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Abstract

Optimizing k-space sampling trajectories is a promising yet challenging topic for fast magnetic 

resonance imaging (MRI). This work proposes to optimize a reconstruction method and sampling 

trajectories jointly concerning image reconstruction quality in a supervised learning manner. We 

parameterize trajectories with quadratic B-spline kernels to reduce the number of parameters and 

apply multi-scale optimization, which may help to avoid sub-optimal local minima. The algorithm 

includes an efficient non-Cartesian unrolled neural network-based reconstruction and an accurate 

approximation for backpropagation through the non-uniform fast Fourier transform (NUFFT) 

operator to accurately reconstruct and back-propagate multi-coil non-Cartesian data. Penalties on 

slew rate and gradient amplitude enforce hardware constraints. Sampling and reconstruction are 

trained jointly using large public datasets. To correct for possible eddy-current effects introduced 

by the curved trajectory, we use a pencil-beam trajectory mapping technique. In both simulations 

and in-vivo experiments, the learned trajectory demonstrates significantly improved image quality 

compared to previous model-based and learning-based trajectory optimization methods for 10× 

acceleration factors. Though trained with neural network-based-reconstruction, the proposed 

trajectory also leads to improved image quality with compressed sensing-based reconstruction.
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I. INTRODUCTION

MAGNETIC Resonance Imaging (MRI) systems acquire raw data in the frequency domain 

(k-space). Most scanning protocols sample data points sequentially according to a pre-

determined sampling pattern. The most common sampling patterns are variants of Cartesian 

rasters and non-Cartesian trajectories such as radial spokes [1] and spiral interleaves [2]. 

The local smoothness of these patterns facilitates ensuring that they obey hardware limits, 

namely the maximum gradient and slew rate that constrain the speed and acceleration 

when traversing k-space. These patterns also make it easy to ensure sufficient sampling 

densities. In recent years, hardware improvements, especially with the RF and gradient 

systems, enable more complex gradient waveform designs and sampling patterns. For a 

given readout time, optimized designs can cover a broader and potentially more useful 

region in k-space, reducing the overall scanning time and/or improving image quality, 

particularly when combined with multiple receive coils.

For fast imaging, many works focus on acceleration in the phase-encoding (PE) direction 

with fully sampled frequency-encoding (FE) lines [3]–[7]. Usually, there is enough time 

for the Δk shifts in the PE direction, so gradient and slew rate constraints are readily 

satisfied. More general non-Cartesian trajectory designs in 2D and 3D can further exploit 

the flexibility in the FE direction. However, in addition to hardware physical constraints, 

MRI systems are affected by imperfections such as the eddy currents that cause the actual 

trajectory to deviate from the nominal one and introduce undesired phase fluctuations in 

the acquired data [8]. Some studies optimize properties of existing trajectories such as 

the density of spiral trajectories [9] or the rotation angle of radial trajectories [10]. More 

complex waveforms, e.g., wave-like patterns [11], can provide more uniform coverage of 

k-space and mitigate aliasing artifacts. To accommodate the incoherence requirements of 

compressed sensing based methods, [12], [13] introduce slight perturbations to existing 

trajectories, like radial or spiral trajectories. Some works also explore genetic algorithms to 

solve this non-convex constrained problem [14].

The recent SPARKLING method [15]–[17] considers two criteria for trajectory design: 

(1) the trajectory should match a pre-determined sampling density according to a certain 

measure, and (2) the sampling points should be locally uniform to avoid clusters or gaps. 

The density and uniformity criteria are transformed into “attraction” and “repulsion” forces 

among the sampling points. The work uses fast multipole methods (FMM) [18] to efficiently 

calculate the interactions between points. Projection-based optimization handles the gradient 

and slew rate constraints [19]. In-vivo and simulation experiments demonstrate that this 

approach reduces aliasing artifacts for 2D and 3D T2*-weighted imaging. However, in 

SPARKLING, the density is determined heuristically; determining the optimal sampling 

density for different protocols remains an open problem. The work also does not consider 

some k-space signal characteristics such as conjugate symmetry. Furthermore, the point 

spread function (PSF) of the calculated trajectory for high under-sampling rates may be 

suboptimal for reconstruction algorithms like those based on convolution neural networks, 

because the reconstruction algorithm is not part of the SPARKLING design process.
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With rapid advances in deep learning and auto-differentiation software, learning-based 

signal sampling strategies are being investigated in multiple fields such as optics and 

ultrasound [20], [21]. In MRI, most learning-based works have focused on sampling 

patterns of phase encoding locations. Some studies formulate the on-grid sampling pattern 

as i.i.d samples from multivariate Bernoulli distribution [22], [23]. Since random sampling 

operations are not differentiable, different surrogate gradients, such as Gumbel-Softmax, are 

developed in these works. Rather than gradient descent, [24] uses a greedy search method. 

[25] further reduces the complexity of greedy search by Pareto optimization, an evolutionary 

algorithm for sparse regression [26]. Some works have used reinforcement learning. For 

example, [27] and [28] adopted a double network setting: one for reconstruction and the 

other generating a sampling pattern, where the first work used Monte-Carlo Tree Search 

(MCTS) and the second used Q-learning to optimize the 1-D sub-sampling. Instead of 

using an end-to-end CNN as the reconstruction algorithm in other works, [29] constructs a 

differentiable compressed sensing reconstruction framework. [30] used an unrolled neural 

network as the reconstruction algorithm.

