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Abstract

Lineage plasticity is implicated in treatment resistance in multiple cancers. In lung 

adenocarcinomas (LUADs) amenable to targeted therapy, transformation to small cell lung cancer 

(SCLC) is a recognized resistance mechanism. Defining molecular mechanisms of neuroendocrine 

(NE) transformation in lung cancer has been limited by a paucity of pre-/post-transformation 

clinical samples. Detailed genomic, epigenomic, transcriptomic, and protein characterization of 

combined LUAD/SCLC tumors, as well as pre-/post-transformation samples, support that NE 

transformation is primarily driven by transcriptional reprogramming rather than mutational events. 

We identify genomic contexts in which NE transformation is favored, including frequent loss of 

the 3p chromosome arm. We observed enhanced expression of genes involved in PRC2 complex 

and PI3K/AKT and NOTCH pathways. Pharmacological inhibition of the PI3K/AKT pathway 

delayed tumor growth and NE transformation in an EGFR-mutant patient-derived xenograft 

model. Our findings define a novel landscape of potential drivers and therapeutic vulnerabilities of 

neuroendocrine transformation in lung cancer.

INTRODUCTION

Lineage plasticity describes the capacity of cells to transition from one committed identity 

to that of a distinct developmental lineage. This phenotypic flexibility can promote 

survival of cancer cells under unfavorable conditions, such as hypoxia or selective pressure 

from oncogenic driver-targeted therapy(1,2),(3). The histological transformation of lung 

adenocarcinoma (LUAD) to an aggressive neuroendocrine (NE) derivative resembling 

small cell lung cancer (SCLC) is a signature example of lineage plasticity in cancer. 

Initially described in the prostate setting as a mechanism of resistance to androgen 

suppression(4–6), a similar process of NE transformation was identified in LUADs 

harboring EGFR mutations(7), and subsequently found to occur more broadly in lung 

cancers(8). Transformed SCLC (T-SCLC) is associated with a notably poor prognosis, 

similar or worse than that of de novo SCLC(3). The increased practice of tumor re-biopsy 

upon disease progression has improved the ability to identify histologic transformation, 

which in EGFR-mutant LUAD may comprise up to 14% of cases of acquired resistance to 

osimertinib(9,10).

Identification of the molecular mechanisms promoting lineage plasticity in clinical samples 

is key to identifying patients at high risk of transformation and may define strategies to 
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prevent or treat this phenomenon. Little is known about the molecular alterations occurring 

during NE transformation in human tumors, including in lung cancer. Transcriptomic 

analyses of prostate cancer undergoing NE histologic transformation have been performed, 

but only on relapsed and post-transformation samples(11,12). A paucity of well-annotated 

paired pre- and post-transformation clinical samples has been a major hurdle in defining 

mechanisms of lineage plasticity in lung cancer. Previous genomic studies in small numbers 

of cases, have suggested that concomitant inactivation of TP53 and RB1 is necessary but not 

sufficient, and have identified few other recurrent genomic alterations(3,9,13).

On rare occasions, pathologic examination of resected cancers reveals more than one 

histology in single tumors. We hypothesized that such cases might represent lineage 

plasticity captured in temporal and spatial proximity to the occurrence of a histologic 

shift. Detailed molecular characterization of such cases could provide novel insight into key 

drivers of histologic transformation. Here we report the first comprehensive characterization 

of NE transformation, including genomic, transcriptomic, epigenomic and protein analyses, 

in a cohort of mixed histology LUAD/SCLC samples. In addition to our primary analysis 

of mixed histology tumors with discrete areas of LUAD and SCLC, we include analyses 

in matched pre- and post-transformation cases, with reference to control “pure” LUAD and 

SCLC. Our strategy provides novel insights into molecular drivers and potential therapeutic 

vulnerabilities of NE transformation in lung cancer.

RESULTS

Genomic landscape defines potential novel predictors of NE transformation

For in-depth characterization of NE transformation, we analyzed clinical specimens 

consisting of combined LUAD/SCLC histology exhibiting clear spatial separation (n=11); 

pre-transformation LUADs (n=5) and post-transformation SCLCs (n=3), including one 

matched case; never-transformed LUADs (n=15); and de novo SCLCs (n=18) (Figure 

1A and Supplementary Tables S1–S4). Microdissection was performed for independent 

genomic, epigenomic and transcriptomic analyses (Figure 1B, 1C and Supplementary Figure 

S1).

Our selection of combined histology samples for this analysis was predicated on the 

assumption that the LUAD and SCLC components were clonally related. Alternatively, 

it was possible that these represented “collision tumors” derived from two independent 

oncogenic events. To distinguish between these alternatives, we performed whole exome 

sequencing (WES) of all LUAD and SCLC samples from combined histology specimens 

and the matched pre- and post-transformation pair (T12) (Supplementary Tables S5,6). 

Sequencing revealed multiple shared mutations in all cases, confirming that matched LUAD 

and SCLC components were clonally related (Figure 2A). For one case lacking WES 

data, we were able to confirm genetic relatedness in the RNAseq data (Figure S2A). 

We therefore refer to these hereafter as T-LUAD and T-SCLC with the T referring to 

histologic transformation, without presumption of directionality. Higher tumor purity in the 

T-SCLC component was observed, consistent with the low stromal content of SCLC relative 

to LUAD(14,15) (Supplementary Figure S2B). Suggestive of temporal proximity, we did 

not observe consistent differences in tumor ploidy, tumor mutation burden, or predicted 
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neoantigen burden between T-LUAD and T-SCLC components (Supplementary Figures 

S2C–E).

We next sought to define mutational processes that might contribute to lineage plasticity 

and histologic transformation through mutational signature analysis. Smoking signature was 

dominant in 7 out of 11 cases but did not differ consistently between T-LUAD and T-SCLC 

(Supplementary Figure S2F). APOBEC signature, previously proposed to be a predictor of 

SCLC-transformation in triple EGFR/TP53/RB1 mutant tumors(9), was prominent in 5 out 

of 11 of the T-LUAD samples (Supplementary Figure S2F).

Analyses of the most prevalent mutations and copy number alterations (CNAs), including 

variants of both known and unknown significance, revealed almost universal TP53 loss 

in both T-LUAD and T-SCLC (93%, Figure 2B), with only two T-LUADs (T-LUAD1 

and T-LUAD8) showing wild type TP53. RB1 mutations/deletions were less frequently 

detected (63% of samples), identified in 8 out of 14 T-LUADs, and in 8 out of 11 T-SCLCs 

(Figures 2B, C). However, IHC in samples for which tissue was available showed that Rb 

protein expression was lost in all but one T-LUAD with wild type RB1 (T-LUAD1) and 

in all T-SCLC samples (Figure 2C). These results show that loss of RB1 function can be 

independent of apparent genomic alterations, highlighting the importance of complementary 

genomic and IHC profiling for confirmation of RB1 activity. Additionally, to confirm 

whether the mutations in TP53 and RB1 occurring only in one of the two matched 

histological components for a given case were truly private (T1 and T8), we performed 

targeted sequencing (Supplementary Figure S2G) that confirmed TP53 and RB1 mutations 

in T1 are exclusive of the T-SCLC component. However, targeted sequencing showed that 

the TP53 mutation found in T-SCLC8 was not truly private, as it was detected at near 

subclonal levels also in T-LUAD8 (VAF=0.06). Oncogenic EGFR mutations were present in 

33% of T-LUAD samples (Figure 2B), further illustrating that NE transformation can occur 

outside the EGFR mutant setting(8). Within matched pairs, we observed common mutations 

of both known and unknown significance highlighting genetic relatedness. There were no 

recurrent mutational distinctions between paired T-LUAD and T-SCLC seen in more than 

two cases in this dataset, suggesting that while a preexisting genetic context may facilitate 

plasticity, NE transformation itself may not be mutationally driven. Mutation profile of the 

T-SCLC samples was similar to that described for de novo SCLC (Supplementary Figure 

S2H).

To better define the context that permits lineage plasticity, we focused on the most 

commonly altered genes in this sample set, present in both the T-LUAD and T-SCLC 

components (Figure 2B). Notably, these include factors involved in WNT signaling (BCL9, 
LRP5); PI3K/AKT signaling (PTEN, PIK3CA, PIK3R1, etc.); Notch signaling (NOTCH4, 
IDH2); epigenetic regulation (KMT2A/C, CREBBP, FOXA1, etc); and cell cycle/DNA 

repair (TRIP13 and TP53BP). The presence of these pathway alterations in T-LUAD 

samples implies that they may occur early in the NE transformation process and prime 

LUAD for lineage transition.

