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Abstract

Williams syndrome (WS) is a relatively rare microdeletion disorder that occurs in as many as 

1:7,500 individuals. It arises due to mispairing of low-copy DNA repetitive elements at meiosis. 

Deletion size is similar across most individuals with WS and leads to loss of one copy of 25–

27 genes on chromosome 7q11.23. The resulting unique disorder affects multiple systems, with 

cardinal features including, but not limited to, cardiovascular disease (characteristically stenosis 

of the great arteries and most notably supravalvar aortic stenosis), a distinctive craniofacial 

appearance and a specific cognitive and behavioural profile that includes intellectual disability and 

hypersociability. Genotype–phenotype evidence is strongest for the elastin (ELN) gene, which is 

responsible for the vascular and connective tissue features of WS, and for the transcription factor 

genes GTF2I and GTF2IRD1, which are known to affect intellectual ability, social functioning 

and anxiety. Mounting evidence also ascribes phenotypic consequences to deletion of BAZ1B, 
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LIMK1, STX1A and MLXIPL, but more work is needed to understand the mechanism by which 

these deletions contribute to clinical outcomes. Age of diagnosis has fallen in regions of the 

world where technological advances, such as chromosomal microarray, enable clinicians to make 

the diagnosis of WS without formally suspecting it, allowing earlier intervention by medical 

and developmental specialists. Phenotypic variability is considerable for all cardinal features of 

WS, but the specific sources of this variability remain unknown. Further investigation to identify 

factors responsible for these differences may lead to mechanism-based rather than symptom-based 

therapies and, therefore, should be a high research priority.

Introduction

Williams syndrome (WS; also known as Williams–Beuren syndrome; OMIM 194050), is a 

distinctive multisystem disorder (Figure 1, Supplementary box 1). The most common areas 

of involvement include the cardiovascular, central nervous, gastrointestinal and endocrine 

systems, although any organ system could be affected. Recognition of WS as a distinct 

clinical syndrome dates back to the mid-20th century1–3, and knowledge of the phenotype 

has steadily expanded over the ensuing ~60 years.

We now know that cardiovascular disease is present in most individuals with WS4–6, 

with the most frequent abnormalities involving vascular stenoses of medium- and large-

sized arteries (referred to as elastin arteriopathy)7. Depending on the location, severity 

and timing of onset, the management of the vasculopathy consists of noninvasive or 

surgical intervention complemented by life-long monitoring. Additional cardiovascular 

features include hypertension and a small but increased risk of cardiovascular sudden 

death8–12. The neurodevelopmental phenotype is unique and multifaceted. Mild to moderate 

intellectual disability is common but not universal and is seen in conjunction with a 

distinct cognitive profile of relative strengths and weaknesses13,14. In addition, there is 

a characteristic personality profile that includes overfriendliness, shortened attention span 

and/or distractibility, nonsocial specific phobias and anxiety15,16.

The genetic basis of WS was first identified in 1993, when fluorescence in situ hybridization 

(FISH) studies showed deletion of an elastin allele (ELN) on chromosome 7q17. We now 

know that WS is caused by a <2-million base pair (Mb) microdeletion on chromosome 

7q11.23 and that the local genomic architecture predisposes to de novo occurrence of this 

deletion18. Individuals with WS are, therefore, hemizygous for the 25–27 genes that map to 

this interval, and reduction in the gene product of several key genes contributes to specific 

aspects of the WS phenotype.

Since WS was initially described, advances have been made in our understanding of the 

complexity and changing nature of the phenotype, the genetic basis of WS, the mechanisms 

that lead to selected phenotypes and the benefit of certain interventions. Yet, many more 

unanswered questions remain. Accordingly, our ability to optimize care and improve 

outcomes is modest.

In this Primer, we provide a snapshot of selected WS features across the lifespan, outline 

current and emerging diagnostic technologies, discuss the genetic basis of some of the most 
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impactful WS features, and elaborate on pathophysiological mechanisms, where known. 

This information is key for formulating high-priority future research questions, the answers 

to which could accelerate WS-specific treatments.

Epidemiology

WS is a rare panethnic genetic condition. Although this syndrome has been described in 

different populations around the world, most reports address clinical and molecular findings, 

with little focus on epidemiological data. The most widely cited epidemiological study is 

from Norway19, which reports a prevalence of 1 in 7,500 live births, a prevalence which is 

higher than that often cited in many non-epidemiologic sources20,21. WS is sufficiently rare 

that it is unfamiliar to most doctors, scientists, and researchers.

The age of diagnosis of WS has trended towards younger ages over the past decades, 

most notably in high-income countries with greater availability of molecular diagnostic 

testing. In cohorts from the USA and Australia, the median age of diagnosis decreased by 

more than 2 years to around 1 year of age since the 1980s (B.A.K. and M.P., unpublished 

work). (Figure 2 and Supplementary box 2 were removed in post-acceptance processing). 

However, series from other countries indicate that diagnosis is often still established during 

childhood rather than infancy, even with access to molecular confirmation22,23. Several 

studies reported particular difficulty in diagnosing WS in African populations (or in those of 

African descent)24–26, owing to a variety of factors. Unfortunately, nearly all studies on WS, 

independent of topic, describe Caucasian individuals, and few studies whose participants 

represent diverse populations have been published27. Of note, the absence of clinically 

evident cardiovascular disease was associated with later diagnosis28.

The prevalence of WS is comparable in males and females5,29. However, males are more 

likely to have severe cardiac disease30, especially supravalvar aortic stenosis (SVAS)29,31. 

There is no evidence that WS prevalence changes with parental age. Moreover, consistent 

differences in phenotype have been associated with the sex of the transmitting parent (that is, 

whether the deletion arose in the sperm or the egg)18,32.

Vascular anomalies, such as SVAS and stenosis of other large arteries including the 

pulmonary arteries, descending aorta, renals, mesenterics, and coronary arteries contribute 

to morbidity and mortality across the life span4. Other features, such as diverticular disease 

and aortic or mitral valve dysfunction, may also influence mortality in older age groups 

but are to-date insufficiently quantified in the literature. Sudden death incidence has been 

reported as 1:1000 patient years and is often associated with administration of sedation or 

anaesthesia for cardiac surgery; this rate is 25 to 100 times higher than in the age-matched 

general population12. Several adult cohorts have been described with participants as old as 

86, but few studies included long-term adult follow up33,34, making it difficult to accurately 

estimate the life expectancy of individuals with WS.
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Mechanisms/pathophysiology

General mechanisms underlying WS

In the 1990s, compelling evidence emerged indicating that WS is a genetic disorder with 

an autosomal dominant mode of inheritance35–38. Non-genetic risk factors are not known to 

contribute to the occurrence of WS.

Genomic structure and rearrangements.—WS is caused by the pathological loss of 

the Williams syndrome critical region (WSCR), a 1.55–1.83 Mb region which encompasses 

25–27 unique protein-coding genes on chromosome 7q11.23. The WSCR frequently 

undergoes rearrangement due to the presence of large, complex segmental duplications 

termed low-copy repeats (LCRs), which are highly similar to one another and flank the 

WSCR39. The LCRs extend for several hundreds of kilobases, are comprised of genes and 

pseudogenes organized into distinct blocks (designated A, B and C), and contain extensive 

stretches of >99% nucleotide identity. They are thought to have emerged during primate 

evolution — first by duplication of smaller segments and later by transposable element 

(for example, Alu-mediated) shuffling, to produce the complex arrangement that exists in 

humans today40.

The LCRs mediate non-allelic homologous recombination (NAHR) events between the 

highly similar DNA sequences during meiosis, resulting in an increased rate of de novo 
copy number variation (CNV) events within the region39,41–43 (Figure 3). The WS deletion 

commonly occurs through NAHR between B block sequences in direct orientation with 

respect to each other, with the specific breakpoints depend on the precise site of NAHR39. 

The reciprocal event (that is, duplication of the same genomic area) produces a condition 

referred to as 7q11.23 duplication syndrome, resulting in 3 copies of each WSCR gene. 

Recombination between B blocks (LCRs with the highest nucleotide identity) in an inverted, 

rather than direct, orientation, results in an inversion of the intervening chromosome 

segment42 (Figure 3). This inversion, which is present in 6–7% of the general population44, 

does not cause symptoms45 but seems to increase the incidence of subsequent meiotic 

rearrangements42,44. Other LCR-specific rearrangements have also been observed at a higher 

frequency in the transmitting parents of children with WS41.

