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Key Points
� Volume expansion induced a clear reduction in aquaporin 2 abundance in urinary extracellular vesicles.
� Changes in sodium-chloride cotransporter (NCC) and phosphorylated NCC may have been primarily due to

diluted post-test urine samples and stable plasma potassium during the test.

Abstract
Background Sodium chloride (NaCl) loading and volume expansion suppress the renin-angiotensin-aldosterone
system to reduce renal tubular reabsorption of NaCl and water, but effects on the sodium-chloride cotransporter
(NCC) and relevant renal transmembrane proteins that are responsible for this modulation in humans are less
well investigated.

Methods We used urinary extracellular vesicles (uEVs) as an indirect readout to assess renal transmembrane
proteins involved in NaCl and water homeostasis in 44 patients with hypertension who had repeatedly raised
aldosterone/renin ratios undergoing infusion of 2 L of 0.9% saline over 4 hours.

Results When measured by mass spectrometry in 13 patients, significant decreases were observed in NCC
(median fold change [FC]50.70); pendrin (FC50.84); AQP2 (FC50.62); and uEV markers, including ALIX
(FC50.65) and TSG101 (FC50.66). Immunoblotting reproduced the reduction in NCC (FC50.54), AQP2
(FC50.42), ALIX (FC50.52), and TSG101 (FC50.55) in the remaining 31 patients, and demonstrated a significant
decrease in phosphorylated NCC (pNCC; FC50.49). However, after correction for ALIX, the reductions in NCC
(FC50.90) and pNCC (FC51.00) were no longer apparent, whereas the significant decrease in AQP2 persisted
(FC50.62).

Conclusion We conclude that (1) decreases in NCC and pNCC, induced by acute NaCl loading and volume
expansion, may be due to diluted post-test urines; (2) the lack of change of NCC and pNCC when corrected for
ALIX, despite a fall in plasma aldosterone, may be due to the lack of change in plasma K1; and (3) the decrease
in AQP2 may be due to a decrease in vasopressin in response to volume expansion.
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Introduction
Alterations in distal tubular sodium (Na1) handling
and extracellular fluid volume have profound effects
on BP, mainly due to the unique capability of the distal
tubule segments to respond to hormonal stimuli and
the contents of the tubular lumen (1). Accumulating
data have suggested that potassium (K1) may be a key
factor in extracellular fluid volume and BP maintenance
through a proposed “renal-K1 switch” modulating
the thiazide-sensitive Na1-chloride (Cl2) cotransporter
(NCC) (2). Reduced plasma K1 concentration ([K1]) is

associated with increased abundance and activity of
NCC in the distal convoluted tubule (3), whereas oral
KCl supplementation has the capacity to limit the
increase in NCC abundance induced by mineralocorti-
coids in both humans and mice (4,5). These alterations
are also accompanied by downregulation of the
Na1-independent Cl2/bicarbonate (HCO3

2) exchanger
pendrin (6).
In contrast to the negative regulatory role of K1 on

NCC, we and others have suggested that aldosterone
plays a stimulatory role (5,7,8). In patients with
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primary aldosteronism (PA), undergoing 4-day administra-
tion of exogenous mineralocorticoid was associated with
increases in NCC and phosphorylated NCC (pNCC),
whereas plasma K1 inversely correlated with NCC and
pNCC at baseline (5). In another group of patients,
although increases in NCC and pNCC were not observed,
the inverse correlations with plasma K1 were replicated
(6). However, interpretation of the findings of the two
studies was complicated by the fact that they involved (1)
exogenous mineralocorticoid administration, (2) KCl sup-
plementation, and (3) oral NaCl loading.
PA is a common, specifically treatable, and potentially

curable form of hypertension, characterized by excessive
and autonomous production of aldosterone by the adrenal
glands. Seated saline suppression testing (SSST) is a highly
sensitive, reliable, yet relatively simple, method of confir-
matory testing that has a low rate of inconclusive results
when compared with the more time-consuming and labori-
ous fludrocortisone suppression test (9,10). During SSST,
subjects with hypertension who have elevated aldoste-
rone/renin ratios (ARRs) undergo intravenous infusion of
2 L of 0.9% saline over 4 hours while patients are main-
tained in the seated position. In subjects without PA, the
acute NaCl loading and volume expansion during SSST, by
suppressing renin (and, consequently, the chronic aldoste-
rone regulator angiotensin II), leads to suppression of
plasma aldosterone, whereas plasma aldosterone remains
unsuppressed in patients with PA.Urinary extracellular
vesicles (uEVs) are a tool to assess renal epithelial cell func-
tion in humans (7,11). A recent, large-scale, unbiased analy-
sis identified uEV proteins that track the abundance of the
parent protein in the kidney (12), further supporting the
reliability of using uEV protein changes to monitor specific
physiologic responses and disease mechanisms.
In this observational study, we took advantage of the