Next, we compared the frequency of mutations/copy number alteration (CNAs) identified 

in the T-LUADs in our cohort to those of the cancer genome atlas (TCGA) LUADs 
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(Figures 2D,E, Supplementary Figure S3A and Supplementary Table S7). We focused 

on the differentially mutated genes showing alterations in ≥ 20% of T-LUAD samples, 

to filter for those more likely to have a role in transformation promotion. As expected, 

we found enrichment of TP53 (p=0.008) and RB1 (p<0.001) alterations in T-LUAD(3,9). 

Consistent with previous reports of NE transformation in EGFR-mutant LUAD, we found 

enrichment in EGFR alterations (p=0.012) in the T-LUAD cohort(9,13). We noted decreased 

frequency of KRAS mutations in our T-LUAD (p=0.008) (Supplementary Figure S3A); this 

may suggest that KRAS-mutant LUADs are less likely to undergo NE transformation, or, 

alternatively, may be attributable to the historical lack of potent targeted inhibitors of KRAS.

Novel observations in this analysis included mutations on NFE2L2 (p=0.010), a 

transcription factor involved in response to oxidative stress(16); KMT2B (p=0.014), an 

epigenetic regulator; and amplifications in EGFR (p=0.002), TERT (p<0.001) and TRIP13 
(p<0.001), a gene involved in cell division. These genes were rarely altered (<5%) in 

the TGCA LUADs (Figure 2E and Supplementary Figure S3A). Of note, none of these 

enrichments were significant when performing multiple hypothesis testing, most likely 

due to the small size of our cohort. Validation in a larger cohort would be required to 

support a role for these alterations as predictors of susceptibility to SCLC transformation. 

Interestingly, we observed recurrent loss of the 3p chromosome arm in 85% of our pre-

transformation LUAD cases, a significantly higher rate than observed in TCGA LUADs 

(p=0.045, Figure 2F).

Genomic evolution of SCLC transformation

The paired nature of the combined histology tumors provided an opportunity to explore 

serial events in branched evolution of the distinct histologic lineages. WES data was of 

sufficient quality to allow reconstruction of the clonal history for 5 of the cases under study 

(Figure 3). For each of these, we identified exclusive or enriched mutations in the T-SCLC 

components, but no common driver mutations across cases were observed. The integer 

copy number segmentation profile (Figure 3, left) was suggestive of genomic instability 

consistent with TP53 inactivation, which was identified as an early event in most samples. 

Within these segments, at a gene level, we observed several recurrent focal non-VUS copy 

number changes (Supplementary Table S8). Many of the oncogenic driver mutations were 

shared within each matched pair (Figure 3, right), suggesting that they occurred before the 

histologic divergence. Interestingly, both pre- and post-transformation samples in all of these 

cases were genome doubled, implying that WGD occurred before transformation. (Figure 3, 

right).

T-SCLC spans all SCLC subtypes

Work from our group and others has highlighted the inter-tumoral heterogeneity of 

SCLCs(15). De novo SCLCs can be divided into discrete molecularly defined subtypes 

based on dominant expression of one of four transcriptional regulators: ASCL1 (SCLC-A), 

NEUROD1 (SCLC-N), POU2F3 (SCLC-P), and YAP1 (SCLC-Y). However, little is known 

about the molecular subtyping of T-SCLC tumors, or whether these tumors consistently 

align with one of these four defined subtypes.
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To study if T-SCLCs were enriched in any subtype, we analyzed relative expression 

of these four transcriptional regulators (mRNA and protein by IHC), together with 

canonical NE markers (mRNA), in the T-LUADs and T-SCLC samples (Figures 4A, 

S3B and Supplementary Table S9). As expected, we observed increased expression of 

NE markers in T-SCLC versus T-LUAD consistent with NE transformation, which was 

further accentuated in de novo SCLC (Figure S3B). Expression of three transcription 

factors (ASCL1, NEUROD1 and POU2F3) was consistently low in the T-LUADs. However, 

expression of YAP1 was higher in all but one (T4) T-LUADs than in their matched T-SCLCs 

(Figure 4A). YAP1 expression was higher in never-transformed LUADs than in T-LUAD 

(Supplementary Figure S3C), consistent with the oncogenic role of this Hippo pathway 

effector in LUAD(17,18) and with its incompatibility with NE features in lung cancer(19). 

We observed good concordance between IHC and RNA data. Where discrepant, we assigned 

the subtype based on relative RNA expression, following current consensus(15).

Notably, we were able to detect all four SCLC subtypes among the T-SCLC samples, 

suggesting that lineage plasticity in LUAD can give rise to any of the four SCLC subtypes. 

Interestingly, two of the samples (T1 and T3) were categorized as SCLC-P, with high 

POU2F3 levels exclusive to the T-SCLC component, and no expression of any of the 

other transcription factors by IHC (Figures 4A,B and Supplementary Table S9). Tuft 

cells, a rare population of lung cells, have been previously hypothesized to be the cell 

of origin for SCLC-P, based on a very similar POU2F3-dependent gene expression program 

exclusive in this cell type of the normal lung(20). However, no POU2F3 protein expression 

was observed in the matched T-LUAD components of these samples (Figures 4A,B and 

Supplementary Table S9). Furthermore, mRNA levels of other tuft cell markers(20) were 

also not elevated in these T-LUADs relative to the rest of pre-transformation or control 

LUADs (Supplementary Figure S3D). This suggests that a tuft cell-like gene expression 

program is induced in this T-SCLC subtype, independent of the cell of origin. These data 

demonstrate that T-SCLCs conform to all major subtypes of de novo SCLCs, and suggest a 

tuft cell-independent origin of SCLC-P.

Gene expression and methylation analyses identify pathways involved in NE 
transformation

We performed transcriptomic (RNAseq, Supplementary Table S10) and methylation (EPIC) 

analyses of T-LUADs, T-SCLCs, control LUADs and de novo SCLCs (Figure 1C and 

Supplementary Tables S1–3,11). Principal component analyses (PCA) of RNAseq data 

showed dissimilar expression patterns for control LUAD and de novo SCLC, as expected 

(Figure 4C). T-LUADs clustered together in adjacency to control LUADs, and T-SCLCs in 

proximity to de novo SCLCs. T-LUAD and T-SCLC did appear to represent intermediate 

phenotypes, and demonstrated substantial overlap in expression profile (Figure 4C). This 

suggests that T-LUADs might be distinctly primed to transform, relative to other LUAD, and 

that T-SCLC retains some transcriptomic features of T-LUAD. PCA analysis of methylation 

profiling by EPIC revealed that T-SCLCs exhibit distinct methylation profiles to those of 

de novo SCLCs, and show proximity to the methylome of T- and control LUADs (Figure 

4D). This implies that tumors undergoing NE transformation retain broad scale epigenomic 

features of the LUAD from which they derived.
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To further analyze the transcriptional changes occurring during NE transformation, 

we performed differential gene expression and pathway enrichment analyses (GSEA) 

of T-LUAD and T-SCLC samples (Figure 4E). As expected, EGFR expression was 

downregulated upon transformation (Supplementary Figure S4A). T-SCLC demonstrated 

increased expression of NE markers such as SYP, SYN1 and INSM1; and genes associated 

with Notch signaling inhibition, including DLL3 and HES6(15). Pathway enrichment 

analyses performed on differentially expressed genes (DEG) in T-LUAD vs. T-SCLC 

samples (Figures 4E,F) showed T-SCLC-specific upregulation of genes involved in (1) 

neural differentiation (including SEZ6, TAGLN3 and KCNC1); (2) cell cycle progression 

(including E2F2, CENPF and FBXO5); (3) DNA repair (including FANCB, EYA2 and 

RFC3); (4) chromatin remodeling (including HDAC2); and (5) PRC2 complex (including 

HIST1H2BO, HIST1H2BL and HISH1H4H) (Figures 4E,F). We further confirmed a 

consistent increase in the mRNA expression of EZH2, enconding the enzymatic subunit 

of the PRC2 complex (Supplementary Figure S4B), previously strongly implicated in 

lineage plasticity and neuroendocrine transformation in prostate cancer(4). GSEA analyses 

also showed a gene expression signature of induced WNT signaling in T-SCLC, with 

downregulation of the negative regulator of WNT signaling TCF7L2 and overexpression 

of WNT pathway activators such as WNK2, ASPM and FZD3 (Figures 4E–F). This 

was further supported by protein analyses results of T-LUAD and T-SCLC samples and 

patient-derived xenografts (PDXs) (Figures 4G and S4C,D and Supplementary Table S12). 