Atypical deletions.—While most deletions span the typical 1.55–1.83 Mb interval at 

7q11.23, there are individuals with rare deletions that encompass smaller or larger segments 

of the WSCR, often with one common and one unique breakpoint. Larger deletions that 

extend beyond the WSCR generally cause additional features. When these deletions extend 

toward the telomere and span the YWHAG and/or MAGI2 genes, seizures are common46,47, 

although there are reports of epilepsy in individuals with the typical deletion48. Inclusion of 

the AUTS2 gene on the centromeric side may result in smaller head size than is usually seen 

in WS49, and larger deletions can also alter the characteristic WS behavioural profile49,50. 

Deletion of HIP1 (formerly HSP27) in particular has been associated with more severe 

intellectual disability50,51.

Smaller deletions result in a subset of the phenotypic features seen in classic WS40,50,52–64, 

but clear-cut correlations between deletion size and specific phenotypic features are 
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challenging, with the exception of ELN. This is likely due to the paucity and variety of 

small deletions, differing methods for phenotypic assessment, and high likelihood of the 

combinatorial effects of gene deletion. Several specific genotype–phenotype relationships 

are discussed in the next section.

Genomic analyses.—CNV events of the 7q11.23 region have been shown to affect both 

gene transcription and DNA methylation across the entire genome. Initial studies in WS 

lymphoblast cell lines identified dysregulation of genes involved in glycolysis and neuronal 

migration65, while subsequent studies of blood RNA highlighted upregulation of three gene 

expression modules linked to B cell activation, RNA processing and RNA transport66.

Transcriptome analysis of more relevant cell types has been made possible by the ability 

to reprogramme somatic cells into induced pluripotent stem cells (iPSCs) and direct them 

down specific cell lineages67. For example, iPSC-derived cortical neurons from individuals 

with WS show reduced expression of genes involved in neurotransmitter receptor activity, 

synaptic assembly and potassium channel complexes68. Comparison of gene expression 

in WS iPSCs with those from individuals with 7q11.23 duplication syndrome revealed 

that many of the differentially expressed genes have a symmetrically opposite pattern 

of expression69. A similar symmetrical gene–dose-dependent pattern was seen in DNA 

methylation analysis of blood DNA from individuals with WS (7q11.23 deletion) and 

those with the 7q11.23 duplication syndrome70, suggesting that CNV in this area affects 

epigenetic regulation of the genome.

Molecular mechanisms

The WSCR contains 25–27 genes and several noncoding RNAs. Knowledge about how 

each of these genes contributes to the WS phenotype is still growing (Figure 4). Several 

mouse models inform those efforts, including single gene knockouts, as well as deletion 

of the entire WSCR (CD)71–73 and two half-deletions (PD and DD)74. To refine genotype-

phenotype correlations, we will focus only on selected single gene knockout models.

Seven genes (BAZ1B, VPS37D, STX1A, LIMK1, CLIP2, GTF2IRD1 and GTF2I) have a 

probability of loss-of-function intolerance (pLI) score of 0.9 or higher75, suggesting that 

only a subset of the genes in the WSCR directly contributes to phenotype. A pLI score 

is calculated by examining the frequency of loss of function variants in a population; 

fewer variants than expected is associated with a higher score and implies a greater 

likelihood of pathogenicity. It is important to point out that the gene with the greatest 

support for a role in the phenotypic consequences of WS is ELN, which has a pLI of 0. 

Similarly, considerable evidence implicates deletion of MLXIPL (pLI = 0.05) in metabolic 

aspects of WS. These two examples highlight the inadequacy of predictors such as pLI 

in identifying all pathogenetic genes. An overview of the best characterized genotype–

phenotype correlations for WSCR genes is provided below.

Elastin.—The ELN gene is transcribed in tissues that stretch and recoil, such as the lungs, 

skin and elastic arteries (including the aorta, where elastin accounts for up to 50% of the 

vessel’s dry weight)76,77. The protein consists of repeating hydrophobic and crosslinking 

domains. The crosslinks allow monomers to be bound to one another in a highly interwoven 
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polymer that allows for distribution of force, while the hydrophobic domains drive the recoil 

process through entropy when they are exposed to an aqueous environment with tissue 

expansion (stretch)78,79. The polymer is long-lived, with a short window for deposition 

and a calculated half-life of 74 years80. Interestingly, although robust elastogenesis occurs 

only during early growth and development, ELN is thought to be continually transcribed 

throughout the lifespan81. Outside of this tight developmental window, ELN transcripts are 

quickly turned over82,83. As such, this connection between transcription, translation and 

assembly is ripe for investigation.

Individuals with loss-of-function point mutations84–86 or intragenic deletions87 within ELN 
have ELN-associated familial SVAS, and develop cardiovascular manifestations that are 

indistinguishable from those found in WS. Common features include focal or long-segment 

stenosis (narrowing) of the large elastic arteries in the setting of a globally narrow and thick-

walled vasculature4,6,7,30,88. Stenosis of the supravalvar aortic and supravalvar pulmonary 

arteries are the most common and show considerable variability in severity29,89. While 

pulmonary artery stenoses often improves with age, narrowing on the aortic side may 

stay the same, improve or worsen with time 5,88,90. Other vessels, such as the descending 

aorta, renal arteries, mesenteric arteries and coronaries may also exhibit stenosis, with 

symptomatology pointing to hypoperfusion of the associated end organ (hypertension, 

abdominal pain, and cardiac hypoperfusion with ST elevation or sudden death). Even in 

the absence of stenosis, individuals with either WS or familial SVAS have high rates 

of hypertension and vascular stiffness, which are detectable as early as infancy and 

childhood8,91. An increased sudden death relative risk with and without anaesthesia has 

been reported10,92–94; the precise mechanism by which this occurs is not currently known 

but it is expected to be multifactorial, reflecting the complex vascular pathophysiology95.

Heterozygous Eln knockout (Eln+/–) mice recapitulate relevant cardiovascular features of 

WS, including aortic wall thickening, hypertension and cardiac hypertrophy7,however, it 

has been difficult to replicate the hourglass-type supravalvar stenoses commonly seen in 

individuals with WS or familial SVAS. Neither Eln+/–nor transgenic Eln–/– mice expressing 

the human ELN gene (Eln–/–;ELN+ mice, which have 30% of normal elastin levels) develop 

frank stenosis, although Eln–/–; ELN+ mice exhibit more severe arterial wall thickening, 

luminal narrowing, hypertension and cardiac hypertrophy than Eln+/– mice96. Discrete 

stenosis or coarctation (congenital narrowing) of the aortic arch as well as the development 

of neointima (thickening of the intima characteristic of segmental aortic stenoses in WS) 

has been described in mice with a homozygous Eln deletion restricted to vascular smooth 

muscle cells97. Unfortunately, most of these mice do not survive past postnatal day 18.

Several hypotheses have been postulated for the mechanism by which elastin insufficiency 

causes large vessel arteriopathy. Segmental stenoses are thought to develop through 

increased proliferation and migration of vascular smooth muscle cells due to a reduction 

or lack of elastin98–100. Lineage tracing indicates that the excess smooth muscle cells 

responsible for inward remodeling of the arterial wall are not clonal but are derived from 

multiple existing smooth muscle cells in the media layer101. Inward remodeling is caused 

in part by excess integrin β3 signaling, as genetic or pharmacological inhibition of this 

pathway reduces vascular pathology and extends lifespan in Eln–/– mice101. Other work 
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suggests that rather than an increase in proliferation, elastin insufficiency produces medial 

fibrosis, altered mobility of smooth muscle cells and abnormal circumferential growth, 

leading to smaller lumen size and thicker arterial walls102. Additional studies suggest that 

hypertension arises in Eln+/– mice as part of a developmental adaptation to normalize 

vessel wall stress, capitalizing on the increased pressures to prop open the narrow, stiff 

elastin-insufficient vessels103, although more recent studies indicate that reactive oxygen 

species (ROS) production may also have a role74. Several additional molecular and cellular 

mechanisms impact the pathogenesis of elastin arteriopathy, including mechanistic target 

of rapamycin (mTOR) perturbation of smooth muscle mechanosensing 104–106, and the 

adaptive immune system29.

In addition to vascular disease, patients (and mice) with elastin insufficiency have impaired 

pulmonary107–109 and skin110,111 elastic fibres, leading to impaired tissue mechanics. Other 

common connective tissue features of WS may also be linked to elastin insufficiency, such 

as periumbilical or inguinal hernias112, hoarse voice113, earlier-onset skin wrinkling111, 

atypical scar formation111 and genitourinary phenotypes112.

