Skip to main content
. 2022 Sep 1;12:14888. doi: 10.1038/s41598-022-18646-2

Table 2.

Comparison of results for the healthy dataset.

Network architecture Conv/layer Accuracy
(SD) [%]
Mean epoch train time
(SD) [s]
Median image evaluation time [msec] Parameters
[×106]
Vanilla U-Net 2 99.10 (0.01) 41.46 (0.60) 128 1.95
3 99.20 (0.05) 54.33 (0.34) 138 2.93
Dense U-Net 2 99.08 (0.02) 46.36 (0.14) 133 2.71
3 99.20 (0.05) 72.88 (0.02) 155 5.44
Attention U-Net 2 99.12 (0.05) 53.00 (0.85) 137 1.99
3 99.23 (0.01) 66.65 (0.52) 148 2.98
SE U-Net 2 99.08 (0.02) 57.92 (0.95) 143 2.06
3 99.20 (0.06) 70.88 (0.27) 155 3.04
Residual U-Net 2 99.10 (0.04) 42.61 (0.07) 127 1.95
3 99.23 (0.02) 55.50 (0.12) 139 2.93
R2 U-Net 2 99.24 (0.02) 65.01 (1.04) 156 2.00
3 99.28 (0.01) 103.59 (0.23) 186 3.00
U-Net +  +  99.12 (0.02) 93.23 (1.38) 165 2.05
Inception U-Net 99.10 (0.04) 108.31 (0.04) 182 4.62

(SD: standard deviation, s: seconds, SE: squeeze + excite, R2: recurrent-residual). The best and poorest results for each are annotated in bold and underline text respectively.