We observed increased expression of the major WNT signaling effector, β-catenin, and 

increased phosphorylation of PYK2, a protein involved in WNT signaling activation(21) in 

T-SCLC (Figures 4G and S4C and Supplementary Tables S11,S12). Among other changes, 

NE transformation was also associated with global downregulation of receptor tyrosine 

kinase signaling, inhibition of apoptotic induction, suppression of anti-tumor immune 

activation, and induction of PI3K/AKT signaling (Figures 4E,F), which was also confirmed 

at the protein level in protein array assays (Figures 4G and S4C) and western blot (Figure 

S4D).

Integration of gene expression and DNA methylation data

Integrative analyses of transcriptomic and epigenomic data showed that a substantial 

number of differentially expressed genes were also differentially methylated in T-SCLC 

relative to T-LUAD, consistent with epigenomic reprogramming upon NE transformation in 

lung. We observed cell adhesion, neuron differentiation, cytokine signaling and neutrophil 

degranulation pathways to be among the top pathways differentially affected by methylation 

(Figure 5A and Supplementary Figure S4E).

Methylation occurring in TF-binding motifs can inhibit TF engagement and affect regulation 

of target gene expression(22). Analysis of differential methylation of TF-binding motifs 

revealed hypomethylation of binding motifs for genes involved in (1) neuronal and NE 

differentiation (including ASCL1 and NEUROD1); (2) WNT signaling activators (TCF4, 
EBF2); and (3) stemness (NANOG, BHLHA15); and (4) EMT (SNAI1, TWIST1/2, ZEB1, 

among others) in T-SCLC relative to T-LUAD (Figure 5B). We also found T-SCLC-specific 

hypermethylation of binding motifs for TFs involved in MAPK signaling (JUNB/D, AP-1, 
FOSL1/2); and WNT signaling suppression (SOX7/10/17) (Figure 5B). These data suggest 
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that epigenomic reprogramming upon transformation leads to altered methylation of key 

TF-binding motifs, driving expression phenotypes observed during histological transition 

(Figures 4E–F).

Notably, three TFs, FOXN4 (β=3.38, q-value=0.031), ONECUT2 (β=3.10, q-value=0.014) 

and POU3F2 (β=2.02, q-value=0.083), were among the top differentially expressed genes 

upregulated in T-SCLCs (Supplementary Figure S5A). ONECUT2 and POU3F2 have been 

previously implicated in acquisition and maintenance of the neuroendocrine phenotype 

in prostate cancer(23,24). FOXN4 has been previously shown to interact with ASCL1 

to modulate Notch signaling(25). To assess the role of these TFs as drivers of NE 

transformation, we overexpressed FOXN4, ONECUT2, and POU3F2 each independently 

in two EGFR-mutant LUAD cell lines (PC9 and HCC827, Supplementary Figures 

S5B–C). Ectopic overexpression of these factors downregulated EGFR expression in 

both lines (Supplementary Figure S5B), as also observed after ASCL1 or NEUROD1 

overexpression (Supplementary Figure S5D). ONECUT2 and POU3F2 overexpression 

increased osimertinib resistance in one of the cell lines under study (Supplementary Figure 

S5E), and osimertinib exposure increased FOXN4 and ONECUT2 expression expression 

in both cell lines (Supplementary Figures S5F,G). These results suggest that although 

these transcription factors might not individually induce NE transformation, they may 

contribute to transformation through downregulation of EGFR expression, a commonly 

observed phenotype in EGFR-mutant T-SCLC3,13. Additionally, these results highlight a 

link between anti-EGFR therapy and upregulation of TFs implicated in transformation.

Taken together, these data highlight that while epigenetic reprogramming in NE 

transformation results in induction of transcriptional changes affecting several key 

signaling pathways, some epigenomic features are maintained during NE transformation, 

differentiating these tumors from de novo SCLC. Transformation to a neuroendocrine 

phenotype may be promoted by the PRC2 complex and other epigenetic modifiers, and 

appears to be characterized by activation of PI3K and WNT signaling pathways, acquisition 

of a mesenchymal phenotype, and suppression of anti-tumor immune response pathways.

Transcriptomic and epigenomic analyses of T-LUADs reveal early molecular alterations in 
NE transformation

To identify transcriptional changes that may predispose to NE transformation, we next 

compared the transcriptomic and methylomic profiles of T-LUAD and control (never-

transformed) LUADs (Figures 6A–C). In the T-LUAD samples, we observed relative 

downregulation of a variety of keratin genes (KRT7, KRT8 and KRT15, among others, 

Figure 6C), consistent with a potential partial loss of LUAD phenotype(26). As expected, 

we also observed multiple alterations in the RB pathway (Figure 6A). RB1 mutations and 

Rb protein loss were found in 36% (4/11) and in 86% (6/7), respectively, of T-LUADs. We 

also observed differential expression of members upstream RB1 (possibly in compensation 

for RB1 functional deficiency(27,28)) including upregulation of CDKN2A associated with 

an increases in gene body methylation (Figures 6A and Supplementary Figure S6A); 

downregulation of CCND1 (Cyclin D1) and upregulation of CCNE1/2 (Cyclin E1/2). 
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These results are consistent with prior observations that RB1 loss of function precedes NE 

transformation(3,9).

We also identified DEGs representative of some of the same pathways identified when 

comparing T-LUAD and T-SCLC samples, suggesting progressive differential regulation 

of these pathways in NE transformation (Figures 6B–C). These included up-regulation of 

genes enriched in cell cycle progression (TOP2A, CENPF, FBXO5), DNA repair pathways 

(CLSPN, EXO1, FANCB), and PI3K/AKT signaling (PIK3CA, PIK3R1, AKT3); as well as 

downregulation of RTK signaling (DUSP6, ERBB2, and MAPK13), cell adhesion (CDH1 
(E-cadherin), PCDHA11, PCDHA9) and anti-tumor immune response (multiple genes 

involved in neutrophil degranulation, TNF signaling and antigen presentation). Consistent 

with the known role of Notch signaling in suppressing NE tumor growth(29), these analyses 

revealed early downregulation of genes involved in Notch signaling, including Notch 

receptors NOTCH1/2/3, and ligands JAG2 and DLL4 (Figures 6B–C). Consistent with 

an overall retention of genome methylation patterns of LUAD, integrative analyses with 

transcriptomic and methylation data revealed that none of these pathways was likely being 

differentially regulated by gene-specific methylation (Supplementary Figure S6B).

These results suggest that an intermediate phenotype is captured in T-LUAD specimens, 

which is further accentuated upon NE transformation to T-SCLC. This phenotype is 

characterized by partial loss of LUAD features and of dependence on RTK signaling, and 

by the upregulation of gene programs promoting AKT signaling, cell cycle progression and 

DNA repair, as well as downregulation of genes related to immune response and Notch 

signaling.

Molecular comparison of de novo and T-SCLCs reveals differential signaling and immune 
pathways regulation

Finally, we sought to explore molecular differences between transformed and de novo 
SCLCs. Comparison of the transcriptome of T-SCLCs to that of our control de novo SCLCs 

revealed lower expression of genes involved in neuron differentiation (SALL3, DLX1, and 

NEURL1); Notch signaling (JAG2, DLL1/4, and NOTCH3); PI3K/AKT pathway (AKT1/2, 
BAD, and TSC2); and epigenetic regulators (HIST2H3D, SMARCA4 and ARID1B) 

(Figures 6D–E). We also observed higher expression of genes involved in stemness (such 

as CD44, NAMPT or the aldehyde dehydrogenase ALDH1A2); IFN signaling (TLR2/3/7/8, 
CLEC7A), lymphocyte chemotaxis (CXCL10/13/14, XCL and, CCL5) and TCR signaling 

(PAK2, UBE2D2, and NCK1) in T-SCLCs relative to de novo SCLCs. Integrative 

transcriptome/methylome analyses (Figure 6F and Supplementary Figure S6C) indicated 

that the suppressed neuronal phenotype in T-SCLCs was associated with a high number 

of differentially methylated genes in that pathway, suggesting epigenetic reprogramming 

(Figure 6F). These results suggest that T-SCLC is characterized by decreased neuronal 

features, an accentuated stem-like/plastic phenotype, and increased ability to induce an 

anti-tumor immune response relative to de novo SCLC. These data further support that 

inhibition of Notch signaling may be particularly key for SCLC transformation and persists 

after histological transition.
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AKT inhibition delays tumor growth and augments the anti-tumor effect of osimertinib in 
an EGFR mutant PDX model of NE transformation

The identification of novel therapeutic approaches to treat or prevent emergence of T-SCLC 

is a major clinical need. Toward this end we tested different targeted therapies on an 

EGFR mutant PDX model (Figures 7A–D and Supplementary Figures S7A–D) exhibiting 

combined LUAD and NE histology with small cell features (T14-CH, Figures 7A,C). This 

model was derived from a patient with LUAD whose tumor subsequently underwent SCLC 

transformation (T14, Supplementary Table S2). The resulting PDX from the original LUAD 

exhibited combined histology after serial passaging. Targeted sequencing confirmed the 

presence of the same EGFR mutation as in the pre-transformation LUAD clinical sample 

(EGFR S768_D770dup).