NCF1 modification of elastin-mediated hypertension.—Neutrophil cytosolic factor 

1 (NCF1) resides at the telomeric end of the WSCR. Two NCF1 pseudogenes, NCF1B 
and NCF1C, are present in the LCR regions that flank the typical deletion. NCF1 is 

the regulatory subunit for several NADPH oxidase (NOX) complexes and generates ROS 

in multiple cell types, including endothelial cells, smooth muscle cells and leukocytes, 

following various stresses114,115. A deletion that removes NCF1 is found in ~50% of 

individuals with WS91,116. Loss of NCF1 has been associated with relative protection 

from hypertension and vascular stiffness in individuals with WS91,116 and in animal 

models74,117,118.

GTF2I and GTF2IRD1.—General transcription factor 2-I (GTF2I) and GTF2I repeat 

domain-containing 1 (GTF2IRD1) are paralogous genes located on adjacent loci at the 

telomeric end of the WSCR. They encode transcription factors and contribute to typical 

WS behaviour and development. On the molecular level, GTF2IRD1 and GTF2I encode 

BEN and GTFII-I, respectively, which are members of a versatile protein family with broad 

functional activities119–121.

GTFII-I is a highly conserved and ubiquitously expressed multifunctional transcription 

factor122–125 that regulates gene expression120,126,127 through interactions with tissue-

specific transcription factors and complexes related to chromatin remodelling125. GTFII-

I is activated in response to various extracellular signals and then translocates to the 

nucleus121,125,126,128. GTFII-I has been shown to be involved in multiple processes, which 

include regulating embryonic development122,129,130, the cell cycle125,127,131,132, actin 

cytoskeleton dynamics, axon guidance132 and epigenetic regulation133,134. Indeed, an iPSC-

based study showed that GTF2I alterations are responsible for 10–20% of the transcription 

dysregulation in disease-relevant pathways in WS and in the 7q11.23 duplication syndrome, 

beginning in the pluripotent state and further amplified during development69.
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From a phenotypic standpoint, individuals with classic deletions of the WSCR14 and those 

with shorter deletions that result in loss of GTF2IRD1 and GTF2I62 (Figure 3) typically 

show intellectual disability, high social approach to familiar persons and indiscriminate 

social approach to strangers (also referred to as social disinhibition or hypersociability), and 

difficulties in social communication (pragmatics). By contrast, individuals with deletions 

that spare these two genes typically exhibit neither intellectual disability40,54,56,59,135–137 

nor these social characteristics59,138. Interestingly, individuals with shorter WS deletions 

that spare GTF2I but remove GTF2IRD1 also typically do not exhibit intellectual disability 

or hypersociability136,139, but they do show increased social approach to familiar people 

and difficulty with social pragmatics136. Further evidence for the role of GTF2I gene dose 

in intellectual ability comes from a family with a very short duplication affecting GTF2I 
but not GTF2IRD1; all family members with GTF2I duplication had intellectual disability, 

whereas the intellectual ability of those with the usual two copies of GTF2I was average140.

As in humans, partial hemizygous deletion of the mouse WSCR including Gtf2i 
results in increased sociability but also impairs motor coordination in mutant mice71. 

Homozygous deletion of Gtf2i in mice results in embryonic lethality owing to severe 

developmental abnormalities122,124,141, such as exencephaly and neural tube disclosure, 

whereas heterozygous mice show impaired social habituation to an unfamiliar mouse141,142. 

Selective deletion of Gtf2i in excitatory neurons leads to myelination alterations, 

motor deficits and hypersociability, which normalize with pharmacological rescue of 

myelination143,144. Intracisternal Gtf2i-gene therapy in the CD (full WS deletion) mouse 

model resulted in beneficial effects on behavioral deficits related to motor, social and 

anxiety-like behaviors145.

Taken together, these findings suggest that loss of a GTF2I allele is a major contributor 

to the intellectual disability and social disinhibition that are characteristics of individuals 

with WS. Deletion of GTF2IRD1, even without deletion of GTF2I, likely contributes to the 

social communication difficulties and generally increased social approach. Findings of dose-

dependent Gtf2i-specific social and anxiety phenotypes in mouse models146,147 converge 

with those observed in the human hemideletion and duplication syndromes14,146,148,149. In a 

study of the effects of Gtf2i copy number on cortical neuron maturation and function, mice 

with a single copy of Gtf2i showed increased axonal outgrowth, whereas this outgrowth was 

decreased in mice with three Gtf2i copies150. The axonal growth effects of GTFII-I might 

occur through regulating the expression of the homeobox proteins DLX5 and DLX6151, 

thereby affecting the excitatory/inhibitory balance in the brain152. This balance has been 

suggested as a possible mechanism that causes autism spectrum disorder (ASD)153. In 

this regard, it is noteworthy that both deletion154,155 and duplication156 of the WSCR are 

associated with elevated rates of ASD.

Other candidate genes.—For several other genes within the WSCR, there is emerging 

evidence of an association with components of the Williams syndrome phenotype. 

Bromodomain adjacent to zinc finger domain 1B (BAZ1B), a member of the B-WICH 

chromatin remodelling complex, is essential for correct neural crest cell migration in 
vitro157 and in vivo158 and has been proposed as a master regulator of human craniofacial 

development157. As the enteric nervous system is also derived from the neural crest159, 
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it is possible that abnormal innervation of the intestine contributes to WS gastrointestinal 

phenotypes, such as dysmotility and chronic constipation.

LIM domain kinase 1 (LIMK1) regulates actin cytoskeleton assembly and disassembly and 

has been linked with visual spatial cognitive ability in individuals with WS64 and in the 

general population160. Limk1–/– mice show visuospatial deficits, altered dendritic spine 

morphology and reduced synaptic plasticity, leading to reduced long-term memory. Limk1 
expression can be upregulated by both brain-derived neurotrophic factor161 and cAMP 

response element-binding protein162, suggesting potential therapeutic avenues.

Syntaxin 1A (STX1A) is a key member of the protein complex that mediates exocytic 

vesicle fusion, thereby allowing the release of neurotransmitters into the synapse. 

Neuropsychiatric disorders found in individuals with WS have been associated with STX1A 
variants163,164. Insulin secretion from the pancreas is also dependent on exocytosis165, 

and STX1A levels are indeed reduced in members of the general population with type 

2 diabetes mellitus166. Diabetes is common in adults with WS167, suggesting a possible 

physiological link with STX1A hemizygosity. As the MLXIPL gene, which encodes the 

ChREBP transcription factor that regulates both glucose168,169 and lipid metabolism170, is 

also located within the WSCR, both ChREBP and STX1A could contribute to the metabolic 

phenotypes in WS.

Bialleleic missense variation in DNAJC30, (DNAJ heat shock protein 40 family (Hsp40)) 

member 30 was recently associated with Leber’s hereditary optic neuropathy in humans171, 

a mitochondrial condition. Similar features have not, to date, been reported in WS. Bialleleic 

deletion of this gene in mice also produces mitochondrial dysfunction and behavioral 

changes172. More work is needed to investigate the impact of isolated hemideletion in 

humans, but potential impact of this gene on neurodevelopment should be considered.

Diagnosis, screening and prevention

Clinical diagnosis

WS is a multisystem disorder with a broad but characteristic pattern of organ involvement 

(Figure 1), including a distinctive facial appearance173–175 (Figure 5). As there is no 

newborn screening for WS, clinical consideration of the diagnosis is prompted by the 

presence of suggestive signs and/or symptoms. Below, we outline the most common 

presenting features prompting consideration of a WS diagnosis. Of note, the extent and 

exact distribution of system involvement can vary considerably from patient to patient.

Craniofacial differences.—Individuals with WS often present with facial features that 

are not typical for their family. Prominent features in infants and young children include a 

broad forehead, peri-orbital fullness, flat bridge of the nose, full cheeks, long philtrum, and a 

small delicate chin. Adolescents and adults often continue to have micrognathia, but the face 

elongates over time, the nasal bridge is no longer flat, and there is fullness of the lips with 

a wide mouth (especially appreciated when smiling). Children and adults of different ethnic 

backgrounds from Brazil with molecularly confirmed WS are depicted in Figure 5.
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Cardiovascular anomalies.—Cardiovascular disease in WS typically presents with a 

heart murmur. Evaluation in children most commonly reveals SVAS and/or stenosis of the 

main or branch pulmonary arteries. Pulmonary vascular disease is often less prominent in 

older individuals with WS. Other WS cardiovascular features, such as stenosis in other 

vessels, septal defects, hypertension, vascular stiffness or EKG abnormalities, are generally 

not the reason for referral but may be present at the time of diagnosis.

