,
this methodology is implemented. The task manager later
gets to know about the types of VMs and learns about the
subtypes of VMs that are offered. As a result, four types of
VMs are created to map smoothly with the VM. They are
named as VMI for CPU-based tasks, VM2 for memory-



based tasks, VM3 for I/O-based tasks, and VM4 for
communication-based tasks. Each VM-type further con-
tains a subtype (VMab), which represents ath VM of bth
type). After mapping the tasks into the VM-types, the four
VM-types are submitted to the host manager, where the
host manager gets to study the whole information about the
VM-types and record it. The host manager later chooses the
appropriate VM type based on the task type to be processed
and then creates a suitable VM (VM) on the PM (PM) or
host. By doing this, energy consumption can be minimized
and makespan time can also be reduced significantly. At the
start, all hosts are in an inactive or sleep state. The host
manager checks if any active host has adequate resources to
create a VM. If that condition is satisfied, then it creates a VM
on that active host. This methodology helps in saving energy.
If there are no active hosts, then the host manager goes
towards a nonactive/sleep host, changes its mode status to an
active state, and then creates a brand-new VM on that host.
When there is a situation where no tasks are present in the
task queue, then the connection between the VM and the PM
host is terminated, and the resources are set free from usage.

A specific energy model is adopted throughout this
project/research, which helps in reducing energy con-
sumption. In this model, energy consumed by a task can be
calculated. Ultimately calculating the total energy consumed
by individual tasks results in finding out the overall energy
consumption of the whole data center. Figure 1 shows the
host manager managing the available hosts, and these hosts
contain the serial number of VMs. Each host is defined by a
unique ID to identify the host, and each host VM also has a
unique ID to identify the VMs. It helps to manage the load
on different hosts. The task manager manages the tasks of
different userbases, and these userbases are also identified by
a unique ID. A unique ID helps to manage the requested
resources and capacity of infrastructure that are already
assigned to a particular userbase.

Energy consumed by a task (f,) is represented as E,,,
where energy is consumed by xth task which is present on
yth VM (VM) and zth PM (PM) or host. The formula for
calculating E,,, is as follows:

EXYZ = E;ryz + Ei:vz’ (1)
where Eﬁ:yz is the energy consumed during file data transfer
and Efg,z is the energy consumed during task execution.

Energy consumed during file data transfer, i.e., E;’yz, is
calculated by the following formula:

h
EZ}VZ = {Z TimEtr(fich) } x Pavg’ (2)

=1

where EY  is calculated by the product sum of all needed
files transfer time with the transfer of data’s average power
consumption (Pyy).

The host’s average power consumption (P,,,) in the data
center is calculated as follows:

Py = <Z Pactivez>, (3)

z=1
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where P (active) is the power consumed by the zth host
which is in active state.
Energy consumed during task execution, ie., Ef),, is
calculated by the following formula:
P I 1
Ex;/z = ETxyz = Pyz’ (4)
where Eﬁ;z is calculated by the product of task execution
time (ETiyz) and the average power consumed by yth VM (I-
type) of zth host. I is the VM type where I can have four
values, i.e., (I={1, 2, 3, 4}). If I=1, then it is CPU-based
tasks. If I =2, then it is memory-based tasks. If I =3, then it is
I/O-based tasks. If I=4, then it is communication-based
tasks.
(ETC; - Minimum;)

1

NETC; j = —— — : (5)
Maximum;; — Minimum;;

MCXXS (i;m2 +1); ifm=odd,
MCXXS (i;m2) + MCXXS (i;m2 + 1)2; otherwise.
(6)

Some of the important tools such as CloudsSIM 3.0.3
and NetBeans 7.4(IDE) are used for the analysis and sim-
ulation: the median to perform the task over cloud can be
calculated using the below equation. The normalized ETC
matrix element NETCij; k is formed by taking the ratio
between the difference in ETCij; k and the minimum exe-
cution time of task Ti; j and the difference in maximum and
minimum execution time of task Ti; j.

f<x>={

4. Problem Statement and Formulation

VM Placement plays a crucial and important role in the
cloud computing data center. It helps in a large way to
reduce energy consumption and enables proper resource
utilization in the data center. Here in this project/research,
we have considered m hosts, which are in a heterogeneous
state. Each host is either in an active or inactive (sleep) state
at the beginning of the stage. There are also k types of VMs in
this cloud system that are classified based on their resources.
By using the same idea for VM types, tasks are also cate-
gorized into the same task clusters so that they can fit into
one suitable type of VM. Hence, the task manager plays a
crucial role in this algorithm as it gets complete information
about the service request tasks from the task queue, cate-
gorizes these tasks into four main task groups, and uses this
information to decide whether to create new VMs or not in
the host/PM. Therefore, due to this circumstance, a job
assignment problem arises as it constantly deals with the
allocation of newly created VMs to appropriate hosts.
Hence, we implement the idea of the consolidation method
and optimal solution methodology to solve this job as-
signment problem. However, our prime focus is to reduce
energy consumption and proper resource allocation in cloud
systems.

