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Abstract

Motivation: Intercellular communication (i.e. cell–cell communication) plays an essential role in multicellular organ-
isms coordinating various biological processes. Previous studies discovered that feedback loops between two cell
types are a widespread and vital signaling motif regulating development, regeneration and cancer progression.
While many computational methods have been developed to predict cell–cell communication based on gene expres-
sion datasets, these methods often predict one-directional ligand–receptor interactions from sender to receiver cells
and are not suitable to identify feedback loops.

Results: Here, we describe ligand–receptor loop (LRLoop), a new method for analyzing cell–cell communication based
on bi-directional ligand–receptor interactions, where two pairs of ligand–receptor interactions are identified that are re-
sponsive to each other and thereby form a closed feedback loop. We first assessed LRLoop using bulk datasets and
found our method significantly reduces the false positive rate seen with existing methods. Furthermore, we developed
a new strategy to assess the performance of these methods in single-cell datasets. We used the between-tissue interac-
tions as an indicator of potential false-positive prediction and found that LRLoop produced a lower fraction of between-
tissue interactions than traditional methods. Finally, we applied LRLoop to the single-cell datasets obtained from retinal
development. We discovered many new bi-directional ligand–receptor interactions among individual cell types that po-
tentially control proliferation, neurogenesis and/or cell fate specification.

Availability and implementation: An R package is available at https://github.com/Pinlyu3/LRLoop. The source code
can be found at figshare (https://doi.org/10.6084/m9.figshare.20126138.v1). The datasets can be found at figshare
(https://doi.org/10.6084/m9.figshare.20126021.v1).

Contact: jiang.qian@jhmi.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Multicellular organisms rely on cell–cell communication to coordin-
ate various biological processes and respond to environmental stim-
uli (Bonnans et al., 2014; Zhou et al., 2018). Decades of research
have accumulated a massive amount of information on signaling
pathways and ligand–receptor interactions (Bich et al., 2019;
Bonnans et al., 2014; Zhou et al., 2018). Recent sequencing

technologies enable us to profile gene expression at the single-cell
level (Montoro et al., 2018; Tammela and Sage, 2020). Many com-
putational methods have been developed to mine single-cell RNA-
seq (scRNA-seq) data for biologically important cell–cell signaling
interactions. These methods have distinct features in terms of the
usage of databases of ligands and receptors, the strategy for building
lists of ligand–receptor interactions and the scoring systems to quan-
tify the interactions based on gene expression (Almet et al., 2021;
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Armingol et al., 2021; Blencowe et al., 2019; Jin and Ramos, 2022;
Shao et al., 2020).

If we focus on how these methods utilize the gene expression data,
they can be classified into two major types. The first type predicts the
cell–cell communication based on the expression of ligands and
receptors. The methods include CellPhoneDB, SingleCellSignalR,
Connectome, ICELLNET and NATMI (Cabello-Aguilar et al., 2020;
Efremova et al., 2020; Hou et al., 2020; Noël et al., 2021; Raredon
et al., 2022). If one cell type expresses a specific ligand and another cell
type expresses its receptor(s), these two cell types are considered to be
communicating with one another. The second class of methods (e.g.
NicheNet and CCCExplorer) uses entire transcriptomes to predict
cell–cell communication (Browaeys et al., 2020; Choi et al., 2015).
These methods incorporate other genes beyond ligands and receptors,
integrating the expression levels of downstream genes, transcription
factors and signaling proteins. By constructing the signaling networks
and transcriptional regulatory networks, the downstream genes can be
identified for each ligand. Conversely, gene sets that are differentially
expressed, including lowly expressed genes, in certain conditions can
be collectively used to infer the upstream ligands. However, the two
types of methods shared one feature that they predicted one-
directional interactions at a time, from sender cells to receiver cells.

Previous studies discovered that intercellular feedback interactions
were prevalent in many biological processes, including stem cell fate
decision, development, regeneration and cancer biology. For example,
some studies used mathematical modeling and cell population analysis
to demonstrate the existence of feedback loops in stem cell signaling
networks (Kirouac et al., 2009, 2010). Other studies identified specific
feedback loops during developmental processes (Barone et al.,
2017;Jing et al., 2021; Nilsson and Skinner, 2001). The feedback
mechanism is necessary to ensure two-way communication between
cell types. For instance, mesenchymal stem cells are found to confer a
neuroprotective effect on injured retinal ganglion cells (RGCs) via
platelet-derived growth factors (Johnson et al., 2014). This neuropro-
tective effect has to be triggered by a signal of ‘injury’ from RGCs to
mesenchymal stem cells, demonstrating the importance of feedback
communication between different cell types.