To our knowledge, PILOT [31] is the first work to optimize a 2D non-Cartesian trajectory 

and an image reconstruction method simultaneously. The training loss is the reconstruction 

error since the ultimate goal of trajectory optimization is high image quality. The trained 

parameters were the locations of sampling points and the weights of the reconstruction 

neural network. Large datasets and stochastic gradient descent were used to optimize 

the parameters. To meet the hardware limits, a penalty was applied on the gradient and 

slew rate. Since the reconstruction involves non-Cartesian data, PILOT uses a (bilinear, 

hence differentiable almost everywhere) gridding reconstruction algorithm to map the k-

space data into the image domain, followed by a U-Net [32] to refine the gridded image 

data. Simulation experiments report encouraging results compared to ordinary trajectories. 

Nevertheless, the algorithm often gets stuck in sub-optimal local minima where the initial 

trajectory is only slightly perturbed yet the slew rate rapidly oscillates. To reduce the effect 

of initialization, [31] uses a randomized initialization algorithm based on the traveling 

salesman problem (TSP). However, this initialization approach works only with single-shot 

long TE sequences, limiting its utility in many clinical applications. The implementation 

in [31] relies on auto-differentiation to calculate the Jacobian of the non-uniform Fourier 

transform; here we adopt a new NUFFT Jacobian approximation that is faster and more 

accurately approximates the non-Cartesian discrete Fourier transform (DFT) [33].

To overcome the limitations of previous methods and further expand their possible 

applications, this paper proposes an improved supervised learning workflow called B-spline 

parameterized Joint Optimization of Reconstruction and K-space trajectory (BJORK). Our 

main contributions include the following. (1) We parameterize the trajectories with quadratic 

B-spline kernels. The B-spline reparameterization reduces the number of parameters and 

facilitates multilevel optimization, enabling non-local improvements to the initial trajectory. 

Moreover, the local smoothness of B-spline kernels avoids rapid waveform oscillations. (2) 

We adopt an unrolled neural network reconstruction method for non-Cartesian sampling 

patterns [34]. Compared to the image-domain U-Net implemented in previous works, the 

proposed approach combines the strength of learning-based and model-based reconstruction, 
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improving the effect of both reconstruction and trajectory learning. (3) We adopt accurate 

and efficient NUFFT-based approximations of the Jacobian matrices of the DFT operations 

used in the reconstruction algorithm. (See [33] for detailed derivations and validation.) (4) 

In addition to a simulation experiment, we also conducted phantom and in-vivo experiments 

with protocols that differ from the training dataset to evaluate the generalizability and 

applicability of the model. (5) We used a k-space mapping technique to correct potential 

eddy current-related artifacts. (6) Compared with SPARKLING, the proposed learning-based 

approach does not need to assume signal characteristics such as spectrum energy density. 

Instead, BJORK learns the required sampling trajectories from a large data set in a 

supervised manner.

The remaining materials are organized as follows. Section II details the proposed method. 

Section III describes experiment settings and control methods. Sections IV and V present 

and discuss the results.

II. METHODS

This section describes the proposed approach for supervised learning of the sampling 

trajectory and image reconstruction method.

A. Problem Formulation

Fig. 1 shows the overall workflow of the proposed approach. The goal is to optimize 

ω ∈ ℝNs × Nd, a trainable (possibly multi-shot) sampling pattern, and θ ∈ ℝM, the M 
parameters of the image reconstruction method, where Ns denotes the total number of 

k-space samples, and Nd denotes the image dimensionality. (The results are for Nd = 2, i.e., 

2D images, but the method is general.)

The training loss for jointly optimizing the trajectory parameters ω and reconstruction 

parameters θ is as follows:

argmin
ω ∈ ℝNs × Nd, θ ∈ ℝM

Ex ∈ X ℓ fθ(ω; A(ω)x + ε), x

s.t. D1ω[d] ∞ ≤ γ Δtgmax,
D2ω[d] ∞ ≤ γ Δt2smax, d = 1, …, Nd,

(1)

where each x ∈ ℂNv is a fully sampled reference image having Nv voxels drawn from the 

training data set X and ε is simulated additive complex Gaussian noise. (In practice the 

expectation is taken over mini-batches of training images.)

