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To facilitate sequencing of the Sinorhizobium meliloti 1021 pSyma megaplasmid, a high-resolution map was
constructed by ordering 113 overlapping bacterial artificial chromosome clones with 192 markers. The 157
anonymous sequence tagged site markers (81,072 bases) reveal hypothetical functions encoded by the replicon.

The symbiotic soil bacterium Sinorhizobium meliloti forms
nitrogen-fixing nodules on the roots of leguminous host plants
and displays a complex genome consisting of a 3.7-Mb chro-
mosome and two megaplasmids, pSyma (1.4 Mb) and pSymb
(1.7 Mb) (8, 27, 41). Genes required for symbiosis are located
on all three replicons (18, 20), but are more frequently found
on the megaplasmids. Genes involved in nodulation and nitro-
gen fixation are located on pSyma (21, 22, 39), whereas those
essential for extracellular polysaccharide synthesis and other
symbiotic functions are located on pSymb (16, 44). These two
genetic elements have both chromosome-like and plasmid-like
features: both are 3 orders of magnitude larger than many
cloning vectors and carry some copies of housekeeping genes,
such as groESL, and genes associated with other metabolic
functions (33). On the other hand, the megaplasmids can be
mostly or entirely cured without affecting growth and repro-
duction (at least in permissive conditions) (13, 24; M. Hynes,
personal communication). Moreover, the megaplasmids can be
transferred to and maintained in at least one heterologous
genus, Agrobacterium (25, 43). Maps for the chromosome and
pSymb of strain 1021 exist (9, 10, 12, 20, 23), but concerning
pSyma, only three markers outside the 250-kb region contain-
ing symbiotic genes have been identified (3). As part of the
international effort to sequence the entire S. meliloti genome,
we constructed a high-resolution physical map of the pSyma
megaplasmid, using PCR-based screening and assembly of re-
combinant bacterial artificial chromosome (BAC) clones. In
addition to providing a valuable tool for the total genome
sequencing project, the data reported here provide new in-
sights into the genetic information contained on pSyma.

A high-resolution map of the S. meliloti pSyma megaplasmid
was constructed by using the same materials and methods that
were successfully used for chromosome mapping (9) except
that additional random sequences from a pSyma-enriched li-
brary were incorporated into the BAC screening (methods are
described at http://cmgm.stanford.edu/~mbarnett/syma.htm).
After screening 192 megaplasmid clones, we identified 88
pSyma clones. Additional clones from the total genomic BAC
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library were similarly screened to fill gaps in poorly repre-
sented regions of the pSyma contig. Thus, we assembled 113
BAC clones into a circular contig (Fig. 1A) encompassing the
entire 1.4-Mb pSyma replicon, using a total of 192 markers,
including 157 sequence tagged sites (STSs) (9) and 33 gene
markers (Table 1) representing 14 individual genes, 15 operons
(52 genes), and four insertion sequences available in the Gen-
Bank (7) and EMBL (42) databases. Assuming a random dis-
tribution of markers, average spacing was estimated at 7 kb,
with a tiling path of 6.8 colinear BAC clones per marker. No
region is represented by only one BAC, and we detected only
five chimeric clones between pSyma and pSymb. All of the 108
other assembled BAC clones show an exact colinear distribu-
tion of markers, and pSyma is covered by a set of 19 BAC
clones with minimal overlap. Assuming a map density of 7 kb,
deletions or rearrangements on some clones should be smaller
than 7 kb, if they do exist.