However, the currently existing methods were designed to predict
individual one-directional ligand–receptor interactions. A computa-
tional method that is able to systematically predict the feedback loops
is still lacking. In this work, we propose a new method, ligand–recep-
tor loop (LRLoop), which is specifically designed to identify feedback
loops from gene expression datasets. This method integrates the exist-
ing signaling and regulatory networks with the gene expression data-
sets. We assessed this in both bulk and scRNA-seq datasets and found
that it outperformed other existing methods. Applying LRLoop to
single-cell datasets obtained from developing mouse retina predicted
many ligand–receptor interactions during retinal development.

2 Materials and methods

2.1 The overall design of LRLoop
We integrate transcriptome, signaling pathways and regulatory net-
works to identify feedback for cell–cell communication. Specifically,
for the two-way communication to occur, cell type A secretes ligand
L1, which interacts with receptor R1 in cell type B. In turn, cell type B
responds to the signal from cell type A by secreting ligand L2 that inter-
acts with receptor R2 in cell type A. To make the L1–R1 and L2–R2
interactions responsive to each other, the ligands (L1 and L2) are
required to be encoded by the genes that are regulated by receptors in
the corresponding cells (Fig. 1A). Note that even though traditional
methods can also predict bi-directional interactions, the interactions
are not connected through signaling and regulatory networks.
Therefore, these interactions are not responsive to each other (Fig. 1A).

2.2 Sources of ligand–receptor pairs, signaling and

gene regulatory networks

• We combined literature-validated ligand–receptor pairs used in

NicheNet (Browaeys et al., 2020) and connectomeDB2020 (Hou

et al., 2020). Ligand–receptor pairs predicted based on protein–

protein interactions are excluded. Only the ligand–receptor pairs

that are literature supported are included. We further filtered

these ligand–receptor pairs using ligand and receptor annotation

from CellTalkDB and NATMI database (Hou et al., 2020; Shao

et al., 2021). The ligand-receptor pairs were removed if the defin-

ition of the involved ligand or receptor was not supported by ei-

ther of the two databases. After filtering, we retained 2512

ligand–receptor pairs, involving 859 ligands and 726 receptors,

for subsequent downstream analysis.
• To construct our default LRLoop network, we adopted the intra-

cellular signaling network and gene regulatory network collected

in NicheNet (Browaeys et al., 2020).

2.3 Construction of the LRLoop
The construction of LRLoop consists of three steps:

a. Construct the ligand/receptor-target regulatory potential matri-

ces. With the collected ligand–receptor pairs, signaling and gene

regulatory networks, we constructed the ligand/receptor-target

regulatory potential matrices using NicheNet (Fig. 1B). For the

calculation of these matrices, we adopted the functions

construct_weighted_networks, apply_hub_corrections and con-

struct_ligand_target_matrix in the R package nichenetr. We

modified the function construct_ligand_target_matrix. Instead

of calculating the regulatory potential score for each ligand, the

modified version calculates the regulatory potential scores be-

tween each receptor and target gene. The algorithm was based

on the idea of propagation of the signal from a ligand/receptor

to the downstream proteins mediating receptor signaling, tran-

scriptional regulators targeted by these factors and genes that

are in turn regulated by these transcriptional regulators.

Google’s Personalized PageRank algorithm was used to link the

ligands/receptors to transcriptional regulators (Browaeys et al.,

2020). The resulting ligand/receptor-transcriptional regulator

matrices were then multiplied to the transcriptional regulator-

target matrix of the gene regulatory network to obtain the lig-

and/receptor and target gene relationships.

b. Identifying the target genes of each ligand/receptor. With the

ligand/receptor-target regulatory potential matrices, we identi-

fied the set of target genes of each ligand/receptor which were

defined as the ones with relatively higher regulatory potential

scores among all the potential target genes of the ligand/recep-

tor (Fig. 1B). Specifically, for the construction of our default

LRLoop network in the analysis, we used the function make_-

discrete_ligand_target_matrix of the nichenetr package with its

default parameters (error_rate ¼ 0.1, cutoff_method ¼
‘distribution’).

c. Finally, we identified all the [L1–R1]<->[L2–R2] pairs where

L1 and L2 are among the target genes of each other for the feed-

back loops. Alternatively, we also identified the loops when L2

is a target gene of R1 and L1 is among the target genes of R2.

The interaction networks (ligand–receptor interactions, regulatory
networks and signaling networks, ligand–target gene relationships)
can be found in https://doi.org/10.6084/m9.figshare.20126021.v1.

