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Super-resolution laser probing of integrated
circuits using algorithmic methods

V. K. Ravikumar1,2, Jiann Min Chin2, Winson Lua2, Nathan Linarto2,
Gopinath Ranganathan2, Jonathan Trisno 1,3, K. L. Pey 1 &
Joel K. W. Yang 1,4

Laser probing remains invaluable to the semiconductor industry for isolating
and diagnosing defects in silicon transistors in integrated circuits during
electrical stress tests. However, continuous device miniaturization below the
20 nm technology node has crammed multiple transistors within the focal
spot of the laser beam, resulting in signal crosstalk, poor beam positioning
accuracy and degraded fault isolation capabilities. The challenge is analogous
to focusing attention to a single speaker in a crowd despite the multiple
simultaneous conversations in the background. Through algorithms intro-
duced in this patented work, consisting of cross-correlations, clustering, and
our previously developed combinational logic analysis, we achieved beam
positioning accuracy to better than 10 nm, extracted electrooptic waveforms
from a node of a group of transistors (~18 times beyond the optical resolution
limit), and applied this to isolate and identify an actual fault on a defective
device. While problems associated with probing with shorter wavelength
lasers continue to be addressed, our approach enhances and enables the
continued probing of ICs using sub-bandgap photon energies without hard-
ware modification to existing technology at semiconductor technology nodes
below 10 nm.

Modern integrated circuits have achieved unprecedented perfor-
mance for a given cost or power consumption over previous genera-
tions due to constant and deliberate improvements in the
manufacturing processes gained from learning from and under-
standing failure mechanisms. Laser probing (LP) is a fault localization
technique that uses a near infrared optical beam that is tightly focused
by a solid immersion lens system to measure minute changes in the
optical absorptance of transistors. Transistors are probed while the
diagnostic electrical tests are run on the processor, and aid in identi-
fying a failing transistor or interconnections (net) non-destructively1–8.
A logical approach to keep up with the ever-shrinking dimensions of
transistors is to use shorter wavelengths in laser probing. However, the

strong absorption of light by Si substrate for photon energies greater
than Si bandgap limits the resolution of the solid immersion system9–11

by Abbe’s criteria to ~180 nm with 1064 nm lasers12. At the 7-nm tech-
nology node where the transistor size of ~55–60 nm,with a drawn gate
width <10 nm13, this resolution limit constraints the ability to optically
locate and accurately align the optic probe with the transistor of
interest. In addition, multiple neighboring signal sources could inter-
act with the optic probe simultaneously, and the recorded waveforms
are affected by this crosstalk, making interpretation a challenge. Due
to the limited optical resolution for probe alignment and electro-
optical crosstalk, locating and probing on individual transistors within
the device have become increasingly difficult, resulting in arduous
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searches for the defect, reducing success rates of Failure Analysis (FA