more simplified nature of the SSST, which involved only
NaCl loading and used the noninvasive approach of exam-
ining uEVs (13–15), to (1) explore the effects of NaCl
loading and volume expansion on renal transmembrane
proteins involved in salt and volume homeostasis, using
quantitative mass spectrometry (liquid chromatography
with tandem mass spectrometry [LC-MS/MS]); (2) validate
LC-MS/MS findings in a larger sample size by immuno-
blotting; and (3) define the role (if any) of NaCl loading
alone on NCC abundance and phosphorylation in patients
with hypertension and raised ARRs.

Materials and Methods
Detailed methods are demonstrated in the Supplemental

Appendix 1. Briefly, from April 2017 to August 2020, a total
of 44 (29 female [F29]/15 male [M15]) patients with hyper-
tension and raised ARRs were invited and all agreed to
participate. All participants underwent SSST to confirm or
exclude the diagnosis of PA. At least 4 weeks before SSST,
medications affecting plasma aldosterone and renin levels
were withdrawn and replaced by other antihypertensive
medications, including verapamil, prazosin, or doxazosin,
moxonidine, and/or hydralazine. Patients undergoing
SSST were admitted to hospital to ensure the dietary (nor-
mal hospital diet) and posture requirement were met and

to facilitate monitoring of plasma K1 and other parameters.
SSST involved intravenous infusion of 2 L of 9% saline
over 4 hours in a seated position, and assessment of plasma
aldosterone concentration, direct renin concentration, and
cortisol concentration at baseline and at the end of the infu-
sion (10,16,17). Midstream urines were collected before
SSST at 7 AM (basal) and 1-hour postcompletion (post) of
the saline infusion. uEVs were isolated using progressive
ultracentrifugation, as previously described (5). uEVs were
characterized and analyzed by quantitative tandem mass
tag (TMT)–labeled LC-MS/MS (6,18) or immunoblotting.
A list of abbreviations was included to assist reader
(Supplemental Table 3).

Ethical Issues
The SSST was performed in the Hypertension Units of

the Princess Alexandra Hospital (Brisbane, Australia). The
laboratory investigations were performed in the Endocrine
Hypertension Research Centre, The University of Queens-
land Diamantina Institute (Brisbane, Australia) and the
Department of Biomedicine, Aarhus University (Aarhus,
Denmark). Ethical approval was granted by the Metro
South Human Research Ethics Committee (clinical trials
repository identifier: CT-2018-CNT-03504-1 v1).

Bioinformatic and Statistical Analyses
Calculations were processed with R. Overlap analyses

were performed using Vesiclepedia and ExoCarta protein
databases to compare the mass spectrometry dataset with
other human urine studies and to identify EV-enriched
proteins. A rat renal transporter protein database was used
to identify renal transmembrane proteins (19). Gene Ontol-
ogy (GO) analysis was performed using the ClueGO plugin
(version 2.5.5) in the Cytoscape environment (version
3.7.2), and gene lists corresponding to 878 differentially
expressed proteins (DEPs) were used as input. GO terms
were updated on June 11, 2020.
In TMT-labeled LC-MS/MS, protein ratios obtained with

the aid of the universal control channel TMT 126 were log2
transformed. In immunoblotting, protein absolute abun-
dances were analyzed by Image J software. To minimize
operation errors occurring during gel loading and transfer-
ring, relative protein abundance was applied to allow com-
parison between blots, which was determined as dividing
the protein absolute abundance by a ratio that was
obtained from normalization of EV marker protein
apoptosis-linked gene 2-interacting protein X (ALIX) in the
control sample loaded on each blot. The relative protein
abundance was then log10 transformed.
For paired comparisons before and after SSST, Wilcoxon

tests were performed to compare the differences of bio-
chemical parameters, and t tests were performed to com-
pare the differences of protein ratios/relative abundance.
In TMT-labeled LC-MS/MS, a DEP was identified as that
with P,0.05, false discovery rate of ,0.1, and fold change
(FC) of $1.20 or #0.83. Pearson correlations were assessed
to seek correlations between protein ratios/abundances
and biochemical parameters. A P value ,0.05 was consid-
ered statistically significant. Protein data are presented as
median (range), unless stated otherwise.
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Results
Participants’ Clinical Features during SSST
A total of 44 participants (F29/M15) were recruited