2.4 Assessment of LRLoop using bulk datasets
Each of the 111 ligand treatment datasets collected by Browaeys
et al. (2020) provides the treatment ligand, the expressed genes in
the receiver cells and the differential expression information of these
genes (including the logFC and q-value). For each of these datasets,
based on our curated ligand–receptor network, we took the set of
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the ligand genes of all the expressed receptor genes in the receiver
cells as the set of candidate ligands L1 and ranked these candidate
ligands in the following ways:

• maxfjlogFC of R1jg: We scored each candidate ligand gene L1

by the value of maxfjlogFC(R1)j: R1 2 the set of cognate recep-

tor genes of L1g. The ligands L1 are then ranked by these scores

in descending order.
• CCCExplorer (L1 score): We replaced the ligand–receptor pairs

and the gene regulatory network of CCCExplorer with the net-

works we used in the work so that the results obtained from dif-

ferent methods are comparable. As a required input of

CCCExplorer, the built-in KEGG pathways remained the same.

The candidate ligand genes L1 were then ranked based on a P-

value score calculated by CCCExplorer (v1.0) in ascending

order.
• NicheNet (L1 score): We took all the genes expressed in the re-

ceiver cells as background and those with q-value < 0.1 and the

absolute value of logFC greater than or equal to 1 as the set of

differentially expressed target genes to calculate the ligand activ-

ity scores of the candidate ligand genes L1 using nichenetr

package (v1.0.0). The ligand genes L1 were then ranked based

on these scores in descending order.

For each method, we have also assessed the rank values for the
treatment ligands using LRLoop filtering and random filtering. If a

ligand did not form feedback, we assigned the rank of the ligand to
the last among all the candidate ligands.

2.5 Application of LRLoop to scRNA-seq data
While the goal of LRLoop is to predict the feedback loop, we also
developed an interaction score (SLR) to quantify the strength of indi-

vidual ligand–receptor interactions in a particular biological condi-
tion. The score considered the contribution from both L1–R1 and

looped L2–R2 interactions between two cell types. Suppose L1–R1
is a candidate ligand–receptor interaction expressed from cell type A
to cell type B (by default setting, detected in at least 10% of the cells

in each cell type, respectively). Let wL1R1 be the interaction strength
(e.g. gene expression, NicheNet score or SingleCellSignalR score) of

L1–R1 and wL2R2 the maximum of the interaction strength of its
partners (L2–R2) expressed from cell type B to cell type A. If L1–R1

Fig. 1. LRLoop algorithm and its assessment. (A) Schematic of the LRLoop concept. Ligand 1 (L1) interacts with receptor 1 (R1), while ligand 2 (L2) interacts with receptor 2

(R2). Furthermore, L1 is the downstream target of R2 through signaling pathways and gene regulatory networks (GRNs). Similarly, L2 is the downstream target of R1. (B)

The flowchart of LRLoop. (C) An example feedback loop between Muller glia and microglia
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has no LRLoop partner, let wL2R2 ¼ 0. The interaction score of the
loop (L1–R1: L2–R2) was defined as

SLR ¼ wL1R1 � 1þ k� wk
L2R2

lk þ wk
L2R2

 !
;

where 0 � k � 1 can be understood as a weight for L2–R2 inter-

action, wk
L2R2

lk þ wk
L2R2

is a Hill function bounded between 0 and 1 that

increases as the value of wL2R2 increases and the saturation curve
becomes steeper as the Hill coefficient k > 0 gets larger. l is the re-
flection point where the concavity of the function changes. When
wL2R2 ¼ l, the Hill function is equal to 0.5. The detailed character-
ization and application of the Hill function can be found in
Gesztelyi et al. (2012) and Weiss (1997).

We adopted four methods to calculate the L–R interaction
strength (i.e. wL1R1 and wL2R2):

• NicheNet (Pearson): In each cell type, we took the genes that are

detected in at least 10% of the cells as ‘expressed’ genes and those

whose average expression levels are above 75 percentile among all

the expressed genes as ‘highly expressed’. We calculated the ligand

activity score (the Pearson correlation coefficient) for each

expressed ligand using nichenetr package (v1.0.0), taking all the

expressed genes in the receiver cell type as background and the set

of genes that are highly expressed in the receiver cell type as the

target gene set of interest. An interaction L–R was counted if both

L and R were expressed in the corresponding cell types and that

the ligand activity score of L was above a threshold value.
• SingleCellSignalR: The interaction strength of expressed (detected

in at least 10% of the cells) ligand–receptor pairs was defined asffiffiffi
lr
p

aþ
ffiffiffi
lr
p in SingleCellSignalR (v1.6.0) (Cabello-Aguilar et al., 2020),

where l and r are the average expression value of the ligand and re-

ceptor, respectively. a is the average expression value of all genes

in all cells.
• CellPhoneDB: The interaction strength of expressed (detected in

at least 10% of the cells) ligand–receptor pairs was defined as the

mean of the average expression of the ligand and receptor genes

in CellphoneDB (v2.1.7).
• NATMI: The mean–expression weight of expressed (detected in

at least 10% of the cells) ligand–receptor pairs was defined as the

product of the mean expression of the ligand and the receptor

genes in NATMI (v1.0).

