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Abstract

Attenuation correction (AC) is important for accurate interpretation of SPECT myocardial 

perfusion imaging (MPI). However, it is challenging to perform AC in dedicated cardiac systems 

not equipped with a transmission imaging capability. Previously, we demonstrated the feasibility 

of generating attenuation-corrected SPECT images using a deep learning technique (SPECTDL) 

directly from non-corrected images (SPECTNC). However, we observed performance variability 

across patients which is an important factor for clinical translation of the technique. In this study, 
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we investigate the feasibility of overcoming the performance variability across patients for the 

direct AC in SPECT MPI by proposing to develop an advanced network and a data management 

strategy. To investigate, we compared the accuracy of the SPECTDL for the conventional U-Net 

and Wasserstein cycle GAN (WCycleGAN) networks. To manage the training data, clustering 

was applied to a representation of data in the lower-dimensional space, and the training data 

were chosen based on the similarity of data in this space. Quantitative analysis demonstrated that 

DL model with an advanced network improves the global performance for the AC task with the 

limited data. However, the regional results were not improved. The proposed data management 

strategy demonstrated that the clustered training has potential benefit for effective training.

Keywords

Attenuation correction; Deep learning; Hierarchical clustering; Myocardial perfusion imaging 
(MPI); Performance variability; SPECT; t-SNE; Wasserstein cycle GAN

I. INTRODUCTION

SINGLE photon computed tomography (SPECT) is a tomographic noninvasive imaging 

modality and a clinically valuable tool for studying the function of underlying organs or 

tissues. Patients are injected with gamma-emitting radioisotopes and the emitted gamma 

rays captured by the gamma camera can show amounts of blood flow in the capillaries 

of the imaged region. Myocardial perfusion imaging (MPI) is one of the most common 

SPECT clinical applications in nuclear cardiology. SPECT MPI has a valuable efficacy in 

the evaluation and risk stratification of patients with known or suspected cardiovascular 

disease [1]. However, the diagnostic accuracy and clinical interpretation of myocardial 

SPECT images are often hampered by photon attenuation caused by the breasts, lateral chest 

walls, abdomen, and diaphragm [2]. Attenuation artifacts can adversely affect the accuracy 

of diagnosis and lead to unnecessary invasive angiography procedure [3]. Several studies 

have demonstrated that attenuation correction can improve both sensitivity and specificity 

for the detection of coronary artery disease (CAD) and generate a relatively uniform tracer 

distribution for patients with a low likelihood of CAD [4], [5], [6]. American society of 

nuclear cardiology and the society of nuclear medicine and molecular imaging recommend 

the incorporation of attenuation correction to improve the diagnostic accuracy [7].

SPECT/CT hybrid systems correct the attenuation artifacts by using attenuation maps 

obtained by performing an additional CT scan. However, the hybrid systems are more 

expensive than stand-alone SPECT systems and increase patients’ radiation dose due to 

performing the extra CT scan. Furthermore, the respiratory and cardiac motion may cause 

incorrect attenuation correction artifacts due to a mismatch between SPECT and CT data 

in the hybrid systems. Meanwhile, stand-alone SPECT systems which are not equipped 

with an external CT source currently occupy the majority (80%) of cardiac SPECT market 

share [8]. Therefore, correcting the attenuation without generating the attenuation maps 

as an intermediate step is important, especially in stand-alone SPECT systems. As we 

demonstrated in our previous study, it is feasible to use a deep learning approach to correct 

the attenuation in the image domain by using only non-corrected SPECT images, which is 
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distinct from conventional approaches using CT data or generating pseudo-CT data as an 

intermediate step [9].

Recently, deep learning has become an active area of research in different medical imaging 

applications because of its unprecedented success in various computer vision tasks [10], 

[11]. However, despite all the efforts and enthusiasm, deep learning models are rarely 

translated into clinical care and the evidence of clinical impact remains limited [12]. 

Accuracy and stability are both important for developing reliable numerical algorithms. 

Deep learning algorithms usually have not been subject to the same rigorous standards as 

the traditional algorithms and stability examination is usually absent in most current deep 

learning-based algorithms [13], [14].

Instability is a well-established problem in some computer vision tasks such as image 

classification. The high performance of many deep learning methods for image classification 

comes at the cost of instability. A small perturbation in training data used to build the 

model can result in models with different generalization accuracy [15], [16], [17], [18]. 

Deep learning for image reconstruction as an inverse problem can also suffer from different 

forms of instabilities which often are independent of the underlying mathematical model. 