The system matrix A = A(ω) ∈ ℂNsNc × Nv represents the MR imaging physics (encoding), 

where Nc denotes the number of receiver coils. For multi-coil non-Cartesian acquisition, 

it is a non-Cartesian SENSE operator [35] that applies a pointwise multiplication of 

the sensitivity maps followed by a NUFFT operator (currently we do not consider 

field inhomogeneity but it would be straightforward to extend because the Jacobian 

approximation can cover such cases [33]). The function fθ(ω;·) denotes an image 

reconstruction algorithm with parameters θ that is applied to simulated under-sampled 
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data A(ω)x + ε. As detailed in subsection II–C, we use an unrolled neural network. The 

reconstruction loss ℓ(·, ·) quantifies the similarity between a reconstructed image and the 

ground truth, and can be a combination of different terms. Here we chose the loss ℓ to be 

a combined ℓ1 and square of ℓ2 norm. The matrices D1 and D2 denote the first-order and 

second-order finite difference operators. Δt is the raster time and γ denotes the gyromagnetic 

ratio. For multi-shot imaging, the difference operator applies to each shot individually. The 

optimization is constrained in gradient field strength (gmax), and slew rate (smax). To use 

the stochastic gradient descent (SGD) method, we convert the box constraint into a penalty 

function φ, where

ϕλ( |x | ) = 1Tmax . ( |x | − λ, 0),

where max .(·) operates point-wisely. Our final joint optimization problem has the following 

form:

argmin
ω ∈ ℂNs × Nd, θ ∈ ℝM

Ex ∈ X ℓ fθ, ω(ω; A(ω)x + ε), x

+ μ1ϕγ Δtgmax D1ω
+ μ2ϕγ Δt2smax D2ω .

(2)

We update θ and ω simultaneously for each mini-batch of training data.

B. Parameterization and Multi-Level Optimization

We parameterize the sampling pattern with 2nd-order quadratic B-spline kernels:

ω[d] = Bc[d], d = 1, …, Nd, (3)

where B ∈ ℝNs × L denotes the interpolation matrix, and c[d] denotes the dth column 

of the coefficient matrix c ∈ ℝL × Nd. L denotes the length of c[d], or the number of 

interpolation kernels in each dimension. The decimation rate in Fig. 5 is defined as Decim. 

= Ns/L. Compared to other parameterization kernels, B-spline kernels reduce the number of 

individual inequality constraints (on maximum gradient strength and slew rate) from 4Nd Ns 

to 4Nd L where typically L ≪ Ns. See [36] for more details.

Early versions of previous work [31] and our preliminary experiments found optimized 

trajectories that were often local minima near the initialization, only slightly perturbing the 

initial trajectory.1 We use a multilevel training strategy to improve the optimization process 

[37], [38].

We initialized the decimation rate Ns/L with a large value (like 64). Thus, many neighboring 

sample points are controlled by the same coefficient, which introduces more ‘non-local’ 

improvements. After both c and θ converge, we reduce the decimation rate, typically by a 

1The latest versions of PILOT on arXiv [31, versions 4–5] also use trajectory parameterization, focusing on long readout time cases.
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factor of 2, and begin a new round of training initialized with ω and θ of the previous round. 

Fig. 5 depicts the evolution along with decimation rates.

C. Reconstruction

In the joint learning model, we adopted a model-based unrolled neural network (UNN) 

approach to image reconstruction [34], [39]–[41]. Compared to the previous joint learning 

model (PILOT) that used a single image domain network [31], an unrolled network can lead 

to a more accurate reconstruction [34], at the price of longer reconstruction time.

A typical cost function for regularized MR image reconstruction has the form:

x = argmin
x

‖Ax − y‖2
2 + ℛ(x) . (4)

The first term is usually called the data-consistency term that ensures the reconstructed 

image is consistent with the acquired k-space data y. (In the training phase, A(ω)x + ε is the 

simulated y.) The regularization term ℛ(·) is designed to control aliasing and noise when the 

data is under-sampled. By introducing an auxiliary variable z, one often replaces (4) with the 

following alternative:

x = arg min
x

min
z

‖Ax − y‖2
2 + ℛ(z) + μ‖x − z‖2

2, (5)

where μ > 0 is a penalty parameter. Using an alternating minimization approach, the 

optimization updates become:

xi + 1 = argmin
x

‖Ax − y‖2
2 + μ‖x − zi‖2

2, (6)

zi + 1 = argmin
z

ℛ(z) + μ‖xi + 1 − z‖2
2 . (7)

The analytical solution for the x update is

xi + 1 = A′A + μI −1 A′y + μzi ,

which involves a matrix inverse that would be computationally prohibitive to compute 

directly. Following [34], we use a few iterations of the conjugate gradient (CG) method for 

the x update. The implementation uses a Toeplitz embedding technique to accelerate the 

computation of A′ A [42], [43].

For a mathematically defined regularizer, the z update would be a proximal operator. Here 

we follow previous work [34], [44] and use a CNN-based denoiser zi + 1 = Dθ xi + 1 . To 

minimize memory usage and avoid over-fitting, we used the same θ across iterations, though 

iteration-specific networks may improve the reconstruction result [41].
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For the CNN-based denoiser, we used the Deep Iterative Down-Up CNN (DIDN) [41], 

[45]. As a state-of-art model for image denoising, the DIDN model requires less memory 

than popular models like U-net [32] while providing improved reconstruction results. In our 

experiments, it also led to faster training convergence than previous denoising networks.

Since neural networks are sensitive to the scale of the input, a good and consistent initial 

estimate of x is important. We used the following quadratic roughness penalty approach to 

compute an initial image estimate:

x0 = argmin
x

‖Ax − y‖2
2 + λ‖Rx‖2

2

= A′A + λR′R −1A′y,
(8)

where R denotes the Nd-dimensional first-order finite difference (roughness) operator. We 

also used the CG method to (approximately) solve this quadratic minimization problem.