Hypercalcaemia.—Actionable hypercalcaemia (serum calcium >12.0 mg/dl) is seen in 

5–10% of children with WS and when present usually occurs between 6 and 30 months of 

age176. While some children with hypercalcaemia are irritable and show poor oral intake, 

other cases are detected incidentally by laboratory testing.

Growth concerns.—On average, children and adults with WS are shorter than expected 

for age177. Once a diagnosis is made, WS-specific growth charts are available for plotting 

children’s expected growth178,179. In addition, many infants with WS exhibit prolonged 

colic may have difficulty feeding due to oral motor delays or sensitivities, and have difficulty 

gaining weight.

Developmental delay, intellectual disability and behavioural profile.—
Developmental delay is almost universal and 75% of older children and adults with WS have 

intellectual disability (IQ <70)178, with most remaining individuals displaying borderline IQ 

(70–79) and/or more specific neuropsychological impairments13,14.

Many experienced parents almost immediately notice differences from typically developing 

infants, but other parents may not become concerned until they realize their child with WS is 

not meeting motor or language milestones. Features of ASD may also lead to referral.

Differential diagnosis

It is important to distinguish WS from other syndromes with overlapping features. Certain 

highly suggestive features (such as SVAS, hypercalcemia and characteristic facial features) 

exist that, when seen in combination by an experienced examiner, readily yield a correct 

clinical diagnosis of WS. And though a few other disorders are evocative of WS, in that they 

have a similar pattern of organ involvement (such as Fetal Alcohol syndrome, Rasopathies, 

FG syndrome), detailed examination of their specific features reveals distinct differences 

from WS. Some individuals come to medical attention, however, due to a single prominent 

feature. Depending on the specific presenting symptom, the differential diagnosis varies and 

Supplementary Table 1 is presented to aid practitioners in that setting. A clinical suspicion 

of WS should always be confirmed with genetic testing (see below).

Testing approaches

The most widely used laboratory methods available to detect the 7q11.23 microdeletion 

include FISH, polymorphic microsatellite markers, multiplex ligation-dependent probe 

amplification (MLPA) and chromosomal microarray analysis (CMA) (Table 1). CMA is 

the only current method that does not require the clinician to suspect a specific diagnosis of 

WS prior to testing. In addition to providing mapping for deletion boundaries and offering 
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the ability to detect atypical deletions, CMA can also identify additional CNV events 

elsewhere in the genome. MLPA and polymorphic microsatellite markers are often used 

in low- and middle-income developing countries owing to their lower cost than FISH and 

CMA22,23,180,181.

Newer technologies, such as facial recognition software182–184, may help focus the 

differential diagnosis and have been evaluated in individuals from various racial and ethnic 

backgrounds; the diagnostic precision of the software will likely continue to improve over 

time. Additional testing (gene sequencing or trinucleotide repeat expansion testing) may be 

indicated based on the differential diagnosis (Supplementary table 1). In the future, whole-

genome sequencing may provide CNV and single-nucleotide polymorphism detection in a 

single test that will simultaneously assess for WS and other possible differential diagnoses.

Recurrence risk

If a parent has WS, the risk of WS in offspring is 50% for each pregnancy. However, owing 

to the complex medical and neurodevelopmental challenges associated with WS, few adults 

with WS have children.The recurrence risk for couples where neither parent has clinical 

findings of WS is extremely low185, since the 7q11.23 microdeletion arises de novo in the 

vast majority of cases. For these couples, parental testing for a 7q11.23 microdeletion is not 

indicated and neither is invasive prenatal testing of subsequent pregnancies (although many 

parents opt for the latter, especially in countries where molecular diagnostic testing is widely 

available). However, there are rare reports of recurrence in phenotypically normal parents. 

This recurrence is likely attributed to parental mosaicism186 or to one parent carrying 

an inversion of the WSCR185. The inversion has been associated with an approximately 

five-fold increase in risk of having a child with WS in each pregnancy; nevertheless, testing 

for the presence of inversion in phenotypically normal parents is not recommended, because 

their recurrence risk — despite being five times higher — remains well below 0.1%42,44,185.

Pregnancy and prenatal testing

Limited clinical information exists on pregnancies in women with WS187,188. Review of 

this literature suggests that mothers and fetuses (affected by WS or not) may require close 

monitoring, especially with regard to the maternal cardiovascular system.

In addition, there is no routine prenatal test that adequately screens for WS, although 

prenatal ultrasonography can sometimes detect relevant fetal anomalies. The most 

common prenatal finding is nonspecific, namely intrauterine growth retardation189. Various 

cardiovascular anomalies also can be seen and range from nonspecific (for example, 

ventricular septal defect) to nearly pathognomonic for elastin arteriopathy (for example, 

SVAS, although this finding is quite difficult to make by prenatal ultrasound)165. The 

prenatal detection of growth retardation combined with any cardiovascular defect may 

warrant performing high-resolution prenatal ultrasonography and genetic testing.

Noninvasive prenatal testing (NIPT) involves sequencing of fetal DNA circulating in the 

maternal circulation and can detect common fetal chromosomal aneuploidies in the first 

trimester. Currently, as even enhanced NIPT platforms can only detect deletions >3 Mb, 

they cannot be used to diagnose WS189. However, further technical advances in the NIPT 
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technology are likely to enhance prenatal diagnosis and therefore affect the epidemiology 

of WS in the future. In addition, whole-genome sequencing may eventually be utilized 

to perform combined single-nucleotide polymorphism, copy number variant and structural 

variant detection in fetal samples. Prenatal diagnosis offers the opportunity to provide 

genetic counseling to families sooner, allowing them to avoid a diagnostic odyssey that can 

potentially last months and years after the child’s birth.

Management

The management of various aspects of WS has been extensively outlined in numerous 

research studies, reviews, and guidelines173,174,176–178,190–195.Here, we focus on the 

management of three key areas where improved therapeutics would have the greatest 

potential to improve health outcomes: elastin-associated vasculopathy, hypertension, and 

intellectual disability, social functioning and anxiety.

Elastin-associated vasculopathy

As mentioned previously, individuals with elastin insufficiency can develop focal stenosis 

and other vascular features. Vascular disease severity varies among persons with WS, with 

~20% requiring intervention for SVAS, for example, while 30–40% have little to no stenosis 

in this location. At present, large vessel stenosis is predominantly managed surgically. To 

alleviate SVAS, patch aortoplasty is the most common approach196 and has undergone 

several technical improvements over time, evolving from the single-patch method197,198 

to the pantaloon-shaped patch that enlarges the aorta and two aortic sinuses199. The most 

advanced method, which involves applying a patch to each of the three aortic sinuses200, 

exhibits notably lower residual pressure gradients and reoperation rates201 than the single-

patch approach. Stenoses of pulmonary arteries can be treated with angioplasty, but catheter-

based interventions on other arteries are often unsuccessful11,90,202. Surveillance of stenosis 

occurs through regular examinations by a cardiologist and associated imaging and should 

continue throughout an individual’s lifetime.

Individuals with WS experience increased rates of cardiovascular collapse with and 

without anaesthesia10,12, although the mechanism of this phenomenon is not completely 

understood. Young individuals and those with the most severe cardiovascular features 

(that is, biventricular outflow tract obstruction10) seem to have the highest risk, although 

some individuals with only minimal stenosis suffered sudden death in the setting of 

anaesthesia. This severe outcome may be influenced by various risk factors, including 

anatomical anomaly of the coronaries and reduction in perfusion pressure at induction 

and/or maintenance of anaesthesia. Therefore, careful preoperative screening should be 

performed to assess the anaesthesia-associated cardiovascular risk, and administration 

of intraoperative anaesthesia should ideally be provided by an anaesthesia team with 

knowledge of WS anaesthesia risks93–95,203,204. Care should be taken not to acutely lower 

blood pressure at induction of anaesthesia in order to maintain adequate perfusion of the 

coronaries during this sensitive time.

Studies suggest that novel pharmacological therapies may improve elastin-associated 

vasculopathy. Minoxidil, an ATP-dependent potassium channel opener, has received 
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considerable attention based on evidence that it increased elastin production in cellular 

studies205 and in animal models206,207 of genetic elastin deficiency and that it ameliorated 

age-related degeneration of elastic fibres in mice208,209. However, a randomized, double-

blind, placebo-controlled trial (NCT00876200) investigating the effect of a year-long 

minoxidil treatment in 17 individuals with WS failed to show improvement in the primary 

outcome measure (carotid intima-media thickness)210. This trial did show an increase in 

lumen size (a secondary finding, in line with previous mouse studies207) over the same time 

interval, along with an expected common adverse effect of hypertrichosis210.