Perturbation in the image domain, structural changes, and changes in the number of samples 

can potentially cause different forms of instability in the result of the reconstructed images 

[13]. Neural networks (NN) trained with small datasets also often exhibit an unstable 

behavior in their performance, which leads to limit both reproducibility and objective 

comparison between different designs [19]. K-fold cross-validation and ensemble learning 

are approaches that attempted to address the stability problem caused by small training data 

in NNs [20]. Therefore, instability is not a rare phenomenon, and finding effective remedies 

is an important task to pave a path towards deep learning clinical translation.

Similar to SPECT, AC is an important step in positron emission tomography (PET) for 

generating quantitatively reliable and accurate images. Several studies have been proposed 

to improve AC in PET images using deep learning approaches [21]. For PET/MRI, 

deep neural networks are employed for the conversion of MR images to a pseudo-CT 

or attenuation map [21], [22], [23], [24]. Alternative approaches generate pseudo-CT or 

attenuation corrected images directly from non-corrected images [25], [26], [27], [28]. 

Direct deep learning conversion from non-corrected to attenuation corrected SPECT images 

was used in this study.

In this study, we aim to develop a strategy against the performance variability of deep 

learning models with limited data in the attenuation correction (AC) task. We made two 

hypotheses: First, deep learning models with advanced architectures and training strategy 

can improve the overall AC performance, compensating for the variability. To investigate, 

we quantitatively compared the U-Net with Wasserstein cycle generative adversarial network 

(WCycleGAN). CycleGAN architecture has been also studied and demonstrated accurate 

results for PET attenuation correction [29]; Second, a data management strategy can enable 

deep learning models to learn attenuation patterns more effectively and to be robust to 

new unseen data of which patterns are different from the patterns of training data. To 

investigate, we used the t-distributed stochastic neighbor embedding (t-SNE) and balanced 
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iterative reducing and clustering using hierarchies (BIRCH) techniques. Non-corrected 

SPECT images (SPECTNC) with similar distribution were placed in the proximity of one 

another in the low-dimensional space. Training data were chosen based on the proximity of 

the data in this new lower-dimensional feature space.

II. MATERIALS AND METHODS

A. Data Acquisition

This retrospective stress-only myocardial perfusion SPECT study was approved by the 

institutional review board (IRB). 100 patients (42 female and 58 male subjects) injected 

with 99mTc-tetrofosmin were scanned on GE Discovery NM/CT 570c SPECT/CT scanner 

at Yale New Haven Hospital. Corresponding CT data for each subject was acquired with 

the parameters of 120 kV p, 50 mA, and rotation time of 0.4 s. GE Attenuation Correction 

Quality Control (GE ACQC) package was used to correct the attenuation by the rigid 

alignment of CT and SPECTNC in the myocardium region. The reconstruction of images 

was conducted using the one-step-late algorithm with Green prior. CT based attenuation 

corrected images (SPECTCTAC) were reconstructed with 60 iterations and post-filtered by 

Butterworth filter with a cutoff of 0.37 cm1 and an order of 7 and will be used as the 

ground truth data. SPECTNC images were reconstructed with 30 iterations and post-filtered 

by Butterworth filter with a cutoff of 0.4 cm−1 and an order of 10. All reconstruction 

parameters are clinically used at Yale New Haven Hospital. To enable easy up-sampling and 

down-sampling of data through our networks’ architecture, the original size of reconstructed 

images (70 × 70 × 50 with an isotropic voxel size of 4mm × 4mm × 4mm) was changed to 

64 × 64 × 32 to enable down sampling by removing edges from the images. Moreover, voxel 

values were normalized to a scale of 0 to 1 by the maximum value of volumetric images.

B. Deep Convolutional Neural Network (DCNN): Architecture and Training

The first hypothesis is that an advanced network architecture can reduce the 

overallperformance variability. To investigate, the simple U-Net, developed in our previous 

work [30], was compared with a generative adversarial network (WCycleGAN) [31] that 

is developed for this study as an advanced network. The U-Net with added residual blocks 

(ResUNet) was used to test the second hypothesis. These networks were trained to generate 

attenuation corrected images (SPECTDL) directly from SPECTNC in the image space, 

without generating μ-maps as an intermediate step.

1) Residual U-Net (ResUNet): The U-Net model developed in our previous study 

[30] was a U-Net-like model [32] which was repurposed and developed for the image-

to-image translation task. Our ResUNet architecture is also a U-Net-like architecture 

combined with residual blocks. The ResUNet consists of 4 contracting (encoder) paths 

and 4 expansive paths (decoder) with symmetry concatenate connections (skip connections) 

between corresponding stages of the encoder and decoder. The encode-decoder structure 

can extract multiscale features at different resolutions by progressively down-sampling and 

up-sampling through the encoder and the decoder’s layers respectively. The convolution 

operator (Conv) with a kernel size of 3 and instance normalization (IN) was used at each 
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step of the encoder and the decoder. For activation, leaky rectified linear unit (LReLU) and 

ReLU were used for the encoder and the decoder, respectively (Fig. 1).