D. Correction of Eddy-Current Effect

Rapidly changing gradient waveforms may suffer from eddy-current effects, even with 

shielded coils. This hardware imperfection requires additional measurements and corrections 

so that the actual sampling trajectory is used for reconstructing real MRI data. Some 

previous works used a field probe and corresponding gradient impulse-response (GIRF) 

model [46]. In this work, we adopted the ‘k-space mapping’ method [8], [47] that does not 

require additional hardware. Rather than mapping the kx and ky components separately as 

in previous papers, we excited a pencil-beam region using one 90° flip and a subsequent 

18° spin-echo pulse [48]. We averaged multiple repetitions to estimate the actual acquisition 

trajectory. We also subtracted a zero-order eddy current phase term from the acquired data 

[8].

The following pseudo-code summarizes the BJORK training process.

Algorithm 1

Training Algorithm for BJORK

Require: Training set X; denoiser Dθ for initial CNN weights θ0; initial trajectory ω0; levels of optimization Nlevel; 

number of epoch Nepoch; step size of denoiser update ηD; step size of trajectory update ηω; penalty parameter for 

gradient/slew rate constraint μ1 and μ2.

Ensure: ω = Bc

1: θ ← θ0

2: ω ← ω0

3: Pre-train Dθ with fixed ω0.

4: for l = 1 to Nlevel do

5:  Initialize new coefficient matrix Bl.

6:  Initialize new coefficient cl
0 with ωl − 1 ≈ Blcl

0.

7:  for j = 1 to Nepoch do

8:   for training batches xK in X do
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9:    Simulate the k-space w.r.t. ωl:

10:    yK = A ωl
K xK + ε

11:    Reconstruction with UNN:

12:    Reconstruct initial images using (8) with CG

13:    for i = 1 to Niter do

14:     xi+1: UNN reconstruction update of zi

15:      using (6)

16:     Apply CNN: zi + 1 = Dθ xi + 1
17:    end for

18:    Calculate loss function:

19:
   L = l xK, xK + μ1ϕγ Δtgmax D1ωiK

20:     + μ2ϕγ Δt2smax D2ωiK

21:    Update denoiser and trajectory:

22:    θK = θK − 1 − ηD∇θK − 1L
23:    ωl

K = ωl
K − 1 − ηω∇ωl

K − 1L

24:   end for

25:  end for

26: end for

III. EXPERIMENTS

A. Comparison With Prior Art

We compared the proposed BJORK approach with the SPARKLING method for trajectory 

design in all experiments, and have set the readout length and physical constraints to be the 

same for both methods.

Both BJORK and PILOT [31] are methods for joint sampling design and reconstruction 

optimization. We compared three key differences between the two methods individually. 

(1) The NUFFT Jacobian matrices, as discussed in [33] and the Appendix. (2) The 

reconstruction method involved. Our BJORK approach uses an unrolled neural network, 

while PILOT uses a single reconstruction neural network in the image domain (U-Net). We 

also presented the effect of trajectory parameterization (BJORK uses quadratic B-splines 

following [36], whereas versions 1–3 of PILOT used no parameterization and more recent 

versions of PILOT use cubic splines [31]).

B. Image Quality Evaluation

To evaluate the reconstruction quality provided by different trajectories, we used two types 

of reconstruction methods in the test phase: unrolled neural network (UNN) (with learned 

θ) and a compressed sensing approach (sparsity regularization for an discrete wavelet 

transform). For SPARKLING-optimzed trajectories and standard undersampled trajectories 
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(radial/spiral), we used the same unrolled neural networks as in BJORK for reconstruction. 

Only the network parameters θ were trained, with the trajectory ω fixed.

We also used compressed sensing-based reconstruction to test the generalizability of 

BJORK-optimized trajectories. The penalty function is the ℓ1 norm of a discrete wavelet 

transform with a Daubechies 4 wavelet. The ratio between the penalty term and the data-

fidelity term is 10−7. We used the SigPy package2 and its default primal-dual hybrid gradient 

(PDHG) algorithm (with 50 iterations). This study includes two evaluation metrics: the 

structural similarity metric (SSIM) and peak signal-to-noise ratio (PSNR) [49].

C. Trajectories

For both simulation and real acquisition, the acquisition sampling time and gradient raster 

time are both 4 μs, with a target matrix size of 320 × 320. The maximum gradient strength 

is 26.7 mT/m, and the maximum slew rate is 150 T/m/s, which were set to limit peripheral 

nerve stimulation and conform to the Nyquist criterion.

To demonstrate the proposed model’s adaptability, we investigated two types of initialization 

of waveforms: an undersampled in-out radial trajectory with a shorter readout time (~5 ms) 

and an undersampled center-out spiral trajectory with a longer readout time (~16 ms). For 

the in-out radial initialization, the number of spokes is 16/24/32, and each spoke has 1280 

points of acquisition (4 μs samples). The rotation angle is equidistant between −π/2 and 

π/2. For the center-out spiral initialization, the number of spokes is 8, and each leaf has 

~4000 points of acquisition. We used the variable-density spiral design package3 from [9]. 