Alternative therapeutic approaches may target various regulatory pathways that influence 

elastin expression. For example, both the coding region and the 3ʹ UTR of the ELN 
mRNA are enriched in binding sites for miR-29 and miR-15, two microRNAs that are 

upregulated in the late postnatal aorta, at the same time that the level of mature ELN mRNA 

decreases82. Antagonism of miR-29 increases elastin expression in haploinsufficient cells 

and bioengineered vessels211.

Hypertension

Elastin insufficiency is also associated with hypertension, but the risk of clinically 

significant blood pressure increases is modified by deletion size and NCF1 gene 

dosage91,116. Blood pressure should be measured in both arms and at least one leg due 

to possible right arm flow acceleration (the so-called Coanda effect) and/or coarctation 

of the aorta212. If consistent blood pressure elevations or pressure differentials (in the 

arms or as an arm-leg discrepancy, respectively) are detected, additional imaging of the 

heart and ascending aorta (by echocardiography) and the renal/abdominal vasculature (by 

Doppler ultrasonography, CT angiography or MRI/MR angiography) should be considered 

(when available), to assess the presence of focal or long-segment stenosis that affects renal 

perfusion and may benefit from surgical intervention5,9. Auscultation of the abdomen can 

also reveal a bruit (abnormal sound) in the region of the stenosis.

Blood pressure elevation often starts in childhood and increases in frequency with 

age8,9,116,213. Unlike stenosis, most cases of hypertension are treated pharmacologically5,8. 

Currently, there is no expert consensus on the best antihypertensive medication for 

individuals with WS214. Similarly, work in Eln+/– mice revealed no superior drug class 

for treating elastin-mediated hypertension215. However, because blood pressure influences 

lumen size, which in turn affects end-organ blood flow, care must be taken not to decrease 

pressure to the extent that lumen size, and therefore end-organ blood flow, is pathologically 

diminished.

For this reason, among others, diuretics may not be the ideal or initial choice for blood 

pressure management in individuals with WS. In addition, when reno-vascular causes 

of hypertension are suspected, angiotensin receptor blockers and angiotensin-converting 

enzyme (ACE) inhibitors should be used with caution. As hypertension risk has been linked 

to ROS production through the NOX signaling pathway, potential therapeutic strategies 

could include treatments that limit ROS production or affect signaling through ROS216.
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Intellectual and social functioning

Deletion of multiple genes within the WSCR likely contribute to intellectual disability, 

altered social functioning and anxiety, although the roles of GTF2I and GTF2IRD1 (as 

outlined above) are the best described to date.

WS is associated with developmental delay (the expected developmental milestones are 

shown in Figure 6). The delays typically lead to mild to moderate intellectual disability, 

although a few individuals have severe intellectual disability or, at the other extreme, average 

intellectual ability14,217. This overall level of ability masks a phenotypic pattern of strengths 

and weaknesses relative to expectations for overall level of intellectual ability. In general, 

language and nonverbal reasoning abilities are stronger than expected for overall intellectual 

ability, whereas visuospatial construction (for example, handwriting and block construction) 

is considerably weaker than expected13,14,218. Visuospatial construction is facilitated by 

visual processing regions. Interestingly, research using resting-state functional MRI showed 

that for children in the general population, the intraparietal sulcus is functionally connected 

to more superior-anterior visual processing regions, whereas it is instead connected to social 

regions in children with WS160. The lack of this specific functional connection in individuals 

with WS contributes to their considerable weakness in visual spatial construction219. A more 

detailed description of the pattern of relative strengths and weaknesses within the language 

domain is provided in Table 2.

Current information indicates that cognitive ability remains stable, at least to mid-

adulthood220–223. There is a possibility of IQ decline in older adults34, but the data sets 

are limited.

WS is also associated with a characteristic behavioural profile that is consistent across both 

Western and Eastern cultures224. At its most basic level, this profile includes gregariousness 

and hypersociability (or ‘overfriendliness’), accompanied by attention problems (often 

meeting diagnostic criteria for Attention Deficit Hyperactivity Disorder or ADHD), social 

problems, anxiety and emotional overreactivity15,16,225–229. Mastery motivation (that is, 

willingness to persist on a task one finds moderately difficult) is typically very limited14,227. 

The most common psychiatric problems associated with WS, and estimates of their 

prevalence based on meeting formal diagnostic criteria outlined in the Diagnostic and 

Statistical Manual of Mental Disorders IV (DSM), are delineated in Figure 7.

In most cases, the previously described learning and developmental differences are 

addressed by the school system through specialized education and therapy services, which 

are outlined below. In general, physical, occupational, and speech and language therapy 

are recommended for infants through school-aged children in the USA178,230 and in 

Australia192. By contrast, according to a parent survey in the UK, only 20–40% of school 

children with WS receive these services231.

The behavioural and psychiatric components of WS are managed with the help of structural 

and environmental supports at home and in school and vocational settings, including 

counselling and behavioural therapies14,156,178,232. For individuals whose symptoms greatly 

affect their daily functioning and quality of life (QOL), referral to a psychiatrist for 
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consideration of pharmacological intervention may be indicated178. The anxiety associated 

with WS has been particularly difficult to treat. Trials are needed to identify appropriate 

therapeutics for anxiety, although, as has been shown for typically developing individuals, 

cognitive behaviour therapy seems promising as an effective treatment for anxiety in 

WS233,234. The same medication classes available for anxiolysis in the general population 

have been studied in small series of individuals with WS235,236 and are already widely used 

in clinical practice, but result in varying symptom relief. Furthermore, the risk:benefit ratio 

may be more unfavorable for some of these medications in those with WS, as reviewed by 

Thom et al237. Specifically, anxiety, mood, cardiac function and blood pressure all need to 

be monitored given the overlap between common side effects of ADHD medication in the 

general population and the psychological and physical difficulties associated with WS.

Educational and vocational provision

In high-income countries, a large proportion of primary school-aged children with WS are 

educated in mainstream schools and spend at least part of the day in classes with typically 

developing agemates; these proportions decrease considerably for secondary school231,238. 

Although there are no data specifically for children with WS, in low-income and middle-

income countries, school attendance is much less common for children with disabilities 

than for typically developing children239, due not only to financial difficulties but also to 

discriminatory and negative views of persons with intellectual disability240.

Postsecondary education for individuals with WS is very limited worldwide, although 

opportunities are increasing in some high-income countries. In a US survey whose 

respondents were on average upper-middle class, 29% of individuals with WS had 

attended a postsecondary education programme241. These programmes typically focus on 

combinations of academics, vocational training (including job placement and coaching) and 

independent living skills.

After completing school, most adults with WS continue to live with their parent or another 

relative; <10% live independently241,242. Only 38–54% of adults are working at least part-

time, generally in a special employment arrangement, either for pay or as a volunteer241,242.

Within the academic sphere, reading skills are considerably stronger than mathematics 

skills13,243 and range from an inability to read at all to reading comprehension at age or 

grade level243–246. About 30% of adolescents and adults with Williams syndrome have 

functional reading capability244. Children who were taught to read using systematic phonics 

instruction, which emphasizes letter–sound relations, read and comprehend significantly 

better than those taught using other instructional approaches246,247. There has been no 

research on written composition, and very little is known about the mathematical abilities of 

individuals with WS248.

Within the adaptive behaviour domain, socialization and communication skills are stronger 

than daily living and motor skills for children and adolescents with WS249. In longitudinal 

studies, adaptive behaviour standard scores declined significantly during childhood250 and in 

adulthood222, owing to stagnation or failure to increase adaptive skills at the rate needed to 
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maintain a consistent standard score over time. For adolescents and adults with WS, adaptive 

behaviour is more limited than expected for their IQ251,252.

High but realistic parental expectations combined with better behavioural regulation234 and 

higher levels of mastery motivation are expected to positively affect both adaptive behaviour 

and academic achievement13. Even so, in a survey of teachers, most indicated they were not 

given adequate resources to teach children with WS238, and most parents surveyed thought 

their child’s teachers had little knowledge about WS238. Much more research is needed on 

effective instructional strategies for individuals with WS at all educational levels253.

Quality of life

The combination of intellectual disability, medical problems, and behavioural, psychological 

and adaptive impairments leads to considerable limitations on QOL in individuals with 

WS. Parents and teachers of children with WS report difficulties with peers, including 

problems establishing and maintaining friendships and increased social exclusion or 

isolation254. Although social vulnerability is high, self-awareness is limited255. Seventy-

three percent of parents reported victimization of their child256, with the social interaction 

style of individuals with WS contributing significantly to their social vulnerability257. 

Even adolescents and adults with WS are typically not cognizant of stranger danger258,259. 

Intervention studies addressing these issues258,260 are both rare and crucial229.