The residual blocks were embedded in the network after the last layer of the encoder. Each 

residual block consists of two convolution layers along with the ReLU activation function. 

Incorporating residual blocks into the contracting and symmetric expanding paths of the 

U-Net architecture mitigates the gradient vanishing problem when the network goes deeper 

and can further improve the performance [33].

The added skip connections can help to regain some of the lost gradient information by 

combining hierarchical features [34]. Moreover, it can provide a better model convergence 

and performance in image translation applications [34]. The overall architecture can be seen 

in Fig. 1.

2) Wasserstein Cycle Generative Adversarial Network: The CycleGAN model is 

a generative model [35] proposed to improve the image-to-image translation task and can 

learn the mapping functions F : Y → X and G : X → Y between two domains X and Y [31]. 

The adversarial loss in this model learns the mapping such that to match the distribution of 

generated images to the data distribution in the target domain. The added cycle consistency 

loss encourages F(G(x)) ≈ x and G(F(y)) ≈ y to prevent the learned mappings G and F 
from contradicting each other. DX and DY are two adversarial discriminators where DX aims 

to distinguish between the images x and translated images G(F(y)); in the same way, DY 

aims to discriminate between the images y and G(x). Adversarial losses are applied to both 

mapping functions F and G. For the mapping function G : X → Y and its discriminator DY, 

the objective function is defined as:

LGAN(G, DY , X, Y ) = Ey[log DY (y)]
+ Ex[log(1 − D − Y (G(x)))]
minGmaxDY LGAN(G, DY , X, Y )

(1)

The cycle consistency loss is defined as:

Lcyc = Ex[ F (G(x)) − x ]
+ Ey[ G(F (y)) − y ] (2)

The identity loss enforces that the generator which is provided with images from the target 

domain to generate the same image without change. The identity loss is defined as:

Liden(G) = Ex G(y) − y (3)

Combing these two losses results in the following objective function:
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L(G, F , DX, DY ) = LGAN(G, DY , X, Y )
+ LGAN(F , DX, Y , X)
+ λ1Lcyc(G, F )
+ λ2Liden(G)
+ λ3Ex G(x) − y

(4)

where λ1, λ2 and λ3 controls the relative importance of the two objectives. and The last 

term is an additional estimation of error loss which we added to the main objective function 

to make sure that the generated images are similar to the real attenuation corrected images. 

The aim is to solve:

G * , F * = argminG, FmaxDX, DY L(G, F , DX, DY ) (5)

The CycleGAN was first proposed for unpaired image-to-image transition task [35]. In our 

case we have access to paired non-corrected and corrected data, and we revised the network 

based on our application. The network was trained with paired non-corrected and attenuation 

corrected data.

Although GAN models have been successful in different generative tasks, training a GAN 

model is challenging due to finding and maintaining an equilibrium between the capabilities 

of the generator and discriminator. The Wasserstein GAN model addressed this problem by 

introducing the Wasserstein distance as a new loss function and replacing the discriminator 

with the critic model [36]. The Wasserstein distance that measures the similarity between 

two probability distributions is continuous and differentiable almost everywhere. For this 

reason, the Wasserstein distance is more sensible than other commonly used cost functions 

such as cross-entropy and least-squares loss. We customized the CycleGAN network 

explained above by replacing its loss function with the Wasserstein loss and used the 

ResUNet model as its generator to investigate whether an advanced model can reduce the 

overall performance variability in the AC task.

The number of trainable parameters for U-Net and WCycleGAN are about 6 million and 17 

million respectively.

3) Training: The models were trained and tested based on paired SPECTNC as input and 

corresponding SPECTCTAC as output by using the leave-one-subject-out cross-validation 

(LOSO-CV) procedure. Hyperparameters such as a learning rate were empirically chosen by 

tuning the network. The learning rate for ResUNet was initialized to 0.0002 and reduced to 

zero after 100 epochs. The initial random weights of layers were selected randomly from a 

normal distribution. Mean squared error (or L2 loss) and RMSprop optimizer [37] were used 

for optimizing the weights.

In the CycleGAN model training, the generator and discriminator were trained in an 

alternative manner [35]. The networks were trained with a learning rate of 0.0001 for both 

the generator and the discriminator. The learning rate was set to 0.0002 for the first 100 
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epochs and linearly decayed to zero afterward. Layers’ weights were initialized as above. 

The Wasserstein distance and RMSprop optimizer were used for optimization.

C. Hierarchical Clustering of Data in the t-SNE Space

We investigated whether data management can reduce performance variability through 

subgroup-based training by using the t-SNE technique that enables hierarchical clustering of 

SPECT data in a low dimension of polar plots. The t-SNE is a nonlinear statistical method 

for dimensionality reduction and visualizing high-dimensional data by embedding the data 

into a low-dimensional space of two or three dimensions suitable for human observation 

[38].The t-SNE preserves the local structure of the data by first computing a probability 

distribution which is proportional to similarity of data pairs in a high-dimensional space. 