Now implement the idea/concept of the consolidation
method and optimal solution methodology to solve this job
assignment problem while keeping our primary focus on
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reducing energy consumption and proper resource alloca-
tion in the cloud system. Algorithm also helps us to make
span time and energy consumption-aware in the data center.
The consolidation method is a complicated approach which
can be further divided into four subapproaches, those are
server underload detection, server overload detection, VM
placement, and VM selection. Finding solutions using the
consolidation method is difficult and time-consuming.
Hence, heuristic-based and meta-heuristic-based ap-
proaches are used to find solutions quickly and efficiently.

5. Methodology

The following are the methods implemented during the
research work: (i) a new cloud system model is developed
where the input tasks are taken as the requests from the users
and the cloud computing resources are in a heterogeneous
state. (ii) A VM Placement Algorithm named Energy Effi-
cient VM Placement Algorithm (EEVMPA) is produced
based on task requests, where this algorithm helps in re-
ducing energy consumption, minimizes the rejection rate of
tasks, and reduces the makespan time. (iii) In cloud com-
puting, heterogeneous requests are common and requested
frequently. The tasks can be classified based on their pa-
rameters, such as the platform, space, priority, type, and
sensitivity. We are preparing our data set to build a com-
patible situation for any given task and required environ-
ments. Based on this, we prepare the decision tree to
optimize the allotment. We are using multiple entries, out of
which 20% will be used for training and 80% of the data will
be used for validation. (iv) An overall evaluation is made on
the algorithm with the help of the CloudSim tool, and
graphical analysis is also done and compared with the other
existing energy-efficient algorithms currently available in the
market.

6. Proposed Work

In this research work, we developed seven algorithms, where
one of the algorithms is then in the form of MB (megabyte).
IOx is the xth task’s input/output needs. b, is the bandwidth
of the xth task and is in the form of MB (megabytes). The
EEVMPA consolidation algorithm is Algorithm 1 where
tasks set (TS) with #n number of tasks, deadline set (DLS)
with a #n number of deadlines, hosts set (HS) with a m
number of hosts, and VM-types (VMt) with four types, i.e.,
{y=1, 2, 3, 4}, are given as input resources to the algorithm.
This algorithm gives us output as Algorithm: in Algorithm 2,
in Step 2, another subalgorithm is called “Catego-
rizedTask”—Algorithm 3, which helps to categorize all the
tasks into the mentioned four categories. Here the sorted,
updated, and refreshed task queue RQ is given as input.
Here, the task resources, which are made into five tuples, are
used and represented as RPTK,, which should also contain a
lower bound and upper bound for each tuple. RPTKx =
{Len,, dls,, MM,, 10,, b,}. CPUB is the upper bound and
CPLB is the lower bound for task lengths. DLSU is the upper
bound and DLSL is the lower bound for tasks™ deadline.
MMU is the upper bound and MML is the lower bound for

tasks in main memory. IOU is the upper bound and IOL is
the lower bound for task IO requirements. bU is the upper
bound and bL is the lower bound for task bandwidth.

Algorithm 3 returns the four categorized tasks sets, i.e.,
CPU-based, memory-based, I/O-based, and communica-
tion-based. In Step 1 of Algorithm 3, processing speed’s
upper bound (PSU) is calculated from Step 2 to Step 14 in
this algorithm, a loop is created and at the xth iteration, xth
task is deployed at one of the four categories for the tasks. In
Algorithm 1, we could notice that in Step 1, a subalgorithm is
called (SortedQueueTask—Algorithm 2) with the help of set
of tasks and deadlines. Algorithm 2 helps in sorting all the
service request tasks in ascending order based on their
deadlines. Algorithm 2 consists of Delete Min function
which helps in deleting the deadlines, where r is of minimum
value from the set of tasks, and then stores it in the RQ
(Refreshed Queue) mentioned to calculate the values of vc,,
vm,, vio,, and vb,, which have the value between 0 and 1. But
when you add all these, then the sum should be equal to 1.