Nearly all children with WS require multiple encounters with the healthcare system for 

management of medical or surgical problems261. These encounters place a financial and 

emotional burden on the individuals with WS and their families262 and often contribute to 

anticipatory anxiety about medical encounters and procedures263. Several studies of adults 

with WS ≥30 years of age demonstrated an increased frequency, variety and severity of 

medical morbidities33,34,213, and this trajectory accelerates among those >65 years of age 

(personal observation).

Prominent adult issues include cardiovascular disease, obesity (with/without lipoedema), 

diabetes mellitus, incontinence, hearing loss, consequences of poor oral health, 

gastrointestinal problems (including diverticulitis), decreased bone mineral density and sleep 

apnea174,213. Psychiatric concerns are often paramount. Health issues such as these may 

result in narrowed residential and vocational placements, restricted mobility and physical 

activity and, collectively, they promote further social isolation. Medical complications 

require focused management based on established guidelines, whereas general health could 

be improved by participation in programmes that promote healthy eating and increasing 

physical exercise activity to recommended adult levels264,265.

The presence of a child with WS may affect the QOL of other family members. Both 

generalized anxiety disorder266 and borderline or clinically significant levels of stress267,268 

occur in a significantly higher proportion of mothers of children with WS than expected 

for same-aged women in the general population. Sensory modulation problems are very 

common among children with WS and are associated with more difficult temperament, more 

limited adaptive behaviour and emotion regulation difficulties and behavioural problems269. 
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In turn, child behavioural problems (especially externalizing problems) contribute to 

increased maternal stress267,270 or challenges with raising the child (owing to, for example, 

the child’s difficulties with social skills or obsessions)271. The discrepancy between the 

general perception that children with WS are happy and have ‘easy’ temperaments and the 

reality that most children with WS have relatively difficult temperaments is in itself likely 

to increase maternal stress227. Worries regarding the child’s future are very common among 

family members and mothers in particular231,271,272. At the same time, most mothers also 

reported positive aspects of having a child with WS, including that the child brought joy and 

changed the mother’s outlook on life271 (Box 1).

Outlook

Much has been learned about WS since its initial description, but important questions remain 

(Box 2). These questions centre on three major themes: molecular mechanisms of disease, 

interindividual variability and effective treatment strategies. A more complete understanding 

of the genes and pathways contributing to the phenotypes of individuals with WS would 

allow clinicians to move beyond symptom management and to instead use precisely targeted 

therapies to improve organ function and ultimately health outcomes.

Molecular mechanisms of disease

To date, only ELN, GTF2I and GTF2IRD1 have been definitively linked to key phenotypes 

that are identifiable in individuals with WS, but even for these genes, a significant 

knowledge gap between disease phenotype and gene function remains. For example, 

published literature has not yet clarified whether the global vascular narrowing seen in 

WS is driven by changes in cell proliferation99, radial growth of the vessel102 or alteration 

in cell–matrix interactions. In addition, the characteristic hourglass-type stenosis feature in 

WS seems to be driven by entirely different mechanisms than the more general narrow and 

stiff vessel pathology seen throughout the rest of the vasculature7,97. While for GTF2I and 

GTF2IRD1, clear effects on brain development and function are evident, the direct effect of 

reduced gene products on neural circuits, white matter properties273, developmental timing 

and brain activity is unknown.

To answer these questions, further studies on the roles of individual genes in human 

pathophysiology, at the cellular and molecular level, and in model systems are needed. 

In humans, a traditional approach has been to clinically characterize individuals with smaller 

WSCR deletions, in an effort to create more specificity for the traits associated with each 

gene (Figure 3). Currently, clinical exome and whole-genome sequencing are being used 

to identify rare single gene variation in individuals with phenotypes that overlap with WS 

(a phenotype to gene approach). In the future, the move toward big-data and genotype-first 

methods (a gene to phenotype approach) may offer new hope in the identification and further 

refinement of genotype–phenotype relationships that are part of the complex multisystem 

disorder of WS.

Further clarification of gene function can be obtained from studies in model systems. 

Cell systems offer ease of manipulation and provide precise ways to study protein–protein 

interactions and gene expression. However, they lack much of the complexity (for example, 
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multiple cell types, tissue movement and endocrine signaling) needed to truly model 

human disease. Similarly, animal models (usually mice) may imperfectly match human 

disease outcomes; for example, the Eln+/– mouse does not have SVAS and, in the case 

of cognitive conditions, mouse behaviours may incompletely or inaccurately correspond to 

human behaviours. The advent of iPSCs, tissue engineering and ‘organs in a dish’ may 

offer the potential to bridge some of the gaps that are present in traditional cell culture 

systems68,69,274–276. As in all disease modeling, the biggest challenge lies in the ability of 

the in vitro system to truly mimic the complex in vivo environment. Brain organoids have 

shown promise for modeling developmental disorders such as autism and epilepsy277,278. 

Vascular organoids279 and numerous tissue engineering approaches 280 are being applied 

to the study of blood vessels.Progress is being made but it has been difficult to design 

complex vascular tissues that deposit mechanically competent and mature elastin281,282. 

Rapid improvement in these systems is expected in the coming years as more precise genetic 

approaches to adapting both cellular and animal systems facilitate the study of specific 

outcomes.

Interindividual variability

Phenotypic variation is readily apparent in WS, despite the vast majority of individuals 

carrying the typical 1.55–1.83 Mb WS deletion. Currently, the mechanisms underlying this 

variability are mostly unknown. It is likely that both environmental factors and genetic 

modifiers contribute to the overall penetrance of specific signs and symptoms in an 

individual with WS.

The study of polygenic risk is still in its relative infancy but offers essential insight into 

features of WS that overlap with common health conditions in the general population283,284. 

Variation in genes that globally influence hypertension or IQ, for example, likely act 

together with genes in the WSCR in additive and synergistic ways to produce much of 

the observed variation285. In this way, the study of genetic modifiers in individuals with 

microdeletion disorders may offer a shortcut to identify relevant disease pathways by acting 

as a sensitivity screen of sorts, with the notable downside being the difficulty of acquiring 

truly robust sample sizes.

Sets of polygenic risk genes for more unique WS features (such as SVAS or odynacusis286) 

are currently unavailable, but if identified, they may provide insight into targetable pathways 

that could impact these important outcomes. For example, ~20% of all individuals with WS 

require surgical correction for SVAS, but if it has been established that those who do need 

surgery have a variation in a particular pathway, treatment could be targeted to the modifier 

pathway rather that to elastin insufficiency itself. Some work has already been initiated in 

this area29 but larger studies covering a broader racial and ethnic distribution are needed.

Other, understudied areas of potential variation include epigenetic effects and somatic 

variation. In addition, little is known about how differences in the flanking LCR regions, 

which are difficult to study by current short-read sequencing methods, may affect disease 

outcomes. Another area requiring further study is environmental influences, prenatally and 

throughout life, on disease outcomes. The gut microbiome, which is potentially affected 

by feeding difficulties, early hospitalizations and increased medication use, also deserves 
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consideration. Environment and gene x environment interactions, in particular, are likely to 

play a crucial role in educational achievement14,244,246,247 and adaptive functional outcomes 
13,223,249.

Effective treatment strategies

Treatment strategies can be designed using a variety of approaches: targeting the genes 

and/or gene products themselves, targeting functional pathways and aiming to treat disease 

symptoms and signs. For the gene-based strategies, CRISPR- and viral vector-based gene 

therapy technologies287,288 are currently being studied in other rare conditions289,290. 

However, unlike single-gene diseases, microdeletion disorders such as WS offer particular 

challenges that relate to the large size of the material to be delivered and the sheer number 

of locations where the genes would need to be targeted to alter relevant phenotypes. It is 

possible that a subset of genes could be delivered using the methods previously described, 

which may improve efficiency of delivery and function. However, it is known that the 

7q11.23 duplication syndrome149,291results from increased dosage of at least some of the 

genes in the WSCR, and therefore any therapeutic approach must involve carefully regulated 

gene expression or protein replacement. Although the ability to identify and modify target 

genes, either in utero or in early postnatal stages, offers the potential to greatly improve 

precise treatment in WS, much work is required before this strategy becomes a reality.