(screening features and use of antihypertensive drugs are
listed in Supplemental Table 1) and completed SSST. The
number of participants at each stage of analyses is summa-
rized in Supplemental Figure 1. SSST was positive in
34 participants (F19/M15), thereby confirming PA. SSST
was negative in 10 participants (F10/M0), for which PA
was excluded, and these participants were designated to
have low renin essential hypertension (LRH). Participants’
clinical characteristics and biochemical changes during
SSST is summarized in Table 1. Significant decreases in
plasma concentrations of aldosterone and renin were
observed in both subjects with PA and those with LRH,
demonstrating the suppressive effect of SSST on the renin-
angiotensin-aldosterone system. Plasma ARR decreased,
but its decrease in PA was NS, reflecting the autonomous
aldosterone overproduction in PA. A reduction in plasma
cortisol in both participants with PA and those with LRH
occurred between 7 AM and the completion time of SSST
(12 PM), in keeping with the known fall in adrenocorticotro-
phic hormone as part of its normal circadian rhythm during
this time period. There were no changes in plasma [K1] in
patients with either PA or those with LRH, but a significant
increase in plasma [Cl2] (probably due to infusion of NaCl)
and a nonsignificant trend toward a decrease in plasma
[HCO3

2] in both subjects with PA and those with LRH.
Plasma copeptin fell during SSST (significantly among the
total cohort and the PA subgroup), reflecting a decrease in
circulating arginine vasopressin induced by volume expan-
sion during SSST. Spot urine creatinine fell significantly in
both subjects with PA and those with LRH. BPs during
SSST were measured in all but one (patient 39). Systolic and
diastolic BPs did not change significantly in the 34 partici-
pants (F19/M15) with PA, the 10 participants (F10/M0)
with LRH, or in the combined cohort of 44 individuals.

Characterization of uEVs
Due to the limited amount of uEVs obtained from partic-

ipants, nine uEVs isolated from two healthy volunteers at
different times on multiple days were characterized by
both nanoparticle tracking analysis and the presence of
marker proteins using immunoblotting. The diameter of
the uEV particles from the nine uEVs ranged overall from
25.5 to 999.5 nm, with the mean6SD particle size for each
of the nine samples ranging from 218.961.6 to 341.765.9,
and mode particle size from 139.967.0 to 194.966.7 nm
(Figure 1, A–C, Supplemental Table 2). Immunoblotting
detected the most frequently used uEV marker, ALIX, in all
nine uEV samples, and tumor susceptibility gene 101
(TSG101) and tetraspanin CD9 (CD9) in most samples (Fig-
ure 1D).
Patients’ uEV samples were characterized by the presence

of EV-enriched proteins. LC-MS/MS quantified 99 proteins
isolated from 13 (ten with PA [PA10]/three with LRH
[LRH3], F8/M5) patients’ uEVs that were among the list of
the top 100 EV-enriched proteins published on Vesiclepedia,
including the widely used EV markers (Figure 1E,
Supplemental Appendix 2). Immunoblotting detected ALIX
in uEVs isolated from 31 (F21/M10, PA24/LRH7) subjects,

and detected TSG101 from 27 (F17/M10, PA22/LRH5) sub-
jects (Supplemental Figure 5). We observed a shift in the
ALIX bands in multiple samples in immunoblots, but no
size shifts for other proteins in the same samples. Despite
ALIX truncation by the ESCRT machinery (20), our main
hypothesis is that this may be related to Tamm–Horsfall
protein, which was also observed in a recent study (21).