For SPARKLING, we use τ = 0.5 and d = 2.5 for 16-spoke radial, τ = 0.5 and d = 2.5 for 

24-spoke radial, τ = 0.6 and d = 2.5 for 32-spoke radial, and τ = 0.5 and d = 2 for 8-shot 

spiral ( [15, Eqn. 8], which can also be learned as described in [50].) after grid search with 

CS-based reconstruction.

D. Network Training and Hyper-Parameter Setting

The simulation experiments used the NYU fastMRI brain dataset to train the trajectories 

and neural networks [51]. The dataset consists of multiple contrasts, including T1w (23220 

slices), T2w (42250 slices), and FLAIR (5787 slices). FastMRI’s knee subset was also used 

in a separate training run to investigate the influence of training data on learned sampling 

patterns. The central 320 × 320 region was cropped (or zero-filled). Sensitivity maps were 

estimated using the ESPIRiT method [52] with the central 24 phase-encoding lines, and 

the corresponding conjugate phase reconstruction was regarded as the ground truth during 

training.

The batchsize was 4. The number of blocks, or the number of outer iterations for the 

unrolled neural network was 6. The weight μ in (5) could also be learned, but this operation 

would double the computation load with minor improvement. We set μ = 2. The number of 

training epochs was set to 3 for each level of B-spline kernel length, which is empirically 

enough for the training to converge. We used Nlevel = 4 optimization levels, and Nepoch 

2 https://github.com/mikgroup/sigpy 
3 https://mrsrl.stanford.edu/brian/vdspiral/ 
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= 3 so the total number of epochs was 12. We set Niter = 6 of the unrolled neural 

network. For training the reconstruction network with existing trajectories (radial, spiral, and 

SPARKLING-optimized), we also used 12 training epochs. We used the Adam optimizer 

[53], with parameter β = [0.5, 0.999], for both trajectories ω and network parameters θ. The 

learning rate linearly decayed from 1e-3 to 0 for the trajectory update, and from 1e-5 to 0 for 

the network update. We did not observe obvious over-fitting phenomena on the validation 

set. The training on a Intel Xeon Gold 6138 CPU and an Nvidia RTX2080Ti GPU took 

around 120–150 hours.4

E. Prospective Studies

TABLE I details the scanning protocols of the RF-spoiled, gradient echo (GRE) sequences 

used. For in-vivo acquisitions, a fat-saturation pulse was applied before the tip-down RF 

pulse. We chose the TR and FA combination for desired T1-weighed contrast. For radial-

like sequences, we tested a GRE sequence with 3 different readout trajectories: standard 

undersampled radial, BJORK initialized with undersampled radial, and SPARKLING 

initialized with undersampled radial. Radial-full means the fully sampled radial trajectory. 

The simulation experiments (evaluation) and real experiments use the same readout 

trajectory.

We also acquired an additional dual-echo Cartesian GRE image, for generating the sensitive 

map and (potentially) B0 map. The sensitivity maps were generated by ESPIRiT [52] 

methods. The sequences were programmed with TOPPE [48], and implemented on a GE 

MR750 3.0T scanner with a Nova Medical 32 channel Rx head coil. Subjects gave informed 

consent under local IRB approval. For phantom experiments, we used a water phantom with 

3 internal cylinders.

The k-space mapping was implemented on a water phantom. The thickness of the pencil-

beam was 2mm × 2mm. The trajectory estimates were based on an average of 30 repetitions.

IV. RESULTS

A. Quantitative Results of Simulation Reconstruction Study

The test set includes 1520 slices, and the validation set includes 500 slices. TABLE II 

shows the quantitative results (SSIM and PSNR). The proposed method has significant 

improvement compared with un-optimized trajectories (P < 0.005). It also has improved 

reconstruction quality compared with SPARKLING considering unrolled neural network-

based reconstruction. Compared to undersampled radial trajectory or SPARKLING 

trajectory, the proposed method has a better restoration of details and lower levels of 

artifacts. In the experiment, different random seeds in training led to very similar learned 

sampling trajectories.

Fig. 2 displays point spread functions of 32-spoke radial-like trajectories. The BJORK’s PSF 

has a narrower central-lobe than SPARKLING and much fewer streak artifacts than standard 

radial. Fig. 3 shows the conjugate symmetry relationship implicitly learned in the BJORK 

4The code is available at https://github.com/guanhuaw/Bjork
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trajectory. Fig. 4 displays optimization results under different acceleration ratios. Fig. 11 in 

the Appendix exhibits example slices. Fig. 12 in the Appendix shows the gradient waveform 

of one shot on one direction (from the optimized 32-spoke radial-like trajectory) and the 

corresponding slew rate.

B. Multi-Level Optimization

Fig. 5 shows the evolution of sampling patterns using our proposed multi-level optimization. 

Different widths of the B-spline kernels introduce different levels of improvement as the 

acquisition is optimized. Also shown are the results of multi-level optimization and a 

nonparametric trajectory as used early versions of the PILOT paper [31, versions 1–3]. 

Directly optimizing sampling points seems only to introduce a small perturbation to the 

initialization. Fig. 13 in the Appendix shows the training losses: the reconstruction loss 

ℓ(·, ·), the penalty on maximum gradient strength, and the penalty on maximum slew rate. 

Transitions between different B-spline kernel widths led to a stepped training loss descent 

pattern.