In the coming years, therapies are expected based on individual genes or pathways that 

are known to be important for influencing phenotype in WS. Studies in mouse models, 

for example, suggest that anti-miRNAs (such as anti-miR29a) may be useful for increasing 

elastin deposition211 and that influencing smooth muscle cell behaviour using inhibitors 

of mTOR106 or integrin β3101 could improve the vascular features of WS. Moreover, 

new pharmacological strategies targeting myelination have been proposed for improving 

neural outcomes143. However, each of these potential strategies comes with challenges in 

delivery, specificity or longevity. For example, miR29a regulates multiple transcripts, so 

although anti-miR29a administration may lead to increased elastin message stability (and 

therefore increased translation)211, other transcripts bound by miR29a may also be affected, 

potentially leading to other complications. Development of additional (non-rodent) WS 

models may be useful preclinical modalities prior to initiation of human trials. As people 

with WS retain one copy of each gene from the WSCR, future studies could be aimed at 

developing methods to target and upregulate expression of the remaining allele.

Additionally, patient-derived iPSCs may soon offer platforms through which to test novel 

therapeutics for impact on unique WS transcriptional pathways and phenotypes. Initial 

investigations incorporating this technology have been used to screen for medications that 

impact the increased smooth muscle cell proliferation seen in WS105. Rather than a goal of 

preventing stenosis, future studies that focus on resolving or reducing existing stenoses may 

be more relevant to treatment and lead to improved clinical outcomes, especially in young 

children who often come to medical attention with stenosis already present. When iPS cells 

or gene-edited versions thereof are being considered as deliverable therapeutics themselves, 

the timing and delivery mechanisms will be critically important.

Kozel et al. Page 19

Nat Rev Dis Primers. Author manuscript; available in PMC 2022 September 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In the interim, clinicians manage specific symptoms in individuals with WS (such as 

hypertension, anxiety, and hypercalcaemia) using medications and interventions that have 

been developed for these indications in the general population, without knowing if the 

mechanism of disease in WS is the same. For example, several classes of antihypertensive 

drugs are available, and monotherapy or polytherapy can reduce blood pressure in most 

individuals with WS. However, the targeting of these drugs is not mechanism-based, and 

formal studies on which medications in these classes are best for symptom control in the WS 

population are lacking214. The mechanistic and modifier studies previously defined could 

help narrow the options needed to pursue hypothesis-driven clinical trials. For the near term, 

longitudinal studies, as well as open label and double-blind randomized clinical trials, on 

common and high impact medical and behavioral problems are needed, the findings from 

which could provide valuable clinical algorithms to guide treatment.

Moving forward

To improve health outcomes for people with WS, a multifaceted approach is needed that 

brings together more investigators with expertise in the range of conditions and genes 

represented in WS. Newer topics, such as metabolic and immune differences29,66,190 in 

WS, are also in need of innovators. Funding is required to allow for the creation of a 

large international consortium that will collect prospective standardized data focused on the 

most relevant questions in WS and will incentivize the broad sharing of data acquired in 

diverse populations. Such a consortium will allow more rapid collection and dissemination 

of natural history data, which are needed to understand long-term outcomes and to choose 

appropriate endpoints for subsequent clinical trials. In addition, biospecimen collection can 

be optimized by the same mechanism. Ultimately, clinical trials focusing on therapies are 

critically needed to increase QOL for individuals with WS and their families.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1.

Patient perspective (family interview)

Molly (not her real name) is a 30-year-old woman with Williams syndrome who lives 

with her parents in a rural town in Australia. She has mild to moderate intellectual 

disability and the typical Williams syndrome personality. She completed school in 

a mainstream setting for the first six years, then moved to a special school. She 

currently works 3 days a week in sheltered employment after failed attempts to work in 

mainstream employment due to bullying. Molly enjoys music, softball and line dancing. 

Molly has struggled with many of the medical and psychological difficulties associated 

with Williams syndrome, but due to her determined nature and strong family support, she 

has made many wonderful life achievements. Please see Supplementary box 3 for the full 

interview.

Interviewer: Do you feel that others treat you any differently because you have Williams 

syndrome?

Molly: The way people talk to you is different, and they talk to mum instead of me… 

about my medical things …and I am like: “Hello, I am over here. Mum doesn’t have 

Williams syndrome. I do”.

Interviewer: What are the good things about having Williams syndrome?

Molly: I make people laugh and feel good. At home I am demanding. I love older people 

and their stories. I love to hear what they were up to back in the day.

Interviewer: What are the not so good/hard things about having Williams syndrome?

Molly: Lots of people don’t know about Williams syndrome. Most doctors don’t know 

about Williams syndrome. When I go to hospital, I always take an information sheet 

[about Williams syndrome].

I get bullied a lot. I think because of the way… oh this makes me feel sad… (now teary) 
…I think because of the way I act some people don’t realise it is hard to always be happy.

I know this might sound stupid, but I can’t tie my shoelaces. I wear shoes with elasticated 

shoelaces.

Interviewer: What is the biggest thing that having a child with Williams syndrome has 

taught you?

Parent: The biggest thing we have learnt is that a person with Williams syndrome is no 

different to you and me. We all have different personalities, have different needs and 

process information differently. We have a greater level of acceptance and empathy by 

having a person with Williams syndrome in our lives.

Interviewer: What have been the major challenges associated with having a daughter with 

Williams syndrome?

Parent: At first it is hectic. Appointments are on-going and seem to be never ending. You 

are always planning for the next stage. Learning how to feed and care for your child with 
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Williams syndrome is the first step. Then moving on to therapy and the first stage of 

learning with early intervention and transition to school.

Also, stranger danger is a big concern as Molly accepts everyone as her best friend.

Interviewer: What is your take home message to new parents of a child with Williams 

syndrome?

Parent: Don’t be afraid to ask for support especially in the early years as there are 

times that you will be overwhelmed but as time goes on the positives can outweigh the 

negatives.

Interviewer: What are the three main points you want to make about Williams syndrome?

Parent: Williams syndrome is challenging but can be rewarding. The person with 

Williams syndrome is just like you and I but processes information slower. We just need 

to be more accepting, tolerant, non-judgmental. Treat a person with Williams syndrome 

with respect.
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Box 2.

Key questions for future work in WS

Long-term health in Williams syndrome (WS)

How do health needs change for individuals with WS across the lifespan? What 

recommendations can be made to optimize health of older individuals with WS?

Do different pathologies arise in WS at different developmental stages, and are any 

reversible? If treatments are designed targeting early processes, will this “normalize” 

future outcomes, or will it be necessary to target multiple stages and processes?

Phenotypic variability

What are the biological and environmental contributors to variability in outcomes in WS?

How do the ~20 WSCR genes without a specific phenotype designation affect health and 

development in people with WS? How should the combinatorial effects of multiple genes 

on disease variability be assessed?

How does variability in WSCR genes contribute to phenotypic variability in the general 

population?

Disease mechanism

What are the developmental neuropathological mechanisms underlying social and 

anxiety-related behaviour impairments in WS?

What factors impact transcription, translation, and deposition of elastin? Can those genes 

or pathways be harnessed to appropriately re-initiate elastin deposition outside of its 

normal developmental window?

What underlies metabolic differences in WS, such as glucose dysregulation, aberrant 

growth and aberrant body composition? How do changes in the genes contributing to 

these phenotypes affect health for people with and without WS?

Interventions and treatment

What interventions (medical, psychological or behavioural) would best improve quality 

of life for people with WS, especially pertaining to anxiety, mastery motivation and 

social vulnerability?

Should hypertension be aggressively treated in WS? What is the effect on short-term end 

organ perfusion and longer-term organ function?

What risk factors for adverse anaesthesia events need further refinement, such that 

management guidelines can be generated and widely shared?

Research priorities for WS

How can resources be developed to facilitate collaborative data collection and treatment 

trial coordination to optimize delivery of new treatments for people with WS?
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Figure 1. Salient features of Williams syndrome.
The age of peak prevalence and frequency of prominent signs or symptoms in organ systems 

affected in Williams syndrome are indicated. Features in bold are the common presenting 

features listed in the Clinical Diagnosis sectionin the main text. Further reading for features 

in plain text is included in Supplementary box 1.
aEstimates of co-occurring autism spectrum disorder (ASD) vary (12–20%). Most 

individuals with Williams syndrome who have ASD fit in Wing and Gould’s active-but-odd 

subtype of ASD292 rather than the aloof subtype of ASD232,292. As such, the diagnosis 

of, and interventions for, ASD in Williams syndrome are complex and ideally benefit 

from engagement of practitioners who are knowledgeable about both disorders. bSound 

sensitivities include one or more of the following: hyperacusis, odynacusis, auditory 

allodynia and auditory fascinations. ADHD, attention deficit hyperactivity disorder; CV, 

cardiovascular; DM, diabetes mellitus; GERD, gastro-oesophageal reflux disease; ID, 

intellectual disability.