In Step 6, we could see that all the values of vc,, vim,, vio,,
and vb, are multiplied with z,. After multiplying, we compare
all the four values and find out the Max value which determines
the category of the task. In Algorithm 1, from Step 3 to Step 9,
the loop runs x number of tasks. In Algorithm 4—VMsFree,
the VMs which are in free/no work state change to sleep or
inactive mode/state and those VMs compute resources are
transferred to the next host. The active host connected with its
allotted VM is provided as input to this algorithm.

The ultimate goal of this algorithm is to reduce the
number of active VMs and regularly keep them updated with
the host manager. In Algorithm 1, Algorithm 4 is a sub-
algorithm for it, and it is called. In Algorithm 5—Hosts Free,
it is a subalgorithm for Algorithm 1 where it is called at Step
5 in it. This algorithm gets input as an active host set and an
active VM set. Steps 1 through 5 of the loop assist in
converting the host’s state, i.e., it converts an active host into
a sleep or inactive state if the host is not working or is in an
idle state. The state of the host will be changed from Step 7 to
Step 18. If VMs on a minimum loaded host/PM can be fully
migrated to other hosts that are in an active state, then all the
VMs are migrated to other active hosts and the previous host
changes its mode to sleep or inactive state.

In Algorithm 1, in Step 6, a subalgorithm is called
(Algorithm 6—VMTypeSelection). Algorithm 6 chooses a
VM-type based on the task type and the requirements of the
tasks. Here, tasks, task types, VM types, and VM subtypes are
sent as input. VM types are of four types, that is VM typel
for CPU-based, VM type2 for memory-based, VM type3 for
I/O- based, and VM type4 for communication-based. There
are n number of VM subtypes in a VM type. For example, for
VM typel, the VM subtypes are as follows: in Algorithm 1, in
Step 7, a subalgorithm is called (Algorithm 7—host selec-
tion). Algorithm 7 helps in finding the best host for the
specific VM type. The VM type that was found from Al-
gorithm 6 is used as input here along with the hosts which
are set in active state and the hosts which are set in a sleep/
inactive state. In this algorithm, steps 1 to 6 help us find an
active host so that a VM can be placed on it. In steps 7 to 13,
this loop helps in searching for sleep state hosts if any other
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Input: TS ={ts, ts,, ..., ts,} — Tasks set,

DLS ={dls,, dls,, ..., dls,} — Deadlines set,

HS = {hs,, hs,, ..., hs,,} — Hosts set,

VM, = {vm;, vm,, vms, vm,} — VM-types set.
VMsFree () — function to check the VM is free
HostsFree() — function to check the VM is free

Output: Energy consumed and makespan time
(1) Update RQ « SortedQueueTask (TS, DLS) from Algorithm 2
(2) {Qs Q» Q,.Q,} « CategorizedTask (RQ) from Algorithm 3

(3) for each and every task tk, € TS then do
(4) VMsFree () from Algorithm 4
(5) HostsFree () from Algorithm 5

(7)  h < HostSelection (vm) from Algorithm 7
(8)  Allot ts, to vm which is placed on host h
(9) end for loop

(10) VMsFree ()

(11) HostsFree()

(6) vm«— VMTypeSelection (ts,, VMType(ts,, TS)) from Algorithm 6

ALGORITHM 1: Energy efficient VM algorithm (EEVMPA).

Input: TS ={ts,, ts,, ..., ts,} —> Tasks set,
DLS ={dls;, dls,, ..., dls,} — Deadlines set.
Output: RQ (Refreshed Queue).

(1) for x=1 to n then we have to do
(2) RQ[x] « DeleteMin (TS,)

(4) end for loop
return RQ

Shorting all the service request task in ascending order based on their deadlines

(3) DeleteMin (TS,) will delete the task which contains less dls, value

ALGORITHM 2: Sorted queue task.

@
)
3
(4)
%)
(6)
)
®)
)
(10)
an
12)
(13)
(14)

(15) return CPU-based, Memory-based, I/O-based and Communication-based

Input: TS ={ts, ts,, ..., ts,} — Tasks set,
RPTK, = {Len,, dls,, MM,, 10,, b,} — Tasks resource requirements,

CPU: (CPUU, CPUL), Main memory: (MMU, MML), Deadline: (dlsU, dlsL), I/O: (IOU, IOL), Bandwidth: (bU, bL).
Output: Four types of tasks categorize (CPU-based, Memory-based, I/O-based and Communication-based).