We downloaded the high-quality batch-removed digital gene ex-
pression data (Mouse Cell Atlas) (Han et al., 2018). Tissues with
only one cell type and cell types with less than 10 cells were removed
for the analysis. For the remaining 36 tissues, we examined the pro-
portions of between/within-tissue ligand–receptor interactions with
or without consideration of L2–R2 contribution for each tissue pair
at multiple cutoff score values. To find the optimal parameters, we
calculated an overall reduction in the fraction of between-tissue
interactions across different parameter settings (k¼0.2, 0.5, 1, 2, 4,
8, 16; k¼0.1, 0.2, . . . , 0.8, 0.9, 1; l ¼ 0.1, 0.2, . . . , 0.8, 0.9). We
found the parameter combination that yielded the largest reduction.
For this dataset, the highest number of tissues pairs with an overall
reduction was obtained at k¼0.9, l¼0.7 and k¼4 when using the
SingleCellSignalR score for the values of wL1R1 and wL2R2 and
k¼0.9, l¼0.08 and k¼4 using NicheNet ligand activity score. For
the other two methods, the calculation was done with the same k
and k (0.9 and 4, respectively) and the l value chosen around the
minimum interaction score of expressed (detected in at least 10% of
the cells) ligand–receptor pairs.

2.6 Prediction of L–R interactions between retinal cells
We separately analyzed the ligand–receptor interactions for the
three retinal development stages. We identified 5, 6 and 6 retinal cell

types in the early, intermediate and late stage, respectively. Based on
the cell type annotations, we predicted the feedback LR loops and
ranked them between each pair of these cell types using the LRLoop
package.

Before running LRLoop, we first cleaned the ligand–receptor
pairs according to their annotation in the Human protein atlas
(Uhlén et al., 2015) and Uniprot (UniProt Consortium, 2021). We
removed the ligand–receptor pairs if one of them has been annotated
as ‘intracellular proteins’ in both datasets.

Next, we detected feedback loops between each pair of cell-
types following the standard LRLoop analysis pipeline. Briefly, to
calculate feedback loops between cell-type A and cell-type B, we
first cleaned the LR networks based on the ligand expression (at
least 2.5% cells expressed, the threshold can be adjusted based on
the sequencing depth) in cell-type A and the receptors expression
(at least 2.5% cells expressed) in cell-type B. We then cleaned the
signaling networks based on the gene expression (at least 2.5%
cells expressed) in cell-type B. With the cleaned LR network,
cleaned signaling network and the gene regulatory network, we
constructed two matrices: AtoB–ligand–target matrix and AtoB–
receptor–target matrix. Conversely, with the same cleaning
method, we constructed another two matrices: BtoA–ligand–target
matrix and BtoA–receptor–target matrix. With the four matrices,
we detected the feedback loops using the function: ‘PrepareBasics’
with min_pct¼0.025.

Finally, for each pair of cell-types, we calculated the S scores for
all detected ligand–receptor pairs. To quantify the global interac-
tions between each cell-type pair, we calculate the aggregated SC

score, which was defined as

Sc ¼
X

SLR>C

SLR;

where C is the cutoff for SLR. To find the more specific LR pairs, we
further filtered the ligand–receptor pairs with the following criteria:
(1) we removed LR pairs if they are present at least 70% cell-type
pairs. (2) We removed the LR pair if their maximum difference of
SLR score is < 0.5 across all cell-type pairs.

3 Results

3.1 Closed feedback loop as a design principle for cell–

cell communication
We propose a new method, LRLoop, which identifies feedback loop
signaling interactions between individual cell types. For this pur-
pose, we integrated the gene expression, signaling pathways and
regulatory networks and extracted the feedback motifs in the com-
posite networks. To illustrate the concept, we first show an example
here (Fig. 1C). During injury-induced Muller glia reprogramming in
mice (Hoang et al., 2020), microglial cells secrete ligand Tnf, which
binds to receptor Tnfrsf1a, which in turn is expressed in Muller glial
cells. At the same time, the ligand Anxa2 is secreted by Muller glial
cells and its receptor Tlr2 is expressed in microglial cells.
Furthermore, based on known signaling and regulatory networks,
Tnf and Anxa2 are predicted to be downstream genes of Tlr2 in
microglia and Tnfrsf1a in Muller glia, respectively. These four genes
are found to be co-expressed in the time course; they are all upregu-
lated at 3 h after retinal injury and gradually downregulated after-
ward (Fig. 1B; Hoang et al., 2020). The Tnf–Tnfrsf1a-mediated
microglia–Muller glia communication was confirmed in mouse ret-
ina (Todd et al., 2020). Our analysis suggests that the feedback
loops might be one type of signaling motif regulating cell–cell
communication.