C. Effect of Training Set

Fig. 6 shows radial-initialized trajectories trained by BJORK with brain and knee datasets. 

Different trajectories are learned from different datasets. We hypothesize that the difference 

is related to frequency distribution of energy, as well as the noise level, which requires 

further study. This phenomenon was also observed in [22].

D. Effect of Reconstruction Methods

To test the influence of reconstruction methods on trajectory optimization, we tried a single 

image-domain refinement network as the reconstruction method in the joint learning model, 

similar to PILOT’s approach. Quadratic roughness penalty reconstruction in (8) still is 

the network’s input. The initialization of the sampling pattern is an undersampled radial 

trajectory. TABLE III shows that the proposed BJORK reconstruction method (unrolled 

neural network, UNN) improves reconstruction quality compared to a single end-to-end 

model. Such improvements are consistent with other comparisons between UNN methods 

and image-domain CNN methods using fixed sampling patterns (reconstruction only) [34], 

[39], [41].

E. Prospective Experiments

Fig. 7 shows the water phantom results for different reconstruction algorithms. The 

rightmost column is the fully-sampled ground truth (Radial-full). Note that the unrolled 

neural network (UNN) here was trained with fastMRI brain dataset, and did not receive 

fine-tuning in all prospective experiments. The BJORK-optimized trajectory leads to fewer 

artifacts and improved contrast for the UNN-based reconstruction.

Fig. 8 showcases one slice from the in-vivo experiment. For CS-based reconstruction, the 

undersampled radial trajectory exhibits stronger streak artifacts than SPARKLING- and 

BJORK-optimized trajectories. For UNN-based reconstruction, all trajectories’ results show 

reductions of artifacts compared to CS-based reconstruction. The proposed method restores 

most of the structures and fine details, with minimal artifacts.
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The Appendix also contains examples of reconstruction results before/after eddy currents 

correction, the measurement of actual k-space trajectories, and effectiveness of the warm 

initialization (quadratic least-squares reconstruction).

V. DISCUSSION

This paper proposes an efficient learning-based framework for the joint design of MRI 

sampling trajectories and reconstruction parameters. Defining an appropriate objective 

function for trajectory optimization is an open question. We circumvented this long-lasting 

problem by directly using the reconstruction quality as the training loss function in 

a supervised learning paradigm. The workflow includes a differentiable reconstruction 

algorithm for which the learning process obtains an intermediate gradient w.r.t. the 

reconstruction loss. However, solely depending on backpropagation and stochastic gradient 

descent cannot guarantee optimal results for this non-convex problem. To improve the 

training effect, we adopted several techniques, including trajectory parameterization, 

multi-level training, warm initialization of the reconstruction network, and an accurate 

approximation of NUFFT’s Jacobian [33]. Results show that these approaches can stabilize 

the training and provide better local minimizers than previous methods.

We trained an unrolled neural network-based reconstruction method for non-Cartesian MRI 

data. The single image-domain network used in previous work does not efficiently remove 

aliasing artifacts. Additionally, the k-space “hard” data-consistency trick for data fidelity 

[54], [55] is inapplicable for non-Cartesian sampling. An unrolled algorithm can reach a 

balance between data fidelity and the de-aliasing effect across multiple iterations. For 3D 

trajectory design using the proposed approach, the unrolled method’s memory consumption 

can be huge. More memory-efficient reconstruction models, such as the memory-efficient 

network [56] should be explored in further study. We would also investigate recent 

calibration-less unrolled neural networks, which do not require external sensitivity maps, 

and shows improved performance relative to MoDL [57].

For learning-based medical imaging algorithms, one main obstacle towards clinical 

application is the gap between simulation and the physical world. Some factors include 

the following.

First, inconsistency exists between the training datasets and real-world acquisition, such as 

different vendors and protocols, posing a challenge to reconstruction algorithms’ robustness 

and generalizability. Our training dataset consisted of T1w/T2w/FLAIR Fast Spin-Echo 

(FSE or TSE) sequences, acquired on Siemens 1.5T/3.0T scanners. The number of receiver 

channels includes 4, 8, and 16, etc. We conducted the in-vivo/phantom experiment on a 3.0T 

GE scanner equipped with a 32-channel coil. The sequence is a GRE sequence that has 

lower SNR compared to FSE sequences in the training set. Despite the very large differences 

with the training set, our work still demonstrated improved and robust results in the in-vivo 

and phantom experiment, without any fine-tuning.

We hypothesize that several factors could contribute to the generalizability: (1) the 

reconstruction network uses the quadratic roughness penalized reconstruction as the 
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initialization, normalized by the median value. Previous works typically use the adjoint 

reconstruction as the input of the network. In comparison, our regularized initialization 

helps provide consistency between different protocols, without too much compromise of the 

computation time/complexity, (2) the PSF of the learned trajectory has a compact central 

lobe, without significant streak artifacts. Thus the reconstruction is basically a de-blurring/

denoising task that is a local low-level problem and thus may require less training data than 

de-aliasing problems. For de-blurring of natural images, networks are usually adaptive to 

different noise levels and color spaces, and require small cohorts of data [58], [59]. For 

trajectories like radial and SPARKLING, in contrast, a reconstruction CNN needs to remove 

global aliasing artifacts, such as the streak and ringing artifacts. The dynamics behind 

the neural network’s ability to resolve such artifacts is still an unsolved question, and the 

training requires a large amount of diverse data.