We targeted the major signaling pathways upregulated upon NE transformation in our 

transcriptomic and protein analyses and prioritized targets with the highest potential for 

clinical translation. Inhibitors assessed samotolisib (AKT inhibitor)(30), DS3201-b (EZH1/2 

inhibitor)(31) and G007-LK (WNT inhibitor)(32). The T14-CH model was treated with 

either vehicle or single agent samotolisib, DS3201-b, or G007-LK, without or with 

osimertinib. Osimertinib monotherapy significantly delayed tumor growth (Figure 7B, T/

C=63.9%, p=0.011 at control group endpoint). Combinations of DS-3201b or G007-LK with 

osimertinib did not achieve greater tumor growth inhibition than osimertinib monotherapy 

alone (Supplementary Figure S7A).

Interestingly, the AKT inhibitor samotolisib caused significant delay in tumor growth as a 

single agent (T/C=54.2%, p<0.001) and the combination of samotolisib with osimertinib 

further inhibited tumor growth in this model, with a T/C value of 33.54% at control group 

endpoint (p<0.001) (Figure 7B). The combination group tumors showed an average 55.8% 

size reduction relative to the osimertinib-treated group at experiment endpoint. Western 

blots for pAKT and pPRAS40 in these tumors confirmed AKT signaling inhibition by 

samotolosib (Figure S7B). Mice body weight measurements suggested that the combination 

did not cause significantly greater toxicity than osimertinib monotherapy (Supplementary 

Figure S7C).

Tumors were collected and analyzed for histology and for IHC expression of the 

LUAD markers TTF-1 and Napsin A, and of the NE markers ASCL1, NEUROD1 and 

Chromogranin A (Figures 7A,C). Control tumors demonstrated mixed histology, with areas 

of LUAD showing high TTF-1 and mild Napsin A staining with no expression of any of 

the NE markers tested, and areas of SCLC-like cells with lower expression of TTF-1 and 

no expression of Napsin A (Figures 7A,C). The SCLC component showed high levels of 

NEUROD1 and Chromogranin A, but no ASCL1 staining (Figures 7A,C). Osimertinib 

monotherapy completely depleted the LUAD component of these tumors (Figure 7D) 

suggesting that after transformation, osimertinib exerts a selective pressure enriching for 

the NE component.

Osimertinib-treated tumors showed areas of mutually exclusive staining for ASCL1 or 

NEUROD1, all of them positive for Chromogranin A (Figure 7C). Samotolisib-treated 

tumors showed enrichment in the LUAD component as compared to control tumors (Figure 
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7C,D), suggesting that AKT inhibition may be exerting a selective pressure against the 

NE component in these tumors, which was consistent with increased pAKT and pRAS40 

IHC staining In the NE component (Figures 7A and S7D). The addition of samotolisib to 

osimertinib tenuated the depletion of LUAD and completely suppressed the emergence of 

ASCL1 positive SCLC seen with osimertinib alone (Figures 7B and D).

These results further support a role of AKT signaling in NE transformation in the lung 

and suggest that combined AKT and EGFR inhibition may constrain NE relapse in EGFR-

mutant tumors at risk of transformation.

DISCUSSION

Cancer cell promiscuity in lineage commitment is a reflection of the exceptional 

heterogeneity of tumors, and an important source of treatment failure. The advent of potent 

and specific targeted inhibitors for mutational drivers in LUAD, like the use of highly 

effective anti-androgenic agents in prostate cancer, has prompted increasing recognition of 

lineage plasticity as a primary barrier to successful management of cancer. While frequently 

considered in the context of acquired therapeutic resistance, lineage plasticity in cancer 

is also evident independent of drug selection. In this study, we took advantage of the 

long-standing recognition of mixed histology lung cancers to gain insight into the molecular 

phenotypic landscapes underlying histologic transformation between LUAD and SCLC 

lineages. Whole exome sequencing confirmed that the histologically distinct components 

of mixed tumors were clonally related, reflecting distinct lineage pathways derived from a 

shared tumorigenic founder. TMB was similar in the LUAD and SCLC components in these 

samples, reflecting their presumed temporal proximity. By focusing primarily on a cohort 

of biphenotypic tumors in which the distinct lineages are in temporal and spatial proximity, 

we have the opportunity to identify consistent molecular changes that characterize this 

transformation. In this study, we provide the first comprehensive multi-omic characterization 

of NE transformation in lung cancer, including genomic, transcriptomic, epigenomic and 

protein analyses of matched samples. Primary limitations of this study include the use of 

FFPE samples, with reduced sequencing quality relative to fresh samples, and the limited 

number of samples available for analysis. These factors should be taken into consideration in 

interpreting this dataset.

One conclusion that may be taken from our data concerns the degree to which activation 

of lineage plasticity can result in distinct cell fates. De novo SCLC has been classified 

into four distinct subtypes based on differential expression of master transcriptional 

regulators(3,15,33). Examining a cohort of mixed histology LUAD/SCLC tumors, we find 

that the T-SCLC derivatives do not consistently fall into one of these subtypes – rather we 

find all four subtypes clearly represented among just 11 cases. This observation underscores 

the degree to which plasticity in lung cancer can activate diverse transcriptional programs. 

Particularly surprising to us was the identification of mixed histology tumors in which the 

T-SCLC component expressed POU2F3, defining the subtype SCLC-P. LUAD is believed 

to derive from type II pneumocytes(34). Based on its expression profile, SCLC-P had been 

proposed to arise from transformation of tuft cells, a rare pulmonary cell that is the exclusive 

source of POU2F3 expression in lung(20). The identification of two independent cases of 
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clonally linked T-LUAD and POU2F3-expressing T-SCLC calls into question the cell of 

origin of SCLC-P and highlights the capacity of lineage plasticity to allow cancer cells to 

transdifferentiate between clearly distinct biological lineages.

Several features of the analysis of mixed histology T-LUAD/T-SCLC tumors reflect prior 

observations made regarding NE transformation of LUAD, reinforcing the relevance of this 

approach. Consistent with previous publications(9,13), we observe inactivation of TP53 

and RB1 in essentially all T-SCLC, and in nearly all of the paired T-LUAD (Figure 

7E). Notably, inactivation of these two key tumor suppressors was not always evident 

in exome sequencing, highlighting the importance of determination of TP53 and RB1 

protein expression as a complement to genetic testing. While NE transformation of LUAD 

was originally observed in EGFR-mutant LUAD under selective pressure of EGFR TKI 

treatment, we confirm here similar histologic transformation regardless of EGFR mutation, 

including in the treatment naïve setting(3,8). A novel finding here is the high frequency of 

3p chromosome arm loss in T-LUADs (Figure 7E)(35). What genes resident on 3p singly 

or in combination could account for this observation is currently unclear, but 3p loss may 

represent a novel risk factor for NE transformation, which combined with the determination 

of the RB1/TP53 genomic and expression status, may increase the sensitivity to predict this 

histological transition.

The paucity of recurrent mutations across samples in our cohort suggests that NE 

transformation in lung is not dependent on a common mutational driver, but rather may 

be primarily dependent on epigenetic shifts in gene expression programs. Transcriptional 

analysis of the T-LUAD and T-SCLC components of our mixed histology tumor set, relative 

to control (non-transformed) LUAD and de novo SCLC, suggests that T-LUADs and T-

SCLCs occupy intermediate, transitional states – states that overlap both with their apparent 

non-transforming histology and with each other. Our data point to a number of signaling 

pathways that appear to shift in consistent patterns from T-LUAD to T-SCLC (Figure 7E). 