PSU « CPUU/ddIU
For each task tk, € TS then do
C, < Len,/dls,
w,, < ¢,/PSU, w,,,, — MM,/ MMU
Wiy, < 10,/10U, wy, < by/bU
Zx l/wcx T Wy T Wipy + Wy
Wey = Zxchx’ Wiy = Zwamx
Wipx = Zxxwiox’ Wy = Zxxwhx
Maximum = {w,, Wy, Wipy> Wiyt
ts, € CPU-based if w,, = Max
ts, € Memory-based if w,,, = Max
ts, € I/O-based if w,,, = Max
ts, € Communication-based if w,, = Max

end for loop

ALGorIiTHM 3: Categorized task.
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Input: ACTH = {acth,, acth,, ..
ACTV ={actvl,, actvl,, ..
Output: ACTV Updated.

(2)  for each VM actv;; € acth; then do
(3) if actvy; in idle state then

(5) end if loop
(6) end for loop
(7) end for loop

., acthy} — Hosts which are in active state,
. actvyy, actvyy, ..

(1) for each host in active state acth; € ACTH then do

(4) Deallocate actv;; resources to acth;

-» actvy,} — VMs which are in active state.

ALGORITHM 4: VMs free.

Input: ACTH = {acth,, acth,, ..
ACTV ={actvy, actvyy, ..
Output: ACTH Updated.

(4) end if loop
(5) end for loop
(6) Statusof VM =0

(8) for each VM actv;; € acth; then do

13) end for loop
(14)  if Statusof VM =j—1 then
(15)  migrate all VMs using migration;;

(17)  end if loop
(18) end for loop

., acthy} — Hosts which are in active state,
., actvyy, actvyy, ..

(1) for each host in active state acth; € ACTH from acthy to acth, then do

(2) if acth; is in no working/idle state then
3) convert host acth; from no working/idle state to sleep state

(7) for each host in active state acth; € ACTH from acthy to acth; then do

9) if migration of actv;; to ACTH—acth; then
(10) Statusof VM = StatusofVM + 1
(11) migration,;; — Host ID which is being targeted
12) end if loop

(16)  convert host acth; from no working/idle state to sleep state

N actv2p} —— VMs which are in active state.

ALGORITHM 5: Hosts free.

Output: VM (VM) type.

(6) end if loop
(7) end for loop

Input: Task #, type of task PP, VM-Types, VM sub types.

(1) All VM-types contains VM sub types in sorted order
(2) for each VM sub type VMtypepp; € VMtypePP do
(3)  if tk is able to fit in VMtypePP; then

(4) VM-type «— VMtypepp;

(5) return VM-type and then stop

ALGORITHM 6: VM type selection.

active hosts are not available. Using the heuristic and meta-
heuristic consolidation methodologies here, we can achieve
our main aim of finding the best active host for the VM.

7. Results and Discussion

After developing all the algorithm modules, these modules
are transferred and performed in the CloudSim 3.03 sim-
ulator. Using the CloudSim Simulator tool, we evaluated and

assessed the energy consumption and makespan time. The
results are compiled and then compared graphically with
respect to other existing energy-efficient VM placement
algorithms. We also used a software called Xen, which is
used as an operating system (Hypervisor) which constantly
monitors the VM. This developed algorithm (EEVMPA) is
implemented in the Java language. NetBeans 1.7 (IDE) and
JDK 1.7 software are also used to provide a platform for the
cloud simulator. This experiment was tested on a HP



10

Computational Intelligence and Neuroscience

Input: VM-type,
ACTH = {acth,, acth,, ..
SLPH = {slphy, slphy,, .
Output: Desired Host
Algorithm: Host Selection

(1) for each acth;e ACTH then do

(2) if VM of VM-type is able to fit in

(3) Host « acth;

(4) Return Host then stop

(5) end if loop

(6) end for loop

(7) for each slph; € SLPH then do

., acthy} —

(8) if VM of VM-type is able to fit in
9) Host « slph;
(10)
@11 Return Host then stop
(12) end if loop
(13) end for loop

.., slphg} — Hosts which are in sleep state.