Secondly, it is not easy to simulate system imperfections like eddy currents and off-

resonance in the training phase. These imperfections can greatly affect image quality in 

practice. We used a trajectory measurement method to correct for the eddy-current effect. 

Future work will incorporate field inhomogeneity into the workflow.

Furthermore, even though the BJORK sampling was optimized for a UNN reconstruction 

method, the results in Fig. 7 and Fig. 8 suggest that the learned trajectory is also useful 

with a CS-based reconstruction method or other model-based reconstruction algorithms. 

This approach can still noticeably improve the image quality by simply replacing the readout 

waveform in the existing workflow, promoting the applicability of the proposed approach, 

similar to [22]. We plan to apply the general framework to optimize a trajectory for (convex) 

CS-based reconstruction and compare to the (non-convex) open-loop UNN approach in 

future work.

Though the proposed trajectory is learned via a data-driven approach, it can also reflect 

the ideas behind SPARKLING and Poisson disk sampling: sampling patterns having large 

gaps or tight clusters of points are inefficient, and the sampling points should be somewhat 

evenly distributed (but not too uniform). Furthermore, BJORK appears to have learned some 

latent characteristics, like the conjugate symmetry for these spin-echo training datasets. To 

combine both methods’ strengths, a promising future direction is to use SPARKLING as a 

primed initialization of BJORK.

The learning used here exploited a big public data set. As is shown in the results, knee 

imaging and brain imaging led to different learned trajectories. This demonstrates that 

the data set can influence the optimization results, as was observed in [22]. We also 

implemented a complementary experiment on a smaller training set (results not shown). 

We found that a small subset (3000 slices) also led to similar learned trajectories. Therefore, 

for some organs where a sizeable dataset is not publicly available, this approach may still 

work with small-scale private datasets. To examine the influence of scanner models, field 

strength, and sequences, follow-up studies should investigate more diverse datasets.

The eddy-current effect poses a long-term problem for non Cartesian trajectories and 

impedes their widespread clinical use. This work used a simple k-space mapping technique 
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as the correction method. The downside of this method is its long calibration time, although 

it can be performed in a scanner’s idle time. This method is waveform-specific, which 

means that correction should be done for different trajectories. Other methods relying 

on field probes can get a more accurate correction with less time, albeit with dedicated 

hardware. In a future study, the eddy current-related artifacts could be simulated according 

to the GIRF model in the training phase, so that the trajectory is learned to be robust against 

the eddy current effect.

Aside from practical challenges with GPU memory, the general approach described here 

is readily extended from 2D to 3D sampling trajectories [16]. A more challenging future 

direction is to extend the work to dynamic imaging applications like fMRI and cardiac 

imaging, where both the sampling pattern and the reconstruction method should exploit 

redundancies in the time dimension, e.g., using low-rank models [60]. To optimize sampling 

in higher dimensions, the proposed approach should also have additional regularization on 

the PNS effect.
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APPENDIX

A. Eddy-Current Effect

Fig. 9 displays the CS-based reconstruction of real acquisitions reconstructed using both the 

nominally designed trajectories and the measured trajectories.

Fig. 10 shows the results of the trajectory measurements. Using the measurement of the 

actual trajectory seems to mitigate the influence of eddy current effects in the reconstruction 

results.

B. Cross Contrast Validation

In this experiment, we trained the model with one image contrast from the fastMRI brain 

dataset (without simulated additive noise), and tested the learned trajectory with all contrasts 

(with simulated additive Gaussian noise whose variance is 10−3 of the mean magnitude of 

the signal). Each contrast has 4500 training slices and 500 test slices. We fine-tuned the 

reconstruction unrolled neural network for different test contrasts. The initialization is a 

5 https://github.com/mmuckley/torchkbnufft 
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16-spoke radial trajectory. Table IV shows the average reconstruction quality. The learned 

trajectories are insensitive to different contrasts within the fastMRI dataset.

C. Accurate Jacobian of NUFFT

We compared the trajectories learned with different NUFFT Jacobian calculation methods: 

our accurate DFT approximation methods [33], and using auto-differentiation of NUFFT 

(the approach used in PILOT [31]). To save time, we used only one level of parameterization 

(Decim. = 4) and 6 epochs. In Fig. 14, our approximation method leads to a learned 

trajectory consistent with intuition: sampling points should not be clustered or too distant 

from each other. The quantitative reconstruction results also demonstrate significant 

improvement (950 test slices, SSIM: 0.930 vs. 0.957.)
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Fig. 11. 
Examples from the simulation experiment using the UNN-based reconstruction algorithm, 

with three different acceleration ratios. Ns stands for the number of shots or spokes. The 

first slice is FLAIR contrast. The second slice is T1w contrast. The third slice T2w contrast. 

Red boxes indicate the zoom-in region, and red arrows point to reconstruction artifacts/

blur. Below the zoomed-in regions are the corresponding error maps, compared with fully 

sampled images.
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Fig. 12. 
The gradient strength and slew rate of one spoke from BJORK-optimized radial trajectory.