Then, it defines a similar probability distribution using the student t-distribution over 

data in low-dimensional space. Finally, it learns the dimensionality reduction map that 

reflects the similarities between the high-dimensional inputs by minimizing the Kullback–

Leibler divergence (KL divergence) between the two distributions using a gradient descent 

approach.

For hierarchical clustering, the t-SNE algorithm was applied on 17-segments polar plots 

of SPECTNC with the following parameters: 4 principal components, 4000 iterations, and 

30 exaggeration. One of the critical parameters for the t-SNE is perplexity (exaggeration) 

which reflects the number of nearest neighbors that are used in the algorithm and usually 

have values between 5 and 50. Larger datasets usually require a larger perplexity. The 

perplexity parameter in this study was set to 30. Number of principal components can be set 

empirically or using a method explained in Appendix V. Other hyperparameters were set as 

the algorithm’s default values. Consequently, the dimensional of the data was reduced from 

17-dimension to 2.

We are interested in clustering of the data based on attenuation pattern which is better 

viewed in the polar maps. In addition, the size of dataset (100) is much smaller than 

the whole SPECT dimension which makes the dimensionality reduction difficult and not 

accurate. The polar maps in this study were only used for clustering and analysis.

We assume that data with similar polar-map patterns tend to be in proximity of each other in 

the t-SNE space. For data management, data points in the t-SNE space were clustered into 

three groups by utilizing the BIRCH clustering algorithm [39]. BIRCH is an unsupervised 

clustering algorithm that first summarizes the data into smaller and dense regions called 

clustering feature entries (CF). Then applies an existing clustering algorithm like k-means 

directly to the sub-clusters represented by their CF vector. Here we used BIRCH combined 

with the k-means to cluster the data in the t-SNE space into three groups.

D. Quantitative Analysis

The normalized root mean square error (NRMSE), the peak signal-to-noise ratio (PSNR), 

and the structural similarity (SSIM) were used to evaluate the quantitative accuracy of 

the SPECTDL compared with CT-based attenuation corrected images (SPECTCTAC) at the 

voxel-wise level. Lower NRMSE and higher SSIM and PSNR indicate better similarity. The 

evaluation measurements are defined as below:
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NRMSE =
∑i ∈ V ((I)(i) − Iref(i))2

∑i ∈ V Iref(i))2 (6)

PSNR = 10 log10(N . maxi ∈ V I(i), Iref(i))
∑i ∈ V (I(i) − Iref(i))2 ) (7)

SSIM = (2μμref + c1)(2 + σref + c2)
(μ2 + μref

2 + c1)(σ2 + σref
2 + c2) (8)

where V is image volume. I is either SPECTNC or SPECTDL, and Iref is SPECTCTAC. μ, and 

σ denote the mean and variance of the image I. c1 and c2 are variables for stabilizing the 

division with a weak denominator.

Joint histograms were also used to show the statistical distribution of voxel-by-voxel 

correlation with the reference. Polar maps were utilized to evaluate the regional accuracy 

quantitatively.

Based on American Heart Association recommendation, the muscle and cavity of the left 

ventricle can be divided into 17 segments which generates three circular sections of the 

left ventricle named basal, mid-cavity, and apical. Fig. 2b shows the 17-segment model. 

With the recognition of the anatomic variability, the individual segments may be assigned to 

specific coronary artery territories as follows: Left Anterior Descending (LAD) that includes 

segments 1, 2, 7, 8, 13, 14, and 17; Right Coronary Artery (RCA) that includes segments 3, 

4, 9, 10, and 15; Left Circumflex (LCX) that includes segments 5, 6, 11, 12, and 16.

The 17-segment model of the left ventricle was computed from the generated polar maps 

and used for the regional analysis. The error distribution of the three clusters in comparison 

with three random sets were displayed in box plots. A paired t-test was performed for 

comparing the segmental uptake values. A p-value of less than 0.05 indicates statistical 

significance.

III. RESULTS

A. Impact of DL Architecture on AC Task

Our first hypothesis is that the WCycleGAN as an advanced network can reduce the 

performance variability of the simple U-Net. In Table I, the WCycleGAN improved 

the quantitative results compared with the U-Net. All the p-values are less than 0.001 

which implies that the results are statistically significant. Compared with SPECTU-Net, 

SEPCTWCycleGAN improved the NRMSE by 8.9%.