The relative positions of the nodulation and nitrogen fixa-
tion genes are consistent with previous mapping data (22, 23,
39), in particular the (i) presence of two fixJ loci flanking the
nod-nif region (5, 35), (ii) organization of nodulation genes
(39), (iii) orientation between nos and fix gene clusters (11),
(iv) location of syrA4 (4), and (v) location of groESLa (33). All
of these genes are clustered in a well-known symbiotic region.
Based on the insert size of the clones covering this region, the
total length was estimated to be between 250 and 300 kb, which
is also in agreement with Renalier et al. (35). The remaining
1.1 Mb of the replicon does not contain any known symbiotic
genes, except syrB. We also positioned several previously un-
mapped genes: adhA, rhbF, and a gene encoding a maturase.
Concerning insertion sequences, we detected one copy of
ISRm1 (46), at least five copies of the widespread ISRm2011-2
(40), five copies of ISRm3 (45), and one copy of ISRm5 (28),
compared with five copies on the chromosome (9). We did not
obtain PCR products with primers designed from ISRm2,
ISRm4, ISRm6, ISRm7, ISRm8, and ISRm9.

Each STS was analyzed by BLASTX (1) comparison with the
nonredundant protein database from the National Center for
Biotechnology Information, and results are available at the
website  http:/www-recomgen.univ-rennesl.fr/meliloti. STS
match results were divided into four categories (Fig. 2A), and
the most significant homologies were divided into functional
groups according to Riley’s classification for orthologous Esch-
erichia coli genes (36, 37) (Fig. 2B).
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TABLE 1. Previously identified S. meliloti genes mapped on the pSyma megaplasmid
Gene(s) Encoded function or product
AARA ... Alcohol dehydrogenase
.Putative electron transport chain to nitrogenase
JIXGHIS. ...ttt Putative cation transport complex
JOT2T2-fIXK2.....ociii e Transcriptional activators
fixKorfI51 ... .Transcriptional activator
SfiXLITI...... .Hemoprotein kinase; transcriptional activator
fixNOQP .Putative bacteroid oxidase
groESLa........ .Chaperonin
nifABfdxNfixU. .Nitrogen fixation regulatory protein; ferredoxin-like protein
RIFHDKE .........cooiiiiiiiiiiiiiiicieiccccc s Nitrogenase reductase
FUFIN bbbttt FeMo-cofactor biosynthesis
nodABCIJ. .Acyltransferase; N acetylase; chitin synthase; transporter of nod factors
nodD1 .nod gene activator
nodD?2.. .nod gene activator
nodD3.. .nod gene activator
nodFE. .Acyl carrier protein; B-ketoacyl synthase
TIOAG ...t Putative dehydrogenase
FIOAH ...ttt s Sulfotransferase
.O-Acetyltransferase
NOAMNOIFGHINOAN..............cccouiiiiiiiiiiiiiiiiiiicccisescsiscsse s Glucosamine synthase; transport
FIOAPQ....oiiiiieiieiceeeee ettt ettt ATP sulfurylase APS kinase
nolQs..... .Unknown function; similar to a thiamine biosynthetic enzyme

.Nitrous oxide reduction proteins

maturase.... .Reverse transcriptase/maturase

rhbF ....... .Siderophore biosynthesis in rhizobactin regulon
syrA. .Increases exopolysaccharide abundance

SYIB ettt Negatively affects syrM expression

SYIM .o nod gene activator

This distribution shows many STS markers containing
genes involved in the metabolism of small molecules, such as
(i) 4-deoxy-L-threo-5-hexosulose-uronate-ketol-isomerase and
succinate-semialdehyde dehydrogenase (encoded by gabD),
which is involved in carbohydrate (C,-to-C,) degradation (32),
and (ii) serine hydroxymethyltransferase, which is the key en-
zyme of C; and C, compound assimilation and is necessary for
the formation of effective nodules in Bradyrhizobium japoni-
cum (38). The next largest group of STSs is made up of those
possibly involved in cellular processes (chemotaxis and trans-
port); no matches with cell division proteins or general house-
keeping genes were detected other than those for the previ-
ously reported groESLa (33). We also found matches to genes
involved in nitrogen metabolism: the periplasmic nitrate re-
ductase precursor of Paracoccus and Pseudomonas, the NifX-
like protein of Rhizobium sp. strain NGR234, an arginine de-
iminase of Rhizobium etli (15), and the NifL nitrogen fixation
regulator of Klebsiella and other bacteria (31), previously un-
known in S. meliloti. Also, there are several less stringent
intriguing matches: an STS identical to stage IV sporulation
protein FB of Bacillus subtilis, required for spore formation
(14), and a marker identical to protein AttB of the plant
pathogen Agrobacterium tumefaciens, required for the attach-
ment of bacteria to plant cells (30). One STS is similar to
VirB4 from Agrobacterium and TraB from E. coli, both of