Fig. 13. 
Smoothed training training losses of a 16-spoke radial-initialized sequence. We use 4 levels 

and each level contains 3 epochs. The three columns are the reconstruction loss, penalty on 

the maximum slew rate, and penalty on the maximum gradient strength.

Fig. 14. 
The learned trajectories with descent directions calculated by different methods.

D. Benefit of the Warm Initialization

We compared two inputs of the unrolled neural network: the adjoint of undersampling 

signal (A′ y) and quadratic roughness penalized reconstruction (A′ A+λR′ R)−1 A′ y. The 

experiment optimized a 16-spoke radial trajectory and used 1520 test slices. The average 

reconstruction quality (SSIM values) of the two settings are 0.944 and 0.950, respectively.
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Fig. 1. 
Diagram of the proposed approach. To optimize the sampling trajectory and the 

reconstruction algorithm jointly using a stochastic gradient descent (SGD)-type method, we 

construct a differentiable forward MRI system matrix A(ω) that simulates k-space data w.r.t. 

trajectory ω from ground truth images, and an unrolled neural network for reconstruction. 

The reconstruction errors compared with the ground truth are used as the training loss to 

update learnable parameters (the trajectory ω and the network’s parameters θ).
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Fig. 2. 
PSFs of different sampling patterns. Each middle plot is the averaged profile of different 

views (angles) through the origin. The FWHM for undersampled radial, BJORK and 

SPARKLING is respectively 1.5, 1.6, 2.1 pixels.
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Fig. 3. 
The dash-dot line shows the 180° rotated BJORK trajectory. The original and rotated 

trajectory have little overlap, suggesting that the BJORK automatically learned a sampling 

pattern that exploits approximate k-space Hermitian symmetry.
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Fig. 4. 
Learned radial-like trajectories with different acceleration ratios.
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Fig. 5. 
The evolution of the learned trajectories. Decim means Ns/L in (3). Nonparametric means 

the locations of each sampling points are independent trainable variables, rather than being 

parameterized by quadratic B-spline kernels. SSIM denotes the average reconstruction 

quality on the evaluation set of each level. The rightmost zoomed-in set shows the very 

small perturbations produced by the nonparametric approach (stuck into local-minima).
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Fig. 6. 
Trajectories learned from different datasets.
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Fig. 7. 
Representative results of the prospective phantom experiment using CS-based and UNN-

based reconstruction algorithms. The sequences involved were radial-like GRE (detailed in 

TABLE I) with T1w contrast. The parameters of UNNs are trained with fastMRI dataset 

without fine-tuning. The readout length was 5.12 ms. The number of shots for undersampled 

trajectories was 32, and for the fully-sampled radial trajectory is 320 (10× acceleration). 

The FOV was 22cm. Red boxes indicate the zoomed-in regions displayed on the upper right 

corner.
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Fig. 8. 
Results of the T1w prospective in-vivo experiment. The trajectories were also radial-like 

(detailed in TABLE I). The parameters of UNNs are trained with the fastMRI dataset 

without fine-tuning. The readout time was 5.12 ms. The number of shots for undersampled 

trajectories was 32, and for the fully-sampled radial trajectory is 320 (10× acceleration). 

The FOV was 22cm. Red boxes indicate the zoomed-in regions displayed on the upper right 

corner.
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Fig. 9. 
Compressed sensing-based reconstruction of a water phantom. The left column is the 

reconstruction with the nominal trajectory, and right is with the measured trajectory. 

Reconstruction with the mapped trajectory introduces fewer artifacts.
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Fig. 10. 
The measurement of the influence of the eddy currents on readout waveform. The solid line 

is the nominal trajectory, and the dotted line is the measurement.
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TABLE II

Quantitative Results for Simulation Experiments

SSIM:

Standard SPARKLING BJORK

radial-like Ns=16
UNN 0.940 0.946 0.950

CS 0.911 0.936 0.938

radial-like Ns=24
UNN 0.950 0.955 0.959

CS 0.929 0.943 0.948

radial-like Ns=32
UNN 0.957 0.963 0.968

CS 0.932 0.946 0.956

spiral-like Ns=8
UNN 0.986 0.989 0.990

CS 0.976 0.978 0.981

PSNR (in dB):

Standard SPARKLING BJORK

radial-like Ns=16
UNN 32.7 33.9 34.3

CS 31.7 33.6 34.1

radial-like Ns=24
UNN 34.1 35.0 35.6

CS 33.3 34.6 35.1

radial-like Ns=32
UNN 35.0 36.0 36.9

CS 33.9 35.7 36.3

spiral-like Ns=8
UNN 40.9 41.7 41.9

CS 39.9 40.4 40.7

Ns: the number of shots or spokes.
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TABLE III

Effect of Different Reconstruction Networks Involved in the Joint Learning Model

SSIM PSNR(dB)

UNN 0.968 36.9

Single U-net 0.934 32.8
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TABLE IV

Effect of Different Contrasts on Learned Models

test╲training T1w T2w FLAIR

T1w+noise 0.981 0.980 0.981

T2w+noise 0.951 0.953 0.953

FLAIR+noise 0.974 0.974 0.975
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