Convert the state of slph; from sleep/non active state to active state

Hosts which are in active state,

acth; then

slph; then,

ALGORITHM 7: Host selection.
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FIGURE 2: Energy consumption for EEVMPA, FCFS, Round-Robin, and EERACC.

workstation which has an Intel i3 1.19 GHz CPU and 12 GB
of memory. During simulations, several cloud computing
resources are used, such as user request tasks, VMs, and
hosts that are heterogeneous in nature. The length of service
requests by users and the requirement of resources are
randomly created. During simulation, for every test case, the
number of hosts is kept fixed, and the number of VMs (VMs)
is kept in the range of 10 to 200. The VM resources are
randomly generated and should satisfy the condition that
these resources should be less than the capacity of the host
on which they are deployed. In terms of calculating per-
formance, we compare all VMs’ energy consumption with
respect to the entire server’s energy consumption one by
one. To avoid anomalies, 10 different runs of the entire

algorithms for the specific user service request tasks are
implemented. In this experiment, we have used four dif-
ferent ranges for the length of tasks. The ranges are as
follows: (3500-5500), (6500-8500), (8500-10,000), and
(10,000-11,500). Each and every input task in the set con-
tains 25% of the tasks from any one of the ranges of the task
length mentioned before. In this experiment, we compare
the developed EEVMPA with the other existing VM
placement algorithms. Those algorithms are (1) FCFS (First
Come, First Serve) Algorithm, (2) Round-Robin Algorithm,
and (3) Energy-Efficient Resource Allocation (EERACC
Algorithm). Then, many graphical comparative analyses
(bar-graph representation) of these algorithms, including
EEVMPA, is made. In terms of energy consumption in these
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FIGURE 4: Makespan time for EEVMPA, FCFS, Round-Robin, and EERACC.

algorithms, we implemented graphical analysis based on two
different conditions. In condition 1, we have compared all
four algorithms when the number of VMs is fixed, and the
number of tasks is varied. Figure 2 shows the graphical
comparison of energy consumption for EEVMPA, FCES,
Round-Robin, and EERACC when the number of tasks is
varied, and the number of VMs is fixed. From the figure, we
can see that EEVMPA consumes less energy as compared to
the rest of the VM placement algorithms when the number
of tasks increases, and the number of VMs is kept fixed. In
condition 2 in terms of energy consumption, we have
compared all four algorithms when the number of VMs is
varied, and the number of tasks is fixed.

The graphical analysis of this condition is shown below.
From Figure 3, we can see that when the number of tasks is
fixed and the number of VMs is varied, EEVMPA consumes
less energy than the other VM placement algorithms. In
terms of makespan time in these algorithms, we imple-
mented graphical analysis based on two different conditions.
In condition 1, we have compared all four algorithms when
the number of VMs is fixed, and the number of tasks is
varied.

Later, this situation is solved as the number of tasks
increases, the EEVMPA is able to adapt and then provides
less makespan time compared to other algorithms. This is
especially true when the number of tasks is varied, and the
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FIGURE 5: Makespan time for EEVMPA, FCFS, Round-Robin, and EERACC.

number of VMs is fixed. In condition 2, in terms of
makespan time, we have compared all four algorithms when
the number of VMs is varied, and the number of tasks is
fixed. Figure 3 depicts the comparison of energy con-
sumption for EEVMPA, FCFS, Round-Robin, and EERACC
when the number of tasks is fixed and the number of VMs is
varied.

EEVMPA initially performs worse compared to other
algorithms as it takes maximum makespan time. This is
because EEVMPA attempts to use the minimum number of
hosts possible, but in general, cloud systems take a greater
number of tasks, so this situation occurs.

Figures 4 and 5 depict the graphical comparison of
makespan time for EEVMPA, FCFS, Round-Robin, and
EERACC when the number of tasks is varied and the
number of VMs is fixed. From Figure 5, we can see that at
first, EEVMPA takes less time to make and performs better
than other algorithms we compared. As the number of VMs
grows, all the algorithms come to the same level of make-
span. This is because the longer the VMs work, the per-
formance slows down significantly, and hence, this result
occurs when the number of tasks is fixed but the number of
VMs is varied.

8. Conclusions

The main aim of this algorithm is to minimize energy
consumption and reduce makespan time, which is crucial for
getting the best performance from the data center. Both
targets were successfully achieved in this work. In this re-
search, we compared EEVMPA with other existing VM
placement algorithms such as the First Come, First Serve
(FCFS) algorithm, the Round-Robin algorithm, and the
Energy Efficient Resource Allocation (EERACC) algorithm
and did graphical analysis among them to determine which
algorithm performed the best in each condition. Our

method is found to be the best in economizing energy
consumption, related power costs, and reducing makespan
time.
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