We next investigated the prevalence of the feedback loops based
on known ligand–receptor pairs, signaling pathways and gene regu-
latory networks. In total, we identified 2512 experimentally sup-
ported ligand–receptor pairs based on literature. Among all
3 156 328 possible loops involving two known ligand–receptor pairs
(L1–R1 and L2–R2, the loops could be from the same ligand–recep-
tor pairs), we found that 0.55% (17 413) of them form feedback
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loops (see Section 2, Fig. 2A). These pairs involve 656 ligands and
647 receptors. Our identified feedback loops contained the majority
of known ligand–receptor pairs (77%, 1935). Most ligand–receptor
interactions form the feedback loops with a few other ligand–receptor
interactions, while a few of them could partner with many interac-
tions (Fig. 2B). The top ligand–receptor interaction identified is
VCAN-EGFR, which pairs with 600 other ligand–receptor interac-
tions to form feedback loops, probably in various biological contexts.

Several lines of evidence suggest that the feedback loops identified
using this approach are biologically relevant. First, we assessed
whether the LR loops are more likely to be in the same biological
pathways. In fact, members of 2009 feedback loops (L1, L2, R1 and
R2) are found in the same KEGG pathways. For example, LAMA2–
ITGB1 and PDGFB–PDGFRA interactions are found to form a feed-
back loop and both pairs of the proteins are part of the focal adhesion
signaling pathway (Ogata et al., 1999). In contrast, randomly selected
pairs of ligand–receptor interactions are much less likely to be in the
same KEGG signaling pathways (Fig. 2C). Second, we examined
whether the genes encoding the feedback loop members tend to be co-
expressed. We analyzed the gene expression profiles across human

tissues and calculated the correlation coefficients of gene expression

(Carithers et al., 2015). Specifically, we calculated two correlation
coefficients (L1–L2, R1–R2) and found that they were higher than

those obtained from random pairs of ligand–receptor interactions
(P<2.2e�16) (Fig. 2D). Third, we examined whether ligand–receptor
hubs have higher expression levels than non-hub genes, since these

hubs formed feedback loops with many other ligand–receptor interac-
tions and were more likely to be activated in multiple cell types or

physiological conditions. We calculated the average gene expression
of ligand–receptor pairs across human tissues and found that the genes
in the hubs had higher expression levels than non-hub genes

(P¼5.05e�3, P¼4.8e�3) (Fig. 2E). In summary, these results sug-
gest that the feedback loops might be one widespread design principle
regulating cell–cell communication.

3.2 Assessment of LRLoop using bulk datasets
We next assessed whether the feedback loops could improve the pre-
diction of cell–cell communication. We incorporated the identified

feedback loops to different scoring methods (e.g. gene expression

Fig. 2. Properties of identified LRLoop. (A) Networks of feedback ligand–receptor pairs. Each node represents a ligand–receptor pair. Two nodes are connected if they form a

feedback loop. (B) Ranked ligand–receptor pairs based on their connection degree in the feedback network (high to low). X-axis indicates their ranks. Y-axis indicates their

number of connections. (C) Number of the feedback loops whose four members (L1, R1, L2 and R2) are in the same KEGG pathways. The distribution shows the same num-

bers if we randomly select two ligand–receptor pairs. (D) The Pearson correlation coefficients of connected L1–L2/R1–R2 are significantly higher than un-connected L1–L2/