In our previous development of the U-Net (SPECTU-Net), low-count voxels outside of the 

myocardium were considered background noise and removed by binary masking as an 

optional preprocessing step to improve the results [30]. Consequently, the right ventricle was 
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unseen in the SPECTDL. One of the benefits of using WCycleGAN is that it can perform 

well without removing the low counts voxels outside of the myocardium as the background 

noise from input patches. Physicians often prefer to look at the whole image including the 

areas outside the myocardium. Fig. 2 shows the visualizations of images and polar maps 

from a sample patient which U-Net fails to perform well. The large difference between the 

two methods can be seen in the polar map RCA region.

The joint histograms in Fig. 4 demonstrate the voxel-wise correlations with SPECTCTAC 

for SPECTNC (slope = 0.87; R2 = 0.81), SPECTU-Net (slope = 0.94; R2 = 0.91), and 

SPECTWCycleGAN (slope = 0.98; R2 = 0.99). The WCycleGAN improved the similarity of 

results to the reference SPECTCTAC, which is consistent with the results in Table I.

Fig. 5 shows the box plot for NRMSE across non-corrected, U-Net, and WCycleGAN. The 

box plot shows that the number of outliers are larger for the WCycleGAN compare to the 

U-Net. Fig. 6 shows the images and polar maps for a sample outlier case marked in the Fig. 

5.

Fig. 7 shows the distributions of segmental errors across all the subjects. Although the 

WCycleGAN can improve the global quantitative results, segmental errors do not improve. 

The average absolute segmental errors were 3.31 ± 2.87 and 5.04 ± 4.06 for SPECTU-Net 

and SPECTWCycleGAN, respectively (p < 0.001). Table II show mean and standard deviation 

of percentage segmental error for each segment. Fig. 3 illustrates a case which U-Net 

outperform the WCycleGAN.

Based on the results on the limited dataset, we see that the WCycleGAN improved the 

results globally but not regionally, using three times more parameters. This point initiated 

the 2nd part where we propose a data management strategy.

B. Data Management

1) Sorting the Data in the t-SNE Space: We hypothesized that hierarchical clustering 

in a low-dimensional feature space obtained by the t-SNE can reduce performance 

variability observed in our previous work.

Fig. 8 shows non-corrected polar plots samples picked from each group in the t-SNE space 

(highlighted). Noncorrected data with a similar distribution of polar plots tend to be close to 

each other in the t-SNE space and the proximity of data in this new space can be used as a 

means of clustering. Data with more uniform patterns are in group one, and groups two and 

three include data with nonuniform patterns.

2) Clustered versus Random Training: To explore an effect of subgroup-based 

training, three subgroups with the same size as the clusters were randomly selected from 

all 100 patches as training sets. The quantitative results of the models trained with the 

clusters versus models trained with the random sets were compared in Fig. 9. The p-value 

from paired sample t-test between NRMSE of clustered and random training are 0.01, 0.24, 

and 0.65 for G1, G2, and G3 respectively.
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In Fig. 9, the performance variability is smaller for G1 and G2 when the training set is 

chosen from the clusters versus when the training set is randomly picked. Clustered training 

improved the similarity by 36.3% and 6.5% for NRMSE for G1 and G2, respectively and 

overall, by 12%, demonstrating the potential benefit of using cluster-based training.

The LAD artery is the largest coronary artery which provides the major blood supply to 

the interventricular septum. it is the most commonly occluded of the coronary arteries 

and its blockage due to coronary artery disease can lead to myocardial infarction and 

serious impairment of cardiac performance. Fig. 10 shows that clustered training reduced the 

average absolute error of random training by about 15% for the LAD region across subjects 

in group one. The average segmental errors (mean ± SD) for SPECTrand and SPECTclust 

were 3.40 ± 9.34 and 0.41 ± 10.46 respectively with p-value < 0.001 for LAD; 4.97 ± 5.1 

and 3.28 ± 3.54 with p-value > 0.01 for RCA; and 1.27 ± 3.1 and 1.87 ± 7.03 with p-value 

> 0.1 for RCX region. Fig. 11 shows the results of the clustered training and random training 

for a sample case which random clustering fails to perform well. The difference between the 

two methods is most obvious in the LAD region.

3) Similarity of Data Distribution Between the Test and the Training Set: We 

also investigated how the similarity of test data to its training set can affect the performance. 

To investigate, we tested each data against a model trained with the 30 closest data points 

to that test case and compared it with a model trained with 30 most distant data points to 

that test case in the t-SNE space. We used Euclidean distance and coordinates of data in the 

t-SNE space to measure the distance between the data points (Fig. 12). In comparison to the 

reference SPECTCTAC, the NRMSE was 0.1620 ± 0.1098 and 0.1724 ± 0.1274; PSNR was 

35.4050 ± 3.8512 and 34.9303 ± 3.8859; SSIM was 0.9937 ± 0.0067 and 0.9928 ± 0.0080 

for using the 30 closest and the 30 farthest data for training, respectively. Using similar 

training data to the test set improves the results by 6.4% in terms of NRMSE (p < 0.001). 