Proteomic Analyses
Among the 13 participants subjected to TMT-labeled

LC-MS/MS, a total of 3307 proteins were identified, of
which 3007 proteins were quantifiable (Supplemental
Appendix 2; a simplified version can be directly accessed at
http://interpretdb.au.dk/database/SSST/SSST_proteome.
html). Comparison of proteins quantified in this study and
other human uEV and urinary exosome databases demon-
strated 79% overlap with the uEV database Vesiclepedia,
73% overlap with the urinary exosome database ExoCarta
(Figure 2A), and 104 renal transporter proteins were iden-
tified in the uEVs (Figure 2A).

A total of 878 DEPs were identified (Figure 2B,
Supplemental Appendix 2), with 636 increased and 242
decreased in abundance after SSST. Of these, 294 DEPs
were quantified in all paired uEV samples, but there were
no apparent differences between subjects with PA and
those with LRH, as demonstrated using an unsupervised
hierarchic clustering heat map (Supplemental Figure 2). Of
the 294 DEPs, 29 were identified as EV-enriched proteins
(Figure 1E), and 12 were renal transmembrane proteins
(Table 2). Decreases in NCC, pendrin, and aquaporin 2
(AQP2) were notable due to their involvement in NaCl and
water homeostasis. However, significant decreases in the
widely used uEV markers (e.g., ALIX, FC50.65 [0.43–1.60];
TSG101, FC50.66 [0.39–1.40]; CD63, FC50.77 [0.34–1.29])
were also observed, implying changes in exosomal biogen-
esis and secretion. Although epithelial Na1 channel subu-
nits were not detected in this experiment, prostasin was
identified in all uEV samples, which was an assumed indi-
cator of full epithelial Na1 channel activity/cleavage
(22,23), but its level did not change during SSST.

GO enrichment suggested upregulated DEPs were
closely associated with cell components, including the
mitochondrial matrix (22%), whereas the downregulated
DEPs were associated with cytoplasmic vesicles (38%). In
the biologic process category, the upregulated DEPs were
associated with establishment of location in cell (25%),
whereas downregulated DEPs were associated with secre-
tion by cell (32%) (Supplemental Figure 3).

Among the three transmembrane DEPs of interest,
plasma [K1] negatively correlated with pendrin (R250.23,
P50.01) and plasma copeptin positively correlated with
AQP2 (R250.7, P50.01), but these correlations were on the
basis of only eight plasma copeptin measurements in five
participants. We did not observe clear correlations between
NCC and plasma aldosterone or K1, unlike in our previous
study using immunoblotting (Supplemental Figure 4) (5).

Immunoblotting Validation of Decreases in NCC
and AQP2

Due to the limited amount of uEVs, immunoblotting
measured abundances of NCC, pNCC, and ALIX in uEVs

912 KIDNEY360

http://kidney360.asnjournals.org/lookup/suppl/doi:10.34067/KID.0000362022/-/DCSupplemental
http://kidney360.asnjournals.org/lookup/suppl/doi:10.34067/KID.0000362022/-/DCSupplemental
http://kidney360.asnjournals.org/lookup/suppl/doi:10.34067/KID.0000362022/-/DCSupplemental
http://kidney360.asnjournals.org/lookup/suppl/doi:10.34067/KID.0000362022/-/DCSupplemental
http://kidney360.asnjournals.org/lookup/suppl/doi:10.34067/KID.0000362022/-/DCSupplemental
http://kidney360.asnjournals.org/lookup/suppl/doi:10.34067/KID.0000362022/-/DCSupplemental
http://kidney360.asnjournals.org/lookup/suppl/doi:10.34067/KID.0000362022/-/DCSupplemental
http://interpretdb.au.dk/database/SSST/SSST_proteome.html
http://interpretdb.au.dk/database/SSST/SSST_proteome.html
http://kidney360.asnjournals.org/lookup/suppl/doi:10.34067/KID.0000362022/-/DCSupplemental
http://kidney360.asnjournals.org/lookup/suppl/doi:10.34067/KID.0000362022/-/DCSupplemental
http://kidney360.asnjournals.org/lookup/suppl/doi:10.34067/KID.0000362022/-/DCSupplemental
http://kidney360.asnjournals.org/lookup/suppl/doi:10.34067/KID.0000362022/-/DCSupplemental


Table 1. Participants’ characteristics and changes in biochemical factors during seated saline suppression testing