These shifts include higher expression of genes in cell cycle and DNA repair, consistent with 

the highly proliferative capacity of SCLC tumors(36). Higher expression of neuroendocrine 

and mesenchymal features in T-SCLC agrees with previous reports suggesting that NE 

transformation may occur through an intermediate EMT stem-like state(37,38). Our data 

correlates this with putative methylation-induced repression of cell adhesion molecules, and 

induced expression of mesenchymal effectors such as CDH2 (N-cadherin) and NCAM1 
associated with demethylation of binding motifs of key mediators of EMT, such as SNAI1 
and TWIST1 in T-SCLC.

Our data implicates multiple pathways known to regulate stem and progenitor cell biology 

in lineage plasticity and NE transformation (Figure 7E), notably including upregulation of 

PRC2 complex activity, induction of WNT signaling and suppression of the Notch pathway. 

The induction of PRC2 activity is in keeping with its apparent role in NE transformation 

in prostate cancer(4,39). WNT signaling too has been previously implicated in lineage 

plasticity(40) and in the maintenance of a NE phenotype in the prostate(41,42). Given the 

previously defined role of Notch signaling in suppression of NE tumor growth, we believe 

that sustained inhibition of Notch signaling may be a prerequisite for NE transformation in 

lung.
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We note that SCLCs are notoriously immune “cold” tumors relative to NSCLCs(14,15,43). 

Consistent with this, we see a progressive suppression in anti-tumor immune response 

pathways including cytokine signaling, T-cell immunity, and neutrophil degranulation from 

control LUAD to T-LUAD, from T-LUAD to T-SCLC, and from T-SCLC to de novo SCLC.

Finally, we also find consistent evidence of PI3K/AKT pathway activation in T-SCLC. 

Emerging data support a role for PI3K/AKT signaling in lineage plasticity and 

NE transformation(3,44). Overactivation of this pathway may predict higher risk of 

transformation, as mutations on AKT pathway members are enriched in LUAD at high 

risk of transformation(9), and we consistently found upregulation of genes involved in this 

pathway in T-LUAD as compared to LUAD. AKT also has been identified as a driver of NE 

phenotypic shift in non-tumoral prostate and lung cells(45). In line with these findings, our 

results suggest that T-SCLC may be sensitive to AKT inhibition, which delays NE relapse in 

an EGFR-mutant PDX model of NE transformation in combination with osimertinib. These 

results support a novel therapeutic approach to delay or revert NE transformation in lung.

NE transformation in lung cancer induces a highly lethal and recalcitrant tumor profile 

that currently lacks effective treatments. A better understanding of molecular drivers 

of NE transformation in lung cancer can nominate therapeutic targets to treat or 

prevent transformation. Through detailed analysis of transformation pairs, we provide a 

comprehensive molecular characterization of NE transformation in lung cancer, describing 

the signaling pathways and phenotypes altered during histologic transformation mediated 

by lineage plasticity, and defining a potential therapeutic approach to inhibit emergence of 

T-SCLC in targeted treatment of lung adenocarcinoma.

MATERIALS AND METHODS

Clinical samples

We identified 11 formalin-fixed paraffin-embedded (FFPE) tumors with combined LUAD 

and SCLC histology, from which independent isolation of both histological components was 

possible (N=11, Supplementary Tables S1–2, Supplementary Figure S1). As the components 

of these mixed histology tumors are not temporally ordered, we refer to the component 

parts of these mixed histology tumors as “T-LUAD” and “T-SCLC” with the T referring 

to histologic transformation. We identified an additional 5 pre-transformation LUAD and 

3 post-transformation SCLC cases for which tissue material was available (Supplementary 

Tables S1, S3). As controls we included a group of never-transformed LUADs (N=15) and a 

set of de novo SCLC samples (N=18) (Supplementary Tables S1, S4). All study subjects had 

provided signed informed consent for biospecimen analyses under an Institutional Review 

Board-approved protocol.

Tissue isolation

For microdissection, hematoxylin and eosin (H&E)-stained FFPE tumor slides of tumors 

with combined LUAD/SCLC were independently evaluated by two pathologists. Where 

possible, multiple FFPE blocks of each tumor were reviewed, with the aim of selecting 

areas containing exclusively the LUAD or the SCLC component. Where individual slides 
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with pure components were not available, slides containing both histologic components 

with complete physical separation were selected. Between 10 and 20 unstained sections 

(USS) at 10μm prepared on uncharged slides from corresponding FFPE blocks were used 

for microdissection of each case. Every 10 sections, an additional section was stained with 

H&E for confirmation of histology. The areas corresponding to each histological component 

on the initial H&E were dissected using a clean blade and the tissue collected in 0.5ml 

nuclease free tubes for nucleic acid extraction. Alternatively, 1.0–1.5mm core punches were 

made from LUAD and SCLC areas on the FFPE blocks and placed in 0.5ml nuclease free 

tubes for nucleic acid extraction, exclusively in cases where each histologic component was 

located in a different block, and where no histologic cross-contamination was confirmed by 

pathological review.

DNA Extraction

FFPE tissue was deparaffinized using heat treatment (90°C for 10’ in 480μL PBS and 

20μL 10% Tween 20), centrifugation (10,000xg for 15’), and ice chill. Paraffin and 

supernatant were removed, and the pellet was washed with 1mL 100% EtOH followed by 

an incubation overnight in 400μl 1M NaSCN for rehydration and impurity removal. Tissues 

were subsequently digested with 40μl Proteinase K (600 mAU/ml) in 360μl Buffer ATL at 

55°C. DNA isolation proceeded with the DNeasy Blood & Tissue Kit (QIAGEN catalog # 

69504) according to the manufacturer’s protocol modified by replacing AW2 buffer with 

80% ethanol. DNA was eluted in 0.5X Buffer AE.

RNA/DNA dual extraction from FFPE tissue

FFPE sections were deparaffinized in mineral oil. Briefly, 800μL mineral oil (Fisher 

Scientific, #AC415080010) and 180μL Buffer PKD were mixed with the sections, Proteinase 

K was added for tissue digestion, and the sample was incubated at 56°C for 15 minutes. 

Phase separation was encouraged with centrifugation, and the aqueous phase was chilled 3 

minutes to precipitate RNA. After centrifugation for 15 minutes at 20,000g, RNA-containing 

supernatant was removed for extraction, while DNA remained in the pellet. Nucleic acids 

were subsequently extracted using the AllPrep DNA/RNA Mini Kit (QIAGEN, #80204) 

according to the manufacturer’s instructions. RNA was eluted in nuclease-free water and 

DNA in 0.5X Buffer ATE.

RNA/DNA dual extraction from frozen tissue

Frozen tissues were weighed and homogenized in RLT and nucleic acids were extracted 

using the AllPrep DNA/RNA Mini Kit (QIAGEN, #80204) according to the manufacturer’s 

instructions. RNA was eluted in nuclease-free water and DNA in 0.5X Buffer EB.

Whole exome sequencing from DNA

After PicoGreen quantification and quality control by Agilent BioAnalyzer, 100–500 ng of 

DNA were used to prepare libraries using the KAPA Hyper Prep Kit (Kapa Biosystems 

KK8504) with 8 cycles of PCR. After sample barcoding, 100 ng of library were captured 

by hybridization using the xGen Exome Research Panel v1.0 (IDT) according to the 

manufacturer’s protocol. PCR amplification of the post-capture libraries was carried out 
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for 12 cycles. Samples were run on a HiSeq 4000 in a 100bp/100bp paired end run, using the 

HiSeq 3000/4000 SBS Kit (Illumina).

Whole exome sequencing from previous DNA libraries

After PicoGreen quantification and quality control by Agilent BioAnalyzer, 100 ng of 

library transferred from the DMP were captured by hybridization using the xGen Exome 

Research Panel v1.0 (IDT) according to the manufacturer’s protocol. PCR amplification of 

the post-capture libraries was carried out for 8 cycles. Samples were run on a HiSeq 4000 in 

a 100bp/100bp paired end run, using the HiSeq 3000/4000 SBS Kit (Illumina).

WES sequencing quality

Tumor & normal specimens were sequenced to an average median coverage of 120x and 

71x respectively. Median duplication rate was 39% and uniquely mapped reads were above 

99% for both. In-depth sample level coverage and alignment metrics as computed using 

Picard tools http://broadinstitute.github.io/picard/ is provided in Supplementary Table S13. 

Tumor purity ranged from 25% to 89% tumor cell content as estimated from sequencing 

data, except for Case 10 where the algorithm was unable to predict purity, which is expected 

in low purity samples.