Note: Figure 1 was re-drawn by the Nature Reviews Disease Primers art editor and 

permission for reproduction of the final figure was not granted by the publisher. Please see 

the published version of the paper for the final Fig. 1 at DOI: 10.1038/s41572-021-00276-z
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Figure 2: 
Note: Although Figure 2 (as cited in this text) was accepted after peer review, it was 

removed from the final manuscript at production. This figure does not exist in the final paper 

at DOI: 10.1038/s41572-021-00276-z
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Figure 3. Genomic organization of the Williams syndrome critical region.
The vast majority of Williams syndrome (WS) deletions (~90%) span a 1.55-million base 

pair (Mb) region encompassing 25–27 protein-coding genes in the Williams syndrome 

critical region (WSCR) on chromosome 7q11.23, with the remainder being slightly larger 

(1.83 Mb)39. The larger, less common deletion occurs between low-copy repeats (LCRs) 

designated as ‘A blocks’, which are present in the great apes, whereas the smaller, 

more common deletion occurs between ‘B blocks’, which are only present in humans. 

B blocks originate from a more recent evolutionary duplication event and have a higher 

sequence identity than A blocks40. The WS deletion commonly occurs through non-allelic 

homologous recombination between B block sequences in direct orientation with respect 

to each other39; however, recombination between B blocks in an inverted orientation also 

occurs, resulting in inversion of the intervening chromosome segment42. Smaller, atypical 

deletions occur infrequently but can provide valuable insight into the genotype–phenotype 

relationship59,62,138–140. Several names exist for many of the genes mapping to WSCR (see 
293and https://www.ncbi.nlm.nih.gov/gene/). ID, intellectual disability.

Note: Figure 3 was drawn by the Nature Reviews Disease Primers art editor and permission 

for reproduction of the final figure was not granted by the publisher. This material is labeled 

as Fig. 2 in the published version of the paper DOI: 10.1038/s41572-021-00276-z
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Figure 4. Phenotypic consequences of deleting key genes in the Williams syndrome critical 
region.
Putative or elucidated genotype–phenotype relationships for six genes in the Williams 

syndrome critical region (WSCR) are depicted, including elastin (ELN), general 

transcription factor II-I (GTF2I), BAZ1B, LIM domain kinase 1 (LIMK1), syntaxin 1A 

(STX1A) and carbohydrate-responsive element-binding protein (ChREBP). Phenotypes in 

mouse models and in individuals with Williams syndrome are indicated for ELN and the 

GTF2I genes because, presently, their mechanisms of action are best delineated and they 

offer the best targets for therapy.

Note: Figure 4 was redrawn by the Nature Reviews Disease Primers art editor and 

permission for reproduction of the final figure was not granted by the publisher. This version 

was designed using BioRender. This material is labeled as Fig. 3 in the published version of 

the paper DOI: 10.1038/s41572-021-00276-z
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Figure 5. Facial features of children and adults with Williams syndrome of different ethnic 
backgrounds.
Facial photos of individuals with molecularly-confirmed Williams syndrome of different 

racial and/or ethnic backgrounds aged 2 months to 52 years. Distinctive features in infants 

and children include broad forehead, peri-orbital fullness, flat bridge of the nose, full cheeks, 

long philtrum, and a small delicate chin. Many adolescents and adults continue to have 

micrognathia, and the face often elongates over time while the nasal bridge is no longer flat, 

and there is fullness of the lips with a wide mouth (especially appreciated when smiling).

Parents or caregivers for all pictured individuals signed consent for publication of their 

family member’s image. The presence of more male than female photos in adolescents and 

adults solely reflects availability of subjects.

Note: This material is labeled as Fig. 4 in the published version of the paper DOI: 10.1038/

s41572-021-00276-z.
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Figure 6. Developmental milestones for very young children with Williams syndrome.
Median ages (in months) and 90th and 10th percentiles for attainment of various gross 

motor, fine motor, cognitive and language milestones by very young children with Williams 

syndrome (yellow bars) relative to typically developing children (aqua bars)154,294–302. 

Numbers in red typeface indicate median age; numbers in black typeface indicate 90th 

percentile (to the left of the median) and 10th percentile (to the right of the median). TD, 

typically developing.

Note: Figure 6 was redrawn by the Nature Reviews Disease Primers art editor and 

permission for reproduction of the final figure was not granted by the publisher. This 

material is labeled as Fig. 5 in the published version of the paper DOI: 10.1038/

s41572-021-00276-z
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Figure 7. Prevalence of psychiatric diagnoses in individuals with Williams syndrome throughout 
the life span.
The genetic deletion in Williams syndrome (WS) has cascading effects on social, 

educational and vocational opportunities and on psychopathology. Estimated prevalence 

of psychiatric disorders in preschool-aged children, school-aged children and adolescents, 

and adults with Williams syndrome154,213,266,303,304 is depicted. Studies with participant 

over a wide age range that did not report results separately for children and adults 

were excluded.236,305–307 The term ‘anxiety disorders’ includes generalized anxiety 

disorder, specific phobia, separation anxiety or social anxiety, and panic disorder with 

agoraphobia.aMost individuals with WS who have autism spectrum disorder (ASD) fit in 

Wing and Gould’s292 active-but-odd subtype of ASD231 rather than the aloof subtype.

Note: Figure 7 was drawn by the Nature Reviews Disease Primers art editor and permission 

for reproduction of the final figure was not granted by the publisher. This material is 

labeled Fig. 6 in the published version of the paper for the final figure at DOI: 10.1038/

s41572-021-00276-z
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Table 1.

Overview of methods for diagnosing Williams syndrome

Method Current Advantages Current Disadvantages

Available methods

Microsatellite markers Low cost May be uninformative
Need of trio sample

Multiplex ligation-
dependent probe 
amplification

Low cost
Highly effective
Possibility of detecting other microdeletions/
duplications (as determined by probe coverage)

Requires ordering provider to suspect WS to order 
correct probe

Fluorescence in situ 
hybridization

High sensitivity
May detect translocations (depending on availability 
of probe coverage)

Higher cost
False negative for smaller deletions
Not possible to determinate deletion size
Requires ordering provider to suspect WS to order 
correct probe

Chromosomal microarray High positivity
Able to determinate deletion size
Able to determine CNVs elsewhere in genome.
Ordering provider does not need to suspect WS to 
order this test

Highest cost of currently available tests
Cannot detect balanced translocation/inversion

Emerging methods

Noninvasive prenatal 
testing

Prenatal diagnosis of aneuploidies and large deletions 
or duplications

Low resolution (detects deletions >3 Mb)

Facial recognition 
software

Cost varies with some free software available online Diagnosis is limited by number of photographs available 
in database
May have different efficacy based on race or ethnicity of 
patient

Whole-exome sequencing Deletion detection performed in research settings Currently used clinically for single-nucleotide variants 
in most cases High cost Lowest accuracy for deletion 
detection

Whole-genome 
sequencing

Combined single-nucleotide variant and CNV or 
structural variant detection performed in research 
settings

High cost, slow turnaround in some settings

WS, Williams syndrome; CNV, copy number variation; Mb, million base pairs
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Table 2.

Pattern of relative strengths and weaknesses in individuals with WS
a
.

Category Ability Details Level relative to overall 
intellectual ability

General pattern Verbal Vocabulary breadth and verbal analogies Stronger than expected

Nonverbal reasoning Matrix reasoning and pattern completion Stronger than expected

Visual-spatial 
construction

Drawing, writing and block construction Considerably weaker than 
expected

Language 
profile

Phonological processing Knowledge of the sound structure of language and ability to 
manipulate that structure

Stronger than expected

Vocabulary breadth Concrete vocabulary, picture identification and naming Stronger than expected

Verbal short-term 
memory

Ability to repeat back what was said verbatim Stronger than expected

Grammatical ability Ability to speak grammatically and understand sentences 
someone else produced

At the expected level

Verbal working memory Ability to repeat back what was said in a different order (for 
example, in the reverse order) from the original

At the expected level

Vocabulary depth Ability to define words accurately and specifically At the expected level

Relational vocabulary Understanding and use of spatial, temporal, and quantitative 
concepts and of complex conjunctions (for example, 
however) or disjunctions (for example, neither nor)

Considerably weaker than 
expected

Nonliteral language Understanding and use of metaphor and irony Considerably weaker than 
expected

Discourse skills Event sequencing, asking and answering questions 
appropriately, maintaining the conversational topic

Considerably weaker than 
expected

Comprehension 
monitoring

Evaluating whether one understood what was said or 
read and then taking appropriate action if one had not 
understood

Considerably weaker than 
expected

a
Strengths and weaknesses relative to overall intellectual ability for broad categories of intellectual ability and within the language domain.
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