Characteristic
Normal Range

in Adults
Screening
Value

PA (n534, Female 19/Male 15) Low Renin Hypertension (n510, F10/M0)

Basal Post P Valuea Basal Post P Valuea

Screening measurements (n544)
Age, yr 51.9611.0
Female/male, n/n 29/15
Weight, kg 89.3621.2
Height, cm 167.069.6
BMI, kg/m2 18.5–24.9 31.966.4
Number of anti-HTN drugs 1.761.1
SBP/DBP, mm Hg ,140/90 146.3618.0/86.6614.9
eGFR, ml/min .60 96.7612.7
Plasma creatinine, mmol/L 45–90 67.2615.8

Diagnosis
PA/LRH, n/n 34/10

Measurements during SSST
Plasma aldosterone, pmol/L 100–950 615.96515.0 426.96421.2 9.131024 479.06327.0 129.9685.5 0.002
Plasma renin, mU/L 8–40 3.562.1 2.861.8 0.002 7.367.4 4.263.8 0.01
Plasma ARR, pmol/mU 2–75 231.06305.3 188.26150.6 0.40 128.16128.4 51.9648.3 ,0.01
Plasma cortisol, nmol/L 8 AM 140–6404 PM 80–440 325.1699.1 164.0657.5 2.831026 358.86179.9 149.4665.7 0.002
Plasma K1, mmol/L 3.5–5.2 3.6760.42 3.7460.37 0.20 3.9360.36 3.9060.22 0.73
Plasma Cl2, mmol/Lb 95–110 96.362.8 100.063.2 2.131026 96.062.5 100.663.5 0.004
Plasma HCO3

2, mmol/Lb 22–2 23.366.0 22.466.0 0.10 22.764.9 21.365.3 0.08
Plasma copeptin, pmol/Lc 8.866.8 6.666.5 0.02 5.264.6 3.161.8 0.25
SBP, mm Hg ,140 142.0624.6 146.6620.7 0.17 139.3620.4 141.0615.1 0.65
DBP, mm Hg ,90 83.9612.9 85.8613.3 0.29 82.1613.8 78.8611.7 0.55
Spot urine creatinine, mg/dlc 108.7645.6 35.3622.9 9.3310210 94.8665.2 36.2621.1 0.02

Values are the mean6SD unless otherwise noted. SSST, seated saline suppression testing; PA, primary aldosteronism; basal, baseline measurement before SSST commencement; post,
measurement at SSST completion; BMI, body mass index; SBP, systolic BP; DBP, diastolic BP; ARR, aldosterone/renin ratio; Cl2, chloride; HCO3

2, bicarbonate; F, female; M, male; LRH,
low renin hypertension.
aP values by paired Wilcoxon test (post/basal).
bPaired plasma Cl2 and HCO3

2 was measured in 41 participants (PA31, F18/M13; LRH10, F10/M0).
cPaired plasma copeptin was measured in 33 participants (PA25, F14/M11; LRH8, F8/M0).
dPaired spot urine creatinine was measured in 39 participants (PA32, F18/M14; LRH7, F7/M0).
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isolated from 31 subjects (F21/M10, PA24/LRH7), and
abundances of AQP2 and TSG101 in uEVs from 19
(F12/M7, PA17/LRH2) and 27 (F17/M10, PA22/LRH5)
subjects, respectively (Figure 3, Supplemental Figure 5).
Immunoblotting reproduced the significant decreases in the
relative abundances of NCC (FC50.54 [0.02–3.72], P,0.001)
and AQP2 (FC50.42 [0.009–2.00], P50.003) observed with
LC-MS/MS. A reduction was also observed in the abun-
dance of pNCC (FC50.49 [0.02–2.15], P,0.001), whereas no
apparent change was detected in the pNCC/NCC ratio
(FC51.10 [0.11–4.20], P50.31) (Figure 4). The accompanying
decreases in the uEV marker ALIX (FC50.52 [0.05–7.29],
P,0.001) and TSG101 (FC50.55 [0.13–3.63], P,0.001) were
also reproduced (Figure 4), which again raised the possibil-
ity that decreases in the abundances of proteins of interest
may be due to decreased uEV concentration.
After correction for spot urine creatinine concentrations,

decreases were replaced with small increases for NCC
(FC51.72 [0.03–56.27], P50.06), pNCC (FC51.59
[0.04–20.18], P50.06), ALIX (FC52.00 [0.08–11.86], P50.007),
and TSG101 (FC51.62 [0.21–8.96], P50.01), and AQP2
(FC50.99 [0.07–5.18], P50.94) did not change (Figure 4).
After correcting relative protein abundances for the uEV
marker ALIX, the decreases in NCC (FC50.90 [0.13–7.19],
P50.31) and pNCC (FC51.00 [0.16–5.04], P50.52) were
abolished, whereas the decrease in AQP2 remained signifi-
cant (FC50.62 [0.03–3.79], P50.04) (Figure 4).