Whole Exome Analysis

We used a comprehensive in-house WES pipeline TEMPO - Time efficient mutational 

profiling in oncology (https://github.com/mskcc/tempo) that performs alignment using 

BWA-mem algorithm followed by mutation calling using Strekla2 and Mutect2 variant 

callers. The combined, annotated and filtered variant calls were used for downstream 

analysis. Details of the variant call processing are described at https://ccstempo.netlify.com/

variant-annotation-and-filtering.html#somatic-snvs-and-indels and are previously described 

as well(46). Copy-number analysis was performed with FACETS (https://github.com/mskcc/

facets), processed using facets-suite (https://github.com/mskcc/facets-suite), and manual 

reviewed and refitted using facets-preview (https://github.com/taylor-lab/facets-preview). To 

delineate mutational processes driving the acquisition of somatic alterations, mutational 

signatures were decomposed for all tumor samples that had a minimum of 5 single-

nucleotide somatic mutations using the R package mutation-signatures (https://github.com/

mskcc/mutation-signatures). Further, a given signature was considered to be ‘dominant’ if 

the proportion of mutations contributing to the signature was at least 20% of all mutations 

detected in the sample.

Purity, ploidy, tumor mutational burden (TMB), genome doubling, and cancer cell fractions 

for all mutations in all specimens were inferred from sequencing data. We estimated 

neoantigen load by taking the number of variants estimated to have strong class I MHC 

binding affinity by NetMHC 4.0(47) and normalizing it by the TMB. We summarized 

the top occurring somatic variants located on cancer genes in an oncoprint using the 

R package ComplexHeatmaps version 2.0.0 (https://github.com/jokergoo/ComplexHeatmap)

(48). Cancer genes were genes defined as “OncoKB Annotated” on the Cancer Gene List 

downloaded on June 2020 (https://www.oncokb.org/cancerGenes). All other plots for this 

analysis were created using ggplot version 3.3.2 (https://github.com/tidyverse/ggplot2).
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Comparison to TCGA

We compared somatic mutations and gene level calls (CNAs) in cancer genes in our 

T-LUAD samples to those in The Cancer Genome Atlas Lung Adenocarcinoma (TCGA-

LUAD) cohort. The mutations for TCGA-LUAD50 cohort were extracted using the R 

package TCGAmutations (https://github.com/PoisonAlien/TCGAmutations) and selecting 

cancer type as “LUAD” by using an in-built R function “TCGAmutations::tcga_load(study 

= “LUAD”)”. For this set of TCGA samples and for our LUAD cohort, we predicted 

gene-level CNAs using the FACETS algorithm. A Fisher exact test was then performed 

via R function https://rdrr.io/bioc/maftools/man/mafCompare.html from maftools R package 

v.2.0.16 (https://github.com/PoisonAlien/maftools)51 to identify significantly altered 

mutations whereas that for gene-level CNAs (amplifications and deletions) was performed 

separately using custom R code. For both mutations and CNAs, genes with p<0.05 were 

considered significantly altered. The results were summarized in a volcano plot using the 

R packages ggplot and ‘EnhancedVolcano’ version 1.7.4 (https://github.com/kevinblighe/

EnhancedVolcano). False Discovery Rates, q-values, were calculated for multiple hypothesis 

testing using the Benjamini-Hochberg method. All analysis was performed using the R 

environment for statistical computing.

Genomic Evolution

Evolutionary relationships among samples were inferred using the union of somatic 

mutations called in any of the tumors for a given case/patient. The genomic evolution 

trees were manually constructed based on the most parsimonious sequence of events using 

mutations and copy number events with the shared alterations represented by the trunk and 

the private alterations represented by the branches with the trunk and arm lengths being 

proportional to the relative number of shared and private alterations. Somatic variant sites 

included were those 1) covered at 20-fold or greater in all tumor and 10-fold or greater in 

matched normal specimens, 2) supported by greater than 3 reads in the tumor, 3) present 

in less than 3 reads in the matched normal, and 4) with a variant allele fraction in any 

affected tumor of greater than 2% for hotspots and 5% for non-hotspots. In order to ensure 

that private alterations are truly private, 1) we genotyped bam files from matched patient 

samples to find whether or not the said alteration is present, albeit at a sub-threshold 

level; if the alteration was indeed genotyped, it was not considered as truly private 2) 

we excluded mutation loci where the matched patient sample shows a copy number 

loss in the region.Samples with sufficient purity (greater than 30%) were selected for 

this analysis. Genotyping was performed using GetBaseCountsMultiSample v.1.2.2 (https://

github.com/mskcc/GetBaseCountsMultiSample). Mutational cancer cell fraction (CCF) was 

inferred using annotate-maf-wrapper function from facets-suite (https://github.com/mskcc/

facets-suite) which uses the variant allele fraction, locus-specific read coverage, and an 

analytical estimate of tumor purity, as previously described(46). WGD was also inferred 

using methods implemented in facets-suite utilizing FACETS(49) output and mutational 

timing analysis in the context of WGD was performed as previously described(50).
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Methylation sequencing

After PicoGreen quantification (ThermoFisher, #P11496) and quality control by Agilent 

BioAnalyzer, 170–750 ng of genomic DNA were sheared using a LE220-plus Focused-

ultrasonicator (Covaris, #500569). Samples were cleaned using Sample Purification Beads 

from the TruSeq Methyl Capture EPIC LT Library Prep Kit (Illumina, #FC-151–1002) 

according to the manufacturer’s instructions with modifications. Briefly, samples were 

incubated for 5 minutes after addition of SPB, 50 μL RSB were added for resuspension, 

and resuspended samples were incubated for 2 minutes. Sequencing libraries were prepared 

using the KAPA Hyper Prep Kit (Kapa Biosystems KK8504) without PCR amplification. 

Post-ligation cleanup proceeded according to Illumina’s instructions with 110 μL Sample 

Purification Mix. After purification, 3–4 samples were pooled equimolar and methylome 

regions were captured using EPIC oligos. Capture pools were bisulfite converted and 

amplified with 11–12 cycles of PCR. Pools were sequenced on a NovaSeq 6000 or HiSeq 

4000 in a 150/150bp or 100bp/100bp paired end run, using the NovaSeq 6000 S4 Reagent 

Kit (300 Cycles) or HiSeq 3000/4000 SBS Kit (Illumina). The average number of read pairs 

per sample was 51 million.

DNA methyl capture EPIC data processing

The Bismark pipeline (51) was adopted to map bisulfite treated EPIC sequencing reads 

and determine cytosine methylation states. Trim Galore v0.6.4 was used to remove raw 

reads with low-quality (less than 20) and adapter sequences. The trimmed sequence reads 

were C(G) to T(A) converted and mapped to similarly converted reference human genome 

(hg19)(52) using default Bowtie 2(53) settings within Bismark. Uniquely aligned reads 

(52% - 83%) were retained. Duplicated reads (30% - 90%) were discarded. The remaining 

alignments were then used for cytosine methylation calling by Bismark methylation 

extractor. The average cytosine coverage ranges from 1.2X to 11X across 49 samples. The 

details of statistics on EPIC data can be found in Supplementary Table S14. Since CHG and 

CHH (H: one of A, T, C) shows minimal presence (<1%), we will focus on cytosines in CpG 

content. Number of CpGs were further filtered by C coverage >= 5 in all samples to yield 

735,636 CpGs that will be used in the subsequent analyses.

Differential methylation analysis

Differentially methylated CpGs (DMCs) were identified using DSS R package(54,55) 

on the basis of dispersion shrinkage followed by Wald statistical test for beta-binomial 

distributions. Any CpGs with FDR < 0.05 and methylation percentage difference greater 

than 10% were considered significant DMCs. Differentially methylated regions (DMRs) 

were subsequently called based on the DMCs. The called DMRs were required to satisfy the 

minimum length of 50bps and minimum 3 CpGs in the region; two neighboring DMRs were 

merged if less than 50bps apart; and significant CpGs were those that occupy at least 50% 

of all CpGs population in the called DMRs as default in DSS package. Pairwise comparisons 

were conducted for pre-transformation LUAD vs control LUAD, post-transformation SCLC 

vs de novo SCLC, and post-transformation SCLC vs pre-transformation LUAD. The DMRs 

were mapped to gene regions at promoters and gene bodies, and differential methylation 

levels were subsequently associated with differential gene expression values in selected 

Quintanal-Villalonga et al. Page 17

Cancer Discov. Author manuscript; available in PMC 2022 September 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pathways. In addition to pairwise comparisons, principal component analysis (PCA) and 

partial least square discriminant analysis (PLSDA) were also performed to classify samples 

into groups and identify influential CpGs using mixOmics R package(55).