R1–R2. P-values were calculated using KS-test. (E) The median expression level of hub ligands/receptors is significantly higher than lowly connected ligands/receptors. P-values

were calculated using t-test
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changes or ligand activity score from NicheNet (Browaeys et al.,
2020)) and compared the performance with and without feedback
loops. We applied our approach to a transcriptome dataset compiled
by Browaeys et al. (2020) in which the gene expression from bulk
samples was profiled before and after the cells were stimulated by
one or two ligands. The dataset includes the transcriptomes from
111 treatments with a total 121 ligands. Note that the data only
contain the expression profiles from the receiver cells, which include
the differential expression data for R1 and L2 (Fig. 3A). We exam-
ined the rank of the treatment ligands (i.e. the expected ligands)
among all ligands in the system using different scoring methods.
When we ranked the ligands based on the gene expression changes
of their interacting receptors (R1) before and after the treatment, the
median of the rank for the expected ligands was 179, suggesting that
on average 178 other ligands rank better than the expected ligand. If
we required both R1 and L2 to be present and ranked the ligands
based on the expression changes of R1, the rank of the expected
ligands was improved, with a median value of 114. In contrast, if we
used randomly created feedback loops as a filter, the median rank of
expected ligands was 383 because many expected ligands (59 on
average) did not form a feedback in the random dataset and were
ranked at the bottom (Fig. 3A). Similar results were observed when
we ranked the ligands based on the ligand activity scores using
CCCExplorer (Choi et al., 2015) and NicheNet (Browaeys et al.,
2020). When we used the LRLoop as a filter, our method improved
the rank of the expected ligands. We also used a receiver operating
characteristic (ROC) curve to evaluate the performance of LRLoop.
It is clear that the area under the curve was larger than other three
methods, suggesting that inclusion of looped ligand–receptor inter-
actions could improve the prediction of targeted ligands (Fig. 3A).
Unfortunately, we were not able to compare with other existing
methods because these methods cannot be applied to this specific
dataset due to the lack of ligand expression information for the
sender cells. In summary, our results indicated that the feedback
loops could substantially reduce the false positive rate.

3.3 LRLoop enriched for within-tissue interactions
An ideal gold standard dataset to assess the performance should in-
clude cell type-specific, physiological condition-dependent ligand–
receptor interactions. However, a challenge in this field is that there
does not exist a comprehensive gold standard dataset to evaluate the
performance of the predicted patterns of cell–cell communication.
To benchmark the prediction performance, we propose an indirect
evaluation based on the observation that gene expression tends to be
coordinated in cells that are physically closer and thus most of the
cell–cell interactions occur within a tissue where the cells are close
to each other (Featherstone et al., 2016; Lander, 2013; Ren et al.,
2020). Therefore, we reasoned that the cells that were either spatial-
ly or temporally separated are less likely to signal to one another
than the cells within a tissue (Fig. 3B). For example, cells in the
spleen and stomach are less likely to interact with each other be-
cause these cells are spatially separated. Likewise, cells in fetal lung
and mature lung are also less likely to interact because they are tem-
porally separated. For a pair of tissues, we calculated the numbers of
predicted ligand–receptor interactions within tissues and between
the two tissues, and used the fraction of between-tissue interactions
among all interactions. We then compared the obtained fraction be-
fore and after applying LRLoop. The lower fraction indicated the
reduced false positive rate.

To quantitatively include the contribution from both L1–R1 and
L2–R2 interactions, we developed an empirical interaction score
(SLR) to quantify the strength of ligand–receptor interactions (see
Section 2). We then applied the method to scRNA-seq data from
mouse tissues at embryonic, neonatal and mature stages (Han et al.,
2018). We found that incorporating the feedback loops could reduce
the rate of predicted between-tissue interactions. For instance, the
stomach includes stomach epithelial cell, gastric mucosa cell and
endocrine cell types, while the spleen includes neutrophil, monocyte,
dendritic cell, macrophage and NK cell types. We then calculated
the interaction score based on the SingleCellSignalR score (Cabello-
Aguilar et al., 2020). When we used different SLR values as cutoffs,

we found that the fraction of between-tissue interactions ranged
from 0 to 0.25. If we do not consider the contribution from L2 to
R2 interactions (i.e. wL2R2 ¼ 0, see Section 2), the corresponding
range was from 0.15 to 0.25 (Fig. 3B). The fraction of between-
tissue interactions was substantially reduced if we considered the
contribution from L2 to R2 interactions. Similarly, we also observed
the reduction of between-tissue interactions for temporally sepa-
rated tissues. For example, the interactions between fetal liver and
adult liver as well as fetal lung and adult lung, the fraction of
between-tissue interactions were significantly reduced after we
included the looped L2–R2 (Fig. 3B). Overall, we observed 96.7%
of 630 pairs of 36 tissues showed a reduction in the fraction of
between-tissue interactions with an optimized parameter set
(Fig. 3C). Similar results were observed when we applied the feed-
back loops to the NicheNet, NATMI and CellPhoneDB scoring
methods (Fig. 3D–F). In summary, our results suggest that the
LRLoop approach can successfully represent lower between-tissue
interactions and higher within-tissue ones, perhaps because our
method intrinsically considers a higher coordination of gene expres-
sion, which would be expected to occur in cells that are closer to
each other.