This shows the potential benefit of data management for the SPECT AC task.

4) Clustered versus Standard Training: Here we compared the results of the 

clustered training with the standard training using all the available data. Three sub-groups 

were clustered as different training sets (G1,G2,G3) by the BIRCH technique in the t-

SNE space. The quantitative result of each cluster (clustered training) was compared with 

corresponding data in the standard training using all the data. Note that each cluster contains 

only about 33 input patches among all 100 patches. Test results of standard training using all 

the data in the original space were computed and corresponding data from each cluster were 

picked from the test results to be compared with the clustered training, as illustrated in Fig. 

13.

Table III shows the quantitative results of SPECTDL and SPECTNC, compared with the 

reference for both clustered and non-clustered training by using ResUNet LOSO CV. 

The DL approach improved the similarity of SPECTDL to the reference SPECTCTAC for 

NRMSE, PSNR, and SSIM metrics, compared to that of SPECTNC to the reference, for all 

cases.
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Approximately 70% more data allowed 12.8% improvement in the overall NRMSE result 

(improvements for G1, G2, and G3 are 6.84%, 12.7%, and 18.12% respectively, Fig. 14). 

Data with more uniform polar patterns (G1) benefit less by adding more data (Fig. 14). The 

p-values for the clustered and standard training are 0.182, 0.003, and 0.179 for group 1, 

2, and 3 respectively. Adding data is more beneficial for groups which contains data with 

nonuniform patterns (G2 and G3). This observation can help us in prioritizing the type of 

data we collect later.

We used ResUNet for generating all the results of this subsection III-B.

IV. DISCUSSION

Despite increasing DL-based studies for the AC task, they rarely translate into clinical 

practice due to performance inconsistency. Thus, it is important to validate the robustness 

of DL models to new incoming data towards clinical translation. Previously, we investigated 

the feasibility of using a DL approach for SPECT AC in the image domain and 

demonstrated the potential clinical values of the proposed method in the stand-alone SPECT 

systems that occupy 80% of the current market share [8], [9]. Incorporating the DL-based 

AC into clinical practice can improve the diagnostic accuracy of MPIs by eliminating the 

attenuation artifacts [3], [40] and also reduce the radiation dose from CT, which can benefit 

pediatric patients who are more at risk of radiation [41]. However, performance variability 

across patients is one of the obstacles that hinder the clinical translation of our direct 

DL-based AC for SPECT MPI. This variability comes from the fact that a network learns 

attenuation patterns statistically from data whose distribution may be different from the new 

data, which is distinct from physics-based conventional methods that use attenuation maps 

generated from CT images.

As an initial investigation to address a potential performance variability, we demonstrated 

how an advanced network architecture can improve the global quantitative results. We 

also demonstrate training with clustered datasets has the potential to reduce the variability 

concerning attenuation artifacts in SPECTNC across patients with uniform attenuation 

pattern of polar maps.

This study demonstrated potential benefits. First, it raises awareness toward performance 

variability as one of the important factors for the clinical translation of DL-based AC 

approaches. For the clinical translation of DL-based approaches, they must be held 

accountable to the same rigorous standards that traditional methods follow. Accuracy and 

performance consistency are two important pillars of developing reliable DL-based methods 

for SPECT AC. Second, it shows that the performance of the model does not have a 

linear relationship with the number of training data (III-B4). In the results, adding training 

data from more nonuniform polar patterns is more beneficial to the learning process than 

adding data with uniform patterns. Intuitively from a computer vision perspective, it is 

easier for networks to learn important features from uniform patterns and is the reason 

that the network benefits more in learning from the data with unique nonuniform patterns. 

Third, results from section III-B2 imply that the training set which consists of data with 

a more similar distribution compared to the training set with random data, can help the 
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learning process and generate results with less variability. Fourth, as a preprocessing step 

for the network to learn better, one can remove low count voxels outside the myocardium 

(background noise) by binary masking [30]. However, the right ventricle cannot be seen in 

SPECTDL anymore and for diagnostic purposes, physicians prefer to look at the whole 

image including the background. The WCycleGAN enables skipping the background 

removal step while improving the NRMSE by 8.9%. Fifth, use of an advanced network 

does not improve the regional results when we have limited data for the training and results 

are more subject specific (Fig. 2 and Fig. 3). In the future we will investigate advantages of 

model-centric DL methods (advanced architectures) with a larger and more diverse dataset 

for regional improvement of SPECT AC. However, in this study with limited data, an 

advanced network can only improve the global results which are computed based on the 

averaged pixel-to-pixel comparison of the SPECTDL and SPECTCTAC.