which are required for DNA transfer and may represent part of
a region involved in conjugative transfer of the pSyma replicon.
We also detected one sequence similar to the adducin-like
protein AddA of the obligate intracellular parasite Rickettsia
prowazekii and to alpha-adducin, which promotes the assembly
of the spectrin-actin network in eukaryotic cells (2, 26). In
addition, some STSs have matches to transcriptional regulators
from the LysR family of transcriptional regulators, the AraC
family activators, the GntR family regulators, the #p repressor,
and a repressor of the TetR-AcrR family. We did not find any
STSs with matches to regulators of two-component systems.

The most relevant comparison for the pSyma sequence will
be with that of the closely related Rhizobium sp. strain
NGR234, which has a complex genome (17), including a sym-
biosis plasmid of 536 kb, for which the complete nucleotide
sequence has been established (19). Given that the pSyma
megaplasmid of S. meliloti is almost three times the size of the
pSym megaplasmid of NGR234, it will be interesting to deter-
mine how related they are. In this regard, we noted that seven
of the S. meliloti pSyma STS markers had a match with the
pSym of NGR234, while 150 of the S. meliloti pSyma markers
did not (for E = 1le™%).

The elucidation of the S. meliloti total genome sequence will
aid greatly our understanding of the ancestry and behavior of
the pSyma replicon as well as provide insight into the genomic

FIG. 1. (A) High-resolution map of the pSyma megaplasmid of S. meliloti 1021. The map is presented in three linear and contiguous parts of approximately 500
kb for convenience. Identified S. meliloti genes (genetic database or BLASTX results) are indicated on the left side while anonymous STS markers are located on the
right side. The positions of underlined genes were deduced from mapped genes in the operon; i.e., no PCR primers were designed. Some genes are listed more than
once because several sets of primers were used. Black rectangles indicate pairwise invertable markers. %, partial similarity. The minimum set of BAC clones covering
the replicon is also presented. (B) Simplified map oriented according to the Honeycutt et al. map (23) showing STS markers mentioned in the text, selected genes, and
the minimum set of BAC clones. Lengths of BAC inserts are shown relative to the sizes determined by field inversion gel electrophoresis. Genes previously mapped
by Honeycutt et al. are marked with asterisks. Corresponding BAC insert sizes are as follows: BAC01, 110 kb; BAC02, 75 kb; BACO03, 110 kb; BAC04, 75 kb; BACO05,
55 kb; BACO06, 85 kb; BAC07, 120 kb; BACO08, 65 kb; BAC09, 80 kb; BAC10, 75 kb; BAC11, 60 kb; BAC12, 110 kb; BAC13, 100 kb; BAC14, 140 kb; BAC15, 80 kb;

BAC16, 25 kb; BAC17, 100 kb; BAC18, 80 kb; and BAC19, 60 kb.
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FIG. 2. (A) Distribution of BLASTX results among four categories of significance. 1, strong similarity with S. meliloti proteins (E < le~%; identity, =85%); 2, strong
similarity with sequences available in the databases (E < 1e~°); 3, local or weaker similarity with sequences available in the databases (le 2 < E =< 1e™°); 4, no similarity
with sequences available in the databases. (B) Classification of the most significant matches (E = 1e~°) using Riley’s classification (34, 35).

plasticity, the presence of multicopy genes, and the relative
involvement of each replicon, both in symbiotic and free-living
bacteria.
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