3.4 Cell–cell communication during retinal development
Previous studies have highlighted the importance of cell–cell signaling
during retinal development, with extrinsic factors controlling progeni-
tor proliferation, neurogenesis, neuronal differentiation and synapse
formation (Sanes and Zipursky, 2020; Wallace, 2011). We applied
our method to retinal scRNA-seq datasets and predicted cell–cell com-
munication between individual retinal cell types during retinal devel-
opment (Clark et al., 2019). The scRNA-seq datasets are grouped into
three different stages of neurogenesis: early (E14–E16), intermediate
(E18–P2) (Supplementary Fig. S1A) and late (P5–P8) (Supplementary
Fig. S1B). During early stages of neurogenesis, five distinct cell types
were identified, including retinal progenitor cells (RPCs), amacrine
cells/horizontal cells (AC/HC), RGCs, cone photoreceptors and neuro-
genic cells (Fig. 4A). We identified the ligand–receptor feedback loops
between each pair of cell types. A cell–cell communication map was
obtained by summarizing all ligand–receptor interactions (Fig. 4B).
Strong interactions were observed between RPCs and other cell types.
Among these, 38 ligand–receptor interactions were identified for
RPC–RPC signaling (Supplementary Fig. S1C), which included a
number of previously identified signaling interactions. For example,
fibroblast growth factor (FGF) signaling is known to play a key role
in retinal progenitor proliferation and neurogenesis (da Silva and
Cepko, 2017). Consistent with previous knowledge, Fgf9–Fgfr1,
Fgf15–Fgfr1 and Fgf3–Fgfr1 interactions were found in RPCs.
Similarly, 11 known ligand–receptor interactions were identified be-
tween RPC and neurogenic cells, including multiple Notch-Delta
pathway members (Supplementary Fig. S1D; Mills and Goldman,
2017). Interactions identified between RGC and neurogenic progeni-
tors included Sst-Sstr2, which is known to play a role in photoreceptor
generation and regulation of retinal neurogenesis (Weir et al., 2021;
Fig. 4C and D).

The patterns of cell–cell communication changed substantially
over the course of retinal development. While during early neuro-
genesis, signaling between RPCs and other cell types was most
prominent, during intermediate stages of neurogenesis, the number
of all interactions increased substantially. In particular, many inter-
actions were observed between RGCs and AC/HC, as well as be-
tween RPCs and other cell types (Fig. 4E). During late neurogenesis,
signaling between AC/HC and BC was prominent, as were recipro-
cal signaling between AC/HC and RPC/MG (Fig. 4F and
Supplementary Table S1). Both the timing and pattern of cell–cell
signaling at later developmental stages coincides with the establish-
ment of synaptic connectivity (Sanes and Zipursky, 2020). As
expected, signaling loops between GABAergic AC/HC and glutama-
tergic BC and RGCs include both multiple Neuroligin–Neurexin
and Cadm gene family members, which mediate formation of
GABAergic and glutamatergic synapses, respectively (Biederer et al.,
2002; Huang and Scheiffele, 2008; Supplementary Table S1).
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Fig. 3. Assessment of LRLoop using bulk and single-cell datasets. (A) Assessment using bulk expression datasets. Top panels: each dot represents an expected ligand. Bottom:

the corresponding ROCs after applying LRLoop to each method. (B) Assessment using single-cell datasets. We used the between-tissue interactions as the indicator for

false positive predictions. In the x-axis are the fractions of within-tissue interactions that remain in all expressed within-tissue interactions. The y-axis displays the fractions

of between-tissue interactions in all interactions that remain at the cutoff score values. (C–F) Heatmap showing the reduction of between-tissue interactions, calculated as

the ratio of the area under the ‘After LRLoop’ curve to the area under the ‘Before LRLoop’ curve as in B, and then minus one, among 630 tissue pairs. Four scoring methods

were used
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3.5 Evaluation of computational scalability

To evaluate the speed and memory usage of LRLoop, we tested one
example dataset with Seurat objects of �1.6G and 6573 cells. It
took �319 s on a computer running Microsoft Windows 11 Home
OS, with Intel Core i7-8565U CPU with 1.80 GHz, 1992 MHz, 4
Core(s) and 16 GB installed physical memory. The total RAM used
was 2.4 mebibytes and peak RAM used was 3803.5 mebibytes. This

shows that LRLoop can be run on a personal computer with reason-
able running speed and memory.

4 Discussion

Cell–cell communication plays an essential role in many biological
processes in multicellular organisms. While many computational

Fig. 4. Application of the LRLoop to retinal development. (A) Five major cell types identified using scRNA-seq dataset during the early retinal developmental stages (E14 and E16).