Motif enrichment analysis

Differential methylation may influence transcription factor (TF) binding. To identify 

overrepresented known TF motifs due to differential methylation for the post-

transformation SCLC compared with pre-transformation LUAD, “findMotifsGenome.pl” 

from HOMER(56) was applied to DMCs (+/− 50bps) overlapping with gene promoter 

regions. DMCs regions with hyper- and hypo-methylation in SCLC were explored separately 

to show the effects from different methylation status. The significantly enriched TFs were 

defined as those with p value ≤ 0.05.

RNA sequencing

Approximately 500ng of FFPE RNA or 100ng of fresh frozen RNA per sample were 

used for RNA library construction using the KAPA RNA Hyper library prep kit (Roche, 

Switzerland) per the manufacturer’s instructions with minor modifications. Customized 

adapters with unique molecular indexes (UMI) (Integrated DNA Technologies, US) and 

Sample-specific dual-indexes primers (Integrated DNA Technologies, US) were added to 

each library. The quantity of libraries was measured with Qubit (Thermo Fisher Scientific, 

US) and quality measured by TapStation Genomic DNA Assay (Agilent Technologies, US). 

Equal amounts of each RNA library (around 500ng) were pooled for hybridization capture 

with IDT Whole Exome Panel V1 (Integrated DNA Technologies, US) using a customized 

capture protocol modified from NimbleGen SeqCap Target Enrichment system (Roche, 

Switzerland). The captured DNA libraries were then sequenced on an Illumina HiSeq4000 

with paired end reads (2Å~100bp), at 50millions reads/sample.

RNASeq Analysis

In-line UMI sequences were trimmed from the sequencing reads with Marianas (https://

github.com/mskcc/Marianas) and aligned to human GRCh37 genome using STAR 2.7.0 

(https://github.com/alexdobin/STAR)(57) with Ensembl v75 gene annotation. Hybrid 

selection specific metrics and Alignment metrics were calculated for the BAM files using 

CalculateHsMetrics and CollectRnaSeqMetrics, respectively, from Picard Toolkit (https://

github.com/broadinstitute/picard) to determine the quality of the capture.

We quantified RNA-seq reads with Kallisto v.0.45.0(58) to obtain transcript counts and 

abundances. Kallisto was run with 100 bootstrap samples, sequence based bias correction, 

and in strand specific mode, which processed only the fragments where the first read in 

a pair is pseudoaligned to the reverse strand of a transcript. Differential gene expression 

analysis, principle component analysis, and transcript per million (TPM) normalization 

by size factors, were done from Kallisto output files using Sleuth v0.30.0 run in gene 

mode(59). Differentially expressed genes were identified using the Wald test. Genes were 

marked significant if the False Discovery Rates, q, calculated using the Benjamini-Hochberg 

menthod, was less than 0.05, and beta(Sleuth-based estimation of log2 fold change)>1.25, 

which approximately correlated to a log2 fold change of 2 in our data. The log of the 
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normalized TPM values for selected significant genes, were rescaled using a z-score 

transformation, and plotted in a heatmap using the ComplexHeatmap Library in R. RNAseq 

data QC is provided in Supplementary Table S15.

To confirm genetic relatedness for the case lacking WES data, known tumor mutations from 

MSK-IMPACT were genotyped in both RNA samples using GetBaseCountsMultiSample 

v.1.2.2 (https://github.com/mskcc/GetBaseCountsMultiSample). For locations where 

transcripts were expressed, mutations with at least 10 variant alleles were annotated as 

present.

Pathway enrichment

Gene set enrichment analysis (GSEA)(60) was performed on full sets of gene expression 

data across the previously mentioned three comparisons. Genes were ranked on p value 

scores computed as -log10(p value)*(sign of beta). Gene set annotations were taken from 

Molecular Signatures Database (MSigDB v7.0.1)(60,61). Gene sets tagged by KEGG(62,63) 

and REACTOME(64) pathways were retained for further analysis. The significance level of 

enrichment was evaluated using permutation test and the p value was adjusted by Benjamini-

Hochberg procedure. Any enriched gene sets with adjusted p value ≤ 0.05 were regarded as 

significant. This analysis was conducted using ClusterProfiler R package(65). The enriched 

gene sets that are influenced by DMCs were selected and pathway annotations concatenated 

manually to remove redundancy and achieve high level generality. When the pathway terms 

were merged, median enrichment score was taken as the new group enrichment score, p 

values were aggregated using Fisher’s method from the Aggregation R package(66), and 

core enrichment of genes were collapsed.

Phospho-kinase array

Protein samples were quantified with the Bradford method (#5000205, Bio-Rad) and 200 

ug aliquots were used in the phospho-kinase array (#ARYC003C, R&D-Biotechne), which 

was performed using the manufacturer’s instructions. Quantification of spots was performed 

using the Image Studio software (Version 3.1, Li-Cor). Technical replicates (2 per array) 

per sample were averaged. Two-tailed Student’s T-test was performed on these values, 

comparing the T-LUAD and T-LUSC groups.

Cell line transductions

PC9 cell line was purchased from Millipore Sigma (#90071810-VL) and HCC827 cell 

line was purchased from ATCC (#CRL-2868). Both cell lines were authenticated by 

the STR method and regularly tested (last tested April 2022) for Mycoplasma with the 

MycoAlert kit (#LT07–218, Lonza) and maintained in RPMI 1640 10% FBS. Both cell 

lines were used after little passages after purchase (5–10). Lentiviruses were produced 

as previously described(67) with FOXN4 (#EX-I2262-Lv151, GeneCopoeia), POU3F2 

(#EX-A3238-Lv151, GeneCopoeia) and ONECUT2 (#EX-Z4476-Lv151, GeneCopoeia) 

overexpression lentiviral plasmids, with a EGFP overexpression plasmid as control plasmid 

(#EX-EGFP-Lv151, Genecopoeia). Cell lines were transduced at high MOI as previously 

described(67) with overnight virus incubation.
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Immunoblotting

Protein extraction and western blot were performed as previously described(68). Antibodies 

for FOXN4 (#PA539174, ThermoFisher), ONECUT2 (#ab28466, Abcam), POU3F2 

(#12137, Cell Signaling Technology), EGFR (#4267, Cell Signaling Technology), ASCL1 

(#556604, BD), NEUROD1 (#ab109224, Abcam), pAKT (S473, #4060S, Cell Signaling 

Technology), pPRAS40 (T246, #13175, Cell Signaling Technology), Beta catenin (#8480, 

Cell Signaling Technology), Vinculin (#13901, Cell Signaling Technology) and actin 

(#3700, Cell Signaling Technology) were used.

RT-qPCR

RNA extraction, reverse transcription and quantitative PCR were performed as previously 

described(69). FOXN4 expression was normalized to that of GAPDH. Fluorescent probes 

against FOXN4 (#4351372, Applied Biosystems) and GAPDH (#4331182, Applied 

Biosystems) were used.

In vivo treatments

For treatments, 5–10 NOD.Cg-Prkdc<scid> Il2rg<tm1Wjl>/SzJ (NSG) mice were engrafted 

per treatment arm and incubated until they reached 100–150 mm3. At that point, mice were 

randomized into groups and treated with either vehicle, Osimertinib (25 mg/kg/day, by oral 

gavage), DS-3201b (50 mg/kg/day, by oral gavage), Samotolisib (10 mg/kg/day, by oral 

gavage), G007-LK (20 mg/kg/day, intraperitoneally), or combinations of Osimertinib with 

either of the other inhibitors using the same concentrations as in monotherapy, 5 days a 

week. For most treatment arms, mice were sacrificed when tumors reached ~1500 mm3 and 

fixed in formalin 10% O/N for paraffin embedding. For the Samotolisib and Samotolisib 

+ Osimertinib groups, mice were sacrificed in parallel to the Osimertinib-treatment group, 

for direct comparison. Tumors and mice body weight were measured twice a week. T/C 

values were calculated by normalizing average tumor size of the treatment arm of interest 

with the average tumor size of the treatment group, both at control arm endpoint (day 

21). FFPE tumors were stained as previously described(33) using the TTF-1 (#M3575, 

Dako), Napsin A (#NCL-NapsinA, Leica(Novocast)), ASCL1 (#556604, BD Pharmigen), 

NEUROD1 (#ab205300, Abcam) and Chromogranin A (#A0430, Dako) antibodies. All 

mice experiments. All animal experiments were approved by the Memorial Sloan Kettering 

Cancer Center (MSKCC) Animal Care and Use Committee.