Despite the potential benefits, this study has several limitations. First, the limited data 

(only 100 patches) might not include diverse attenuation patterns in the database. The 

results show that data with nonuniform patterns did not benefit from the clustered training 

as much as data with more uniform distribution (group 1) did. In addition, segmental 

results of attenuation correction using WCycleGAN may improve compare to the U-Net 

if the networks are trained with larger dataset. Second, meta information including the 

patient’s height, weight, and clinical interpretation of images was missing due to the 

deidentification, and the effect of these on the current results could not be analyzed. Finally, 

cycle consistency used in the objective function enforces one-to-one mapping at pixel level 

and there is no information loss during the translation which can generate irrelevant texture 

artifacts. However, non-corrected and attenuation corrected images which were used here 

do not have drastically different textures or complex patterns. Therefore, it is likely that the 

cycle consistency has less effect on generating texture-related artifacts in our application.

In future work, we plan to expand our current dataset to include more diverse cases and 

studying how the training and evaluation would be different with a large normative dataset. 

Furthermore, with a larger dataset we will investigate unsupervised DL techniques to cluster 

the images into sub-grouped training sets [42], [25].

V. CONCLUSION

In this study, we investigated methods to overcome the performance variability of DL-based 

models with limited data for the SPECT AC task. The results demonstrated that the 

WCycleGAN as an advanced network can improve the accuracy of global measurements 

and has the potential to reduce the performance variability across the patients. In addition, 

the results demonstrated that clustering of the data in the low-dimensional t-SNE space can 

enable deep learning models to learn attenuation patterns more effectively.
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Appendix

OPTIMAL NUMBER OF PRINCIPAL COMPONENTS FOR THE t-SNE 

TECHNIQUE

One of the hyperparameters in the t-SNE which can reduce the computational cost 

is the number of input principal components. Principal components are eigenvectors 

calculated from the eigen decomposition of the data covariance matrix. As a result of 

this decomposition, the k largest eigenvalues and corresponding eigenvectors (principal 

components (PC)) can be computed. The PCs can be used as a new orthogonal basis to 

project the data to a lower-dimensional space. The first few principal components often 

sufficiently explain the data variance. We chose the first 4 principal components as the input 

to the t-SNE algorithm.

To choose how many PCs are sufficient to span the new space, we kept the PCs containing 

correlations larger than the random sampling error within our dataset [43]. For evaluating the 

error, we shuffle the values of each segment and between different polar plots independently 

to remove coloration between segment values. We have 100 SPECTNC data and each has 

17 segments polar plot which can be represented as a 100 × 17 matrix. Each row of the 

new shuffled matrix has a random value taken from other polar plots at the same segment. 

Fig. 15 shows the eigen spectrum for the original and the shuffled data. As can be seen, 

the first 4 PCs are enough to explain the variance of the original data to an extent which 

is distinguishable from the sampling error. These top 4 PCs can cumulatively explain more 

than 83% of the variance within the data.
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Fig. 1. 
Proposed ResUNet (top) with residual blocks (bottom).
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Fig. 2. 
(a): Visualization of the results of the trained network on a sample patient which 

WCycleGAN outperform. (b): Cardiac 17 segments standard model.
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Fig. 3. 
Visualization of the results of the trained network on a sample patient which U-Net 

outperform.

Torkaman et al. Page 18

IEEE Trans Radiat Plasma Med Sci. Author manuscript; available in PMC 2023 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Joint histogram: (top) SPECTNC versus SPECTCTAC slope (dashed line) = 0.87, (bottom 

left) SPECTU-NET versus SPECTCTAC, slope = 0.94, (bottom right) SPECTWCyCleGAN 

versus SPECTCTAC, slope = 0.98. To visualize small counts in the joint histograms, the 

counts were log-scaled (i.e., log(counts)).
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Fig. 5. 
Box plots for NRMSE across non-corrected, U-Net, and WCycleGAN. The black arrow 

shows a shared sample outlier.
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Fig. 6. 
A sample outlier case shown by arrow in Fig. 5
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Fig. 7. 
Box plots for percentage segmental errors across all the subjects
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Fig. 8. 
(a): 2D embedding of data in the t-SNE space, clustered into 3 groups using hierarchical 

clustering technique. (b): Sample data from each group highlighted in (a).

