Skip to main content
. 2022 Sep 1;140(10):974–981. doi: 10.1001/jamaophthalmol.2022.3375

Table 3. Diagnostic Performance of Deep Learning (DL) Classifier Models for Glaucoma Detection.

Model Internal test data set (70 normal eyes, 70 glaucomatous eyes) External test data set (150 normal eyes, 150 glaucomatous eyes)
AUC (95% CI) Sensitivity at 80% specificity Sensitivity at 90% specificity AUC (95% CI) Sensitivity at 80% specificity Sensitivity at 90% specificity
cpRNFL (baseline)a 0.92 (0.88-0.96) 87.1 75.7 0.83 (0.79-0.87) 61.3 40.7
Real imagesb 0.96 (0.94-0.99) 95.7 88.6 0.84 (0.80-0.87) 74.7 42
Synthetic images, No.c
1200 0.95 (0.92-0.97) 91.4 84.3 0.86 (0.82-0.89) 70.7 53.3
10 000 0.96 (0.94-0.98) 94.3 90.0 0.88 (0.85-0.91) 74.7 58.9
60 000 0.97 (0.94-0.99) 98.6 94.3 0.87 (0.84-0.91) 69.6 56.7
200 000 0.97 (0.95-0.99) 95.7 91.4 0.90 (0.87-0.93) 86.7 69.4

Abbreviations: AUC, area under the curve; cpRNFL, circumpapillary retinal fiber layer.

a

Model based on cpRNFL thickness.

b

DL model trained using only real images.

c

Four DL models trained using synthetic images of varying data set sizes.