Data reporting:

• Whole exome sequencing of combined LUAD and SCLC tumor samples- SRA 

accession ID: PRJNA727969

• RNAseq of combined LUAD and SCLC tumors to look at gene expression 

changes- Arrayexpress Accession ID: E-MTAB-10399

• Methylation capture EPIC sequencing of combined LUAD and SCLC tumors to 

look at gene expression changes- ArrayExpress accession ID: E-MTAB-10617
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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STATEMENT OF SIGNIFICANCE

The difficulty in collection of transformation samples has precluded the performance of 

molecular analyses, and thus little is known about the lineage plasticity mechanisms 

leading to LUAD-to-SCLC transformation. Here, we describe biological pathways 

dysregulated upon transformation, and identify potential predictors and potential 

therapeutic vulnerabilities of neuroendocrine transformation in the lung.
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Figure 1. Multilayer molecular characterization of SCLC transformation.
Related to Supplementary Figure S1. (A) Schematic composition of the cohort under study. 

(B) Illustrative H&E images of two of our combined histology samples, showing spatial 

separation of both independently isolated histologic components. (C) Schema of processing 

of combined histology samples for molecular analyses.
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Figure 2. Genomic characterization of SCLC transformation.
Related to Supplementary Figures S2–3. (A) Bar plot showing number of exonic mutations 

occurring specifically in the T-LUAD and T-SCLC components, and of mutations shared 

between these. (B) Oncoprint showing the most prevalent likely driver/non-VUS mutations 

and CNAs in the transformation samples, grouped by recurrent pathways. (C) Heatmap 

showing complementary genomic and immunohistochemical characterization of RB1 

alterations. (D) Volcano plot showing enrichment of mutations/CNAs in T-LUAD versus 

TCGA LUAD cohort. (E) Bar plot showing prevalence (%) of mutations/CNA enriched 
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in T-LUAD versus TCGA LUAD with over 25% prevalence in our cohort. (F) Pie charts 

showing the abundance of 3p chromosome arm lost in our T-LUAD cases versus TCGA 

LUAD. p-value for enrichment in 3p loss was calculated using the Fisher’s exact test 

for count data. Samples IDs in black and red indicate that they come from a combined 

histology specimen or a pre-/post-transformation specimen, respectively. Cohort sizes for 

these analyses were N=15 for T-LUAD and N=515 for LUAD TCGA (mutations) or N=511 

for LUAD TCGA (CNAs).
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Figure 3. Genomic mutation evolution of SCLC transformation.
Chromosomal gain/losses (at a segment level) in both alleles for matched LUAD and SCLC 

components for each case (left) and reconstruction of clonal evolution (right) in 4 combined 

histology and 1 pair of pre- and post-transformation cases. All oncogenic and hotspot 

mutations are annotated along their respective branch. Samples IDs in black and red indicate 

that they come from a combined histology specimen or a pre-/post-transformation specimen, 

respectively.
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Figure 4. Transcriptomic, epigenomic and protein characterization of SCLC transformation.
Related to Supplementary Figures S4–5. (A) Heatmap showing mRNA expression of 

the SCLC subtype-determining TFs, tumor purity, highest TF expressed by IHC in the 

T-SCLC component and YAP1 mRNA expression in the T-SCLC component relative 

to their matched T-LUAD component, in the transformation samples. (B) IHC images 

for subtype-determining TFs in the SCLC-P T-SCLC cases (ch1 and ch3). (C) PCA 

analysis on the transcriptomes of our pre- and post-transformation samples, and of our 

control LUAD and de novo SCLC samples. (D) PLSDA analyses on the methylome of 
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our T-LUAD and T-SCLC samples, and of our control LUAD and SCLC samples. (E) 

Pathway enrichment analyses on the DEGs of the T-LUAD versus T-SCLC comparison. 

(F) Heatmap highlighting DEGs of interest, grouped by recurrent pathways. (G) Bar plot 

showing differential phosphorylation of genes involved in the AKT/Wnt signaling pathways, 

and differential expression of β-catenin, as determined by an antibody array on pre- and 

post-transformation clinical and PDX samples. Samples IDs in black and red indicate that 

they come from a combined histology specimen or a pre-/post-transformation specimen, 

respectively. p-values legend: * p<0.05, **p<0.01.
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Figure 5. Integrative RNA and methylation analyses of SCLC transformation.
Related to Supplementary Figure S4. (A) Scatter plots showing DEGs exhibiting differential 

methylation levels in T-LUAD versus control LUAD comparison, grouped by pathways 

of interest. Significantly differentially expressed (q value < 0.05 and beta >= log2(1.5)) 

and methylated (FDR < 0.5 and differential methylation level greater than 0.1) sites are 

highlighted. Those genes where increased gene body or promoter methylation is correlated 

to expression positively and negatively, respectively, are labeled. (B) Plot exhibiting 

differentially methylated transcription factor binding domains in T-SCLC versus T-LUAD. 

Interested TFs in this study are highlighted and labeled.
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Figure 6. Integrative RNA and methylation analyses of T-LUAD and T-LUSC versus their 
control counterparts.
Related to Supplementary Figure S6 (A) Alterations in the RB pathway identified in 

T-LUAD. (B) Pathway enrichment analyses on the DEGs of the T-LUAD versus control 

LUAD comparison. (C) Heatmap highlighting DEGs of interest, grouped by recurrent 

pathways, of the T-LUAD versus control LUAD comparison. (D) Pathway enrichment 

analyses on the DEGs of T-SCLC versus de novo SCLC comparison. (E) Heatmap 

highlighting DEGs of interest, grouped by recurrent pathways, of T-SCLC versus de novo 
SCLC comparison. (F) Scatter plots showing DEGs exhibiting differential methylation 
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levels in T-SCLC versus de novo SCLC comparison, grouped by pathways of interest. 

Significantly differentially expressed (q value < 0.05 and beta >= log2(1.5)) and methylated 

(FDR < 0.5 and differential methylation level greater than 0.1) sites are highlighted. Those 

genes where increased gene body or promoter methylation is correlated to expression 

positively and negatively, respectively, are labeled. Samples IDs in black and red indicate 

that they come from a combined histology specimen or a pre-/post-transformation specimen, 

respectively.
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Figure 7. Potential therapeutic approaches for SCLC transformation.
Related to Supplementary Figure S7. (A) H&E and IHC markers of interest images 

showing combined LUAD and SCLC histology in the T14-CH PDX. (B) In vivo tumor 

growth of the combined LUAD/NE EGFR-mutant PDX model T14-CH with the EGFR 

inhibitor Osimertinib, the AKT inhibitor Samotolisib, or their combination. Group mean 

tumor size ± SEM is shown. Statistical differences in tumor sizes were assessed by a 

two-tailed Studentś t-test, using the tumor sizes for day 21 (control group endpoint) for 

those comparisons involving the control group, and on day 31 (experiment endpoint) for 
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those comparisons involving the Osimertinib-treated group. (C) Representative H&E and 

IHC stains for the LUAD markers TTF-1 and Napsin A and the NE markers ASCL1, 

NEUROD1 and Chromogranin A, of tumors in each treatment arm. (D) Percentages of 

LUAD component per treatment group, showing the median ± standard deviation per group. 

Statistical differences were assessed by a two-tailed Studentś t-test. Diagnosis of each 

histological component was performed by a pathologist using morphological criteria and 

differential staining of LUAD (TTF-1, Napsin A), NE (ASCL1, NEUROD1, Chromogranin 

A) and other supporting (Ki67, pEGFR) markers. (E) Schematic of molecular and phenotype 

changes on the different steps of SCLC transformation. Our data suggest that transformation 

from LUAD to SCLC may be a progressive process involving multiple signaling pathways 

and phenotypic changes. This process may be initiated by the loss of TP53 and RB1, 

decreased dependence on RTK signaling and Notch signaling downregulation, and involve 

progressive activation of AKT and WNT signaling pathways, epigenomic regulation by the 

PRC2 complex and a number of additional epigenetic enzymes, acquisition of a neuronal 

and EMT phenotype, and downregulation of genes involved in multiple immune response 

pathways. Created with BioRender.com.p-values legend: * p<0.05, **p<0.01, ***<0.001.
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