Plasma [K1] Inversely Correlated with NCC and AQP2
Plasma [K1] inversely correlated with NCC abundance

(R250.07, P50.02; Figure 5), and this correlation remained
after correction for the uEV marker ALIX (R250.08, P50.02),
but not after correction for spot urine creatinine concentra-
tion (R250.06, P50.07). Besides, plasma [K1] inversely cor-
related with AQP2 (R250.22, P50.002), and this correlation
remained significant after correction for ALIX (R250.26,
P,0.001) and correction for urine creatinine (R250.21,
P50.008) (Figure 5). No clear correlation was detected
between plasma [K1] and pNCC abundance, unlike in our
previous observations (Supplemental Figure 6) (5).

Plasma aldosterone appeared to positively correlate with
AQP2 (R250.11, P50.04) and the ALIX-corrected abun-
dance of AQP2 (R250.10, P50.04). Plasma copeptin posi-
tively correlated with AQP2 (R250.34, P50.0002) and the
ALIX and urine creatinine–corrected AQP2 (R250.36,
P50.0001 and R250.21, P,0.008, respectively) (Figure 5).
Plasma [Cl2] showed trends toward positive correlations
with creatinine-corrected pNCC (R250.06, P50.08), and
ALIX-corrected NCC (R250.05, P50.09) and pNCC
(R250.06, P50.06) (Supplemental Figure 6).

Discussion
The primary aim of this study was to use large-scale pro-

teomic techniques to investigate the effect of acute NaCl
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Figure 1. | Successful characterization of urinary extracellular vesicles (uEVs). (A) Screenshot from a diluted uEV sample (1:1000) revealing
a range of particle sizes. (B) Concentrations (particle per milliliter) of the uEV sample in (A) (expressed as averaged finite track length
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loading and volume expansion on renal transmembrane
proteins in uEVs from patients with hypertension and
raised ARRs. Although we did not have a sufficient quan-
tity of all uEV samples to perform transmission electron
microscopy (24), the size-distribution assessment by nano-
particle tracking analysis, coupled to the identification of
widely used uEV markers, including ALIX and TSG101,
suggested successful uEV isolation using progressive ultra-
centrifugation. This was also supported by the nonbiased
LC-MS/MS data where, of the .3000 proteins identified,
99 were identified as EV-enriched proteins and .70% of
them had previously been found to be present in uEVs and
exosomes.
Of the proteins determined by quantitative LC-MS/MS to

be altered in abundance during SSST, reductions in NCC,
pendrin, and AQP2 were of interest. However, several uEV
markers were also differentially expressed during SSST,
suggesting the reductions in these proteins may be due to
alterations in actual uEV biogenesis or excretion rates (21).
To address this possibility, we validated the effects of SSST
on AQP2, NCC (and its phosphorylated form), and the uEV
markers ALIX and TSG101 using immunoblotting. We did
not validate pendrin due to a lack of antibodies crossreact-
ing with human pendrin. In line with the LC-MS/MS data,
in both subjects with PA and those with LRH, there were
decreases in NCC, AQP2, ALIX, and TSG101, and pNCC
additionally showed a reduction at completion of the SSST,
although the findings in subjects with LRH need validation
due to small numbers.
In the Hypertension Units of Princess Alexandra Hospi-

tal, during SSST, antihypertensive drugs that have the
potential to significantly affect the measurement of plasma