Torkaman et al. Page 23

IEEE Trans Radiat Plasma Med Sci. Author manuscript; available in PMC 2023 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. 
Box plots for quantitative comparison of clustered training versus training with random 

dataset which has same size as the clusters. SPECTNC (blue), SPECTDL-rand (green), and 

SPECTDL-clust (red).
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Fig. 10. 
Box plots for percentage segmental errors across subjects in group 1.
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Fig. 11. 
Visualization of results of clustered vs random training (sample patient).
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Fig. 12. 
Schematic figure showing how each data point was tested against the 30 closest and 30 

farthest training set in the t-SNE space.
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Fig. 13. 
(a): General process in LOSO cross-validation. At each step, one data is used as test data 

and others for training. (b): Difference between clustered training (clust-DL) using the 

three clusters and standard training (nonclust-DL). Data in each cluster used as a training 

set in clust-DL. Test results of standard training using all the data were computed and 

corresponding data from each cluster were picked from the test results.
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Fig. 14. 
NRMSE comparison of DL results from clustered and non-clustered (standard) training for 

three groups generated by the BIRCH algorithm in the t-SNE space. Error bars represents 

the standard deviation (SD).

Torkaman et al. Page 29

IEEE Trans Radiat Plasma Med Sci. Author manuscript; available in PMC 2023 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 15. 
(a): Eigen spectrum comparison of the original and shuffled polar plots. (b): Cumulative 

explained variance of the original and shuffled data, first 4 PCs explain more than 83% of 

the data variance. (c): Schematic picture showing how data is shuffled to remove correlation 

between the segments
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TABLE I

VOXEL-WISE ANALYSIS FOR DIFFERENT DEEP LEARNING MODELS. THE NRMSE, PSNR, SSIM COMPARED TO THE 

REFERENCE SPECTCTAC (MEAN ± SD).

NRMSE PSNR SSIM

NC 0.226 ± 0.078 31.771 ± 2.996 0.988 ± 0.007

U-Net 0.148 ± 0.095 36.2 ± 4.1 0.993 ± 0.006

WGAN 0.135 ± 0.064 36.615 ± 3.45 0.995 ± 0.004
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TABLE II

MEAN AND STANDARD DEVIATION OF PERCENTAGE SEGMENTAL ERROR FOR EACH SEGMENT (mean ± SD). ROWS REPRESENT 

SEGMENT’S NUMBER.

NC UNet GAN

1 0.06 ± 7.7 0.78 ± 4.6 1.92 ± 5.2

2 −2.37 ± 8. −1.45 ± 4.5 −0.88 ± 5.6

3 −8.58 ± 7.6 −1.11 ± 4.7 −0.12 ± 6.8

4 −13.26 ± 7.8 −0.59 ± 5.5 0.72 ± 7.5

5 −8.88 ± 8.4 0.48 ± 4.8 2.02 ± 7.8

6 −1.78 ± 7.6 1.09 ± 4.1 2.51 ± 5.8

7 0.14 ± 6.2 1.24 ± 3.9 2.48 ± 5.5

8 −4.66 ± 7.8 1.09 ± 4.1 0.53 ± 6.3

9 −11.04 ± 8.3 0.38 ± 5.0 1.14 ± 6.7

10 −14.72 ± 7.3 −0.03 ± 5.0 2.38 ± 6.8

11 −8.21 ± 7.1 0.95 ± 4.1 2.83 ± 6.4

12 −1.52 ± 6.4 0.97 ± 3.8 2.84 ± 5.4

13 1.34 ± 5.0 1.08 ± 3.1 3.17 ± 4.6

14 −6.35 ± 6.9 0.88 ± 4.3 1.90 ± 5.7

15 −10.54 ± 6.1 0.44 ± 4.1 2.60 ± 6.2

16 −2.79 ± 6.0 1.12 ± 3.2 3.24 ± 5.2

17 3.78 ± 5.3 0.92 ± 3.5 3.11 ± 4.9
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TABLE III

QUANTITATIVE COMPARISON OF CLUSTERED TRAINING VERSUS STANDARD TRAINING USING ALL THE DATA (MEAN ± SD).

clust/non-clust training NRMSE PSNR SSIM

G1NC 0.218±0.0878 32.3926±2.8526 0.9894±0.0063

G1clust-DL 0.1359±0.0698 36.8832±3.8087 0.9954±0.0040

G1nonclut-DL 0.1266±0.0665 37.4576±3.5191 0.9961±0.0033

G2NC 0.2342±0.0701 31.0235±2.7094 0.9854±0.0089

G2clust-DL 0.1677±0.0809 34.4445±3.8312 0.9926±0.0061

G2nonclust-DL 0.1464±0.0605 35.4327±3.5710 0.9938±0.0051

G3NC 0.2267±0.0738 31.7770±3.3316 0.9881±0.0070

G3clust-DL 0.1788±0.1918 35.1891±3.9203 0.9928±0.0119

G3nonclust-DL 0.1464±0.0706 35.8799±3.1448 0.9952±0.0035

Totalclust 0.1595±0.1250 35.5851±3.9526 0.9937±0.0079

Totalnonclust 0.1391±0.0661 36.3250±3.5012 0.9951±0.0041
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