(B) Sc score between the five cell types calculated using LRLoop during early stages. (C) The unique ligand–receptor interactions predicted between RGCs and neurogenic cells dur-

ing early stages. The red arrow indicates the known interactions. (D) Detailed feedback loops for interactions between RGCs and neurogenic cells during early stages of retinal

neurogenesis. (E) Sc score between the six cell types calculated by LRLoop during intermediate stages. (F) Sc score between the six cell types calculated by LRLoop during late stages
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methods were developed for the prediction of ligand–receptor inter-
actions, a recent survey of this field highlighted two major unsolved
challenges (Dimitrov et al., 2022). First, a large discrepancy exists
between the results obtained from different prediction methods.
Second, we do not have a good gold standard dataset to assess the
accuracy of these predictions. In this study, we developed a new
computational method, LRLoop, to predict bi-directional ligand–re-
ceptor interactions. Compared with previous existing methods, the
unique aspect of our method is that we require the presence of two
ligand–receptor pairs that form a feedback signaling loop between
two individual cell types. Furthermore, the expression regulation of
the two ligands is dependent on the activity of the two receptors.
This design principle of cell–cell communications ensures a robust
bi-directional communication between cell types.

This feedback loop was identified in studies of cell–cell commu-
nication (Barone et al., 2017;Jing et al., 2021; Nilsson and Skinner,
2001). However, several key points are different in our analysis.
First, in previous work, the two ligand–receptor interactions that
form the feedback loop were considered to be independent of one
another. The two ligand–receptor interactions were identified inde-
pendently, using one-directional algorithms. In contrast, the two lig-
and–receptor interactions identified by LRLoop were responsive to
one another and are interconnected through previously validated
signaling networks and regulatory networks. Second, in previous
work, the feedback loops were found only after the ligand–receptor
interactions were identified, while the feedback loops were used as a
prerequisite for the prediction of ligand–receptor interactions in this
study.

Defining positive or negative feedback in gene regulation is rela-
tively straightforward because the consequence of gene regulation is
the gene expression, which is easy to define the up- or down-
regulation and thus easy to define positive or negative feedback. In
contrast, it is more complicated to determine positive or negative
regulation in cell–cell communication. The consequence of cell–cell
communication is the biological function (e.g. Tnf–Tnfrsf1a inter-
action promotes cell proliferation). One interaction might regulate
multiple functions in a cell. These functions could have opposite
directions (i.e. up- or down-regulation) with the same stimuli.
Furthermore, two pairs of ligand–receptor interactions will act on
two cell types in our feedback loop. Therefore, the consequence of
the LRLoop is manifest in two cell types, which might correspond to
two sets of biological functions. It is challenging to determine
whether the looped ligand–receptor interactions will enhance or
suppress the multiple biological functions in two cell types.

LRLoop and many existing methods (e.g. NicheNet) have dis-
tinct purposes. The goal of LRLoop is to identify the LR pairs that
are connected through signaling and regulatory networks in two cell
types. In contrast, the goal of the NicheNet is to predict ligands (or
receptors) that are responsible for a set of differentially expressed
genes in one cell type. LRLoop conveniently utilized the function of
NicheNet to find the connection between a gene and its upstream
receptors because NicheNet is a well-recognized program for this
function. If we could improve the gene–ligand connection prediction
in the future, we will replace the NicheNet with our own code.

We have three lines of evidence to demonstrate the quality of
LRLoop predictions. (1) We used 111 experimentally validated
datasets to evaluate the performance of LRLoop. One or two ligands
were perturbated in each dataset and the corresponding altered gene
expression profile was obtained. In these datasets, the targeted
ligands are known. Therefore, the datasets could serve as the ground
truth. (2) We used the fraction of between-tissue interactions as an
indirect assessment for the false positive rate. Compared with exist-
ing methods, LRLoop produced lower between-tissue interactions
when we applied the methods to 630 pairs of tissues. (3) We applied
LRLoop to a retinal development dataset and predicted the potential
ligand–receptor interactions in this specific system. We recovered
many known interactions that supported our predictions.

We have several potential options to improve LRLoop. (1) We
expect that the closed feedback loop is one design principle regulat-
ing cell–cell communication. Other design principles, potentially
involving more than two cell types, are possible. (2) If a more

detailed analysis of the spatial relationships between cell types is
available, it should be possible to more accurately predict patterns
of cell–cell communication. (3) In the current version of LRLoop,
we did not include receptor complex information, we will integrate
the complexes identified in CellPhoneDB to the next version of
LRLoop.
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