ARR were withdrawn at least 4 weeks before SSST for diu-
retics (including spironolactone) and at least 2 weeks before
SSST for b-blockers, clonidine, methyldopa, nonsteroidal
anti-inflammatory drugs, angiotensin-converting enzyme
inhibitors, angiotensin receptor blockers, and dihydropyri-
dine calcium blockers (25). Other antihypertensive medi-
cations that have lesser effects on the ARR, including
verapamil, prazosin, or doxazosin, moxonidine, and/or
hydralazine, were commenced, where necessary, to ensure
ongoing control of hypertension. Therefore, the likelihood
that antihypertensive medications may have had significant
effects on the Na1 channels is small.
There was a large reduction observed in urine creatinine

concentration. Therefore, we corrected relative protein
abundances for urine creatinine concentrations and found
that the apparent decreases in NCC, pNCC, ALIX, and
TSG101 were replaced with mild increases and the change
in AQP was no longer evident. However, correction for cre-
atinine concentration in spot urines does not address the
influence of variable uEV recovery/sedimentation rates
during progressive ultracentrifugation (26). We then per-
formed correction for the uEV marker protein ALIX. This
resulted in abolition of the decreases in NCC and pNCC,
whereas the decrease in AQP2 remained, and the changes
in the three channels were reproduced when predicting
their total contents in the collected urine by multiplying
each relative abundance to total urine volume
(Supplemental Figure 7). These observations raise the pos-
sibility that decreases in NCC and pNCC in uEVs observed
in LC-MS/MS and immunoblots are due to reductions in
uEVs, either because the concentration of uEVs is reduced
after SSST (supported by the reduced urine creatinine
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concentration), or less uEVs are excreted during SSST (sup-
ported by reduced abundance of EV markers). A recent
study demonstrated that water loading reduced the abun-
dance per unit volume of EV markers but increased the
amount of Tamm–Horsfall protein recovered in uEVs (21).
Acute saline loading–induced increased urine volume may
also result in greater excretion of albumin in the post sam-
ple compared with the baseline condition. Given that the
total protein from each sample loaded on mass spectrome-
try (6.4 mg) or western blotting (20 mg) was the same, it is,
therefore, not surprising that the readout of uEV proteins
was lower after SSST. Findings of a recent study comparing
uEV quantification methods suggested that urine creatinine
can replace the need for uEV quantification to normalize
spot urines (21). In this study, the abundance of widely
used EV markers, whether quantified by mass spectrome-
try or immunoblotting, positively correlated with spot
urine creatinine concentration (Supplemental Figure 8).
The apparent lack of changes in ALIX-corrected NCC

and pNCC, despite the fall in endogenous aldosterone, may
be due to the lack of change in plasma [K1] during SSST.
Although aldosterone and its analogues were originally
thought to be major regulators of NCC (8,27–30), plasma
[K1] is suggested a more potent regulator of NCC

abundance and phosphorylation (5,31–34). Sufficient dietary
K1 supplementation to maintain normokalemia in mice
during aldosterone infusion reduced plasma membrane
NCC (4). In this study, the weak inverse correlation of
plasma [K1] with NCC is consistent with animal studies.
The low R2 value of the correlation of plasma [K1] with
ALIX-corrected NCC and the unclear association between
plasma [K1] and ALIX-corrected pNCC in this study may
reflect the fact that, unlike in our previous studies, almost
all patients’ plasma [K1] fell within the normal range
(3.5–5.2 mmol/L), with considerably less variation among
samples, resulting in a lower power to detect their
relationship.

A fall in ALIX-corrected AQP2 may reflect a fall in plasma
vasopressin induced by water loading (35), as evidenced by
the significant decrease in plasma copeptin in both subjects
with PA and those with LRH. Reduction in AQP2 abun-
dance may also have been due to reduced aldosterone,
which is a potent stimulator of AQP2 expression indepen-
dently of angiotensin II (36). Surprisingly, there was a
negative correlation between plasma [K1] and creatinine-
corrected AQP2 (determined by immunoblotting). Plasma
[K1] usually positively correlates with kidney levels of
AQP2, with K1 deficiency rapidly resulting in nephrogenic
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Table 2. Differentially expressed renal membrane proteins quantified in all samples during seated saline suppression testing (n513, Female 8/Male 5, primary aldosteronism 10/low renin
hypertension 3)

Number Accession Protein Description
Alternative

Name
Gene

Symbol
Fold Change (Post/Basal),

Median (Range) Trend P Valuea
False Discovery

Rate

1 P55017-2 Isoform 2 of solute carrier family 12 member 3 NCC SLC12A3 0.70 (0.50–1.82) Decrease 0.03 0.091
2 P21796 Voltage-dependent anion-selective channel protein 1 VDAC-1 VDAC1 1.49 (0.58–4.24) Increase 0.03 0.098
3 O95833 Chloride intracellular channel protein 3 CLIC3 CLIC3 1.27 (0.85–2.08) Increase 0.003 0.023
4 P45880-1 Isoform 1 of voltage-dependent anion-selective channel protein 2 VDAC-2 VDAC2 1.47 (0.82–3.22) Increase 0.003 0.022
5 Q9Y277 Voltage-dependent anion-selective channel protein 3 VDAC-3 VDAC3 1.58 (0.65–4.24) Increase 0.003 0.022
6 O43511 Pendrin Pendrin SLC26A4 0.84 (0.55–1.18) Decrease 0.007 0.040
7 P05141 ADP/ATP translocase 2 ANT2 SLC25A5 1.88 (0.74–4.39) Increase 0.005 0.033
8 Q9C0H2–4 Isoform 4 of protein tweety homolog 3 TTYH3 TTYH3 0.61 (0.35–1.14) Decrease 0.000 0.008
9 P41181 Aquaporin 2 AQP2 AQP2 0.62 (0.24–1.39) Decrease 0.004 0.026
10 Q9NQA5 Transient receptor potential cation channel subfamily V member 5 ECaC1 TRPV5 0.77 (0.40–1.11) Decrease 0.002 0.017
11 Q9NRA2 H1/sialic acid cotransporter sialin Sialin SLC17A5 0.63 (0.25–1.61) Decrease 0.010 0.049
12 Q00325 Phosphate carrier protein, mitochondrial PTP SLC25A3 1.66 (0.79–4.56) Increase 0.003 0.025

basal, baseline measurement before SSST commencement; post, measurement at SSST completion; NCC, sodium-chloride cotransporter.
aP values by paired t test (post/basal).
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diabetes insipidus due to autophagic degradation of AQP2
(37–39). It is possible that the increased uEV levels of AQP2
when plasma [K1] is lower represents a cellular mechanism
to remove AQP2 from principal cells during hypokalemia
and may be linked to the process of autophagy (40,41).
When measured by LC-MS/MS, the negative correlation

between plasma [K1] and pendrin is consistent with our
previous report (5,6). There are additional associations of
the remaining nine renal transmembrane DEPs with bio-
chemical factors (Supplemental Figure 4). The increases in
voltage-dependent anion-selective channels and their posi-
tive correlations with plasma [Cl2] may reflect the transport
of Cl2 across the mitochondrial membranes and plasma
membrane due to infusion of NaCl. Besides, the correla-
tions, detected by LC-MS/MS and immunoblotting,
between plasma [HCO3

2] and several of the proteins exam-
ined require validation. The fact that [HCO3

2] was much
lower than the normal range in some patients, despite the
patients being clinically well, raises the possibility of a tech-
nical issue, because processing of plasma samples for
[HCO3

2] measurement was delayed and some samples
were subjected to freeze-defrost cycles before measurement.
Admittedly, the diverse origins and dynamic molecular

composition of uEVs present an enormous analytic

challenge. Therefore, it remains uncertain as to what
extent the uEV isolation and measurement approaches
used in this study and the data that they yield are able to
truly reflect disturbances to physiologic processes that
may occur across a range of disease scenarios. Although
uEV analysis has been demonstrated to be a reliable tool
to monitor specific physiologic responses (12), methods of
uEV quantification and normalization need further opti-
mization and standardization to foster scientific advances
in uEV research and successful translation into clinical
practice.

In summary, this is the first study to quantify changes in
the protein profile of uEVs in response to acute NaCl load-
ing and volume expansion–induced renin-angiotensin-
aldosterone system inhibition in subjects with hypertension
and repeatedly elevated ARRs. Volume expansion induced
a clear reduction in AQP2 abundance, but changes in NCC
and pNCC may have been primarily due to diluted post-
SSST urine samples and a stable plasma [K1] during the
test, despite a fall in aldosterone levels. A study in a hyper-
tensive cohort with raised ARRs whose plasma [K1]
decreased post-SSST (42) is required to further elucidate if
plasma [K1] contributes to the variations in NCC abun-
dance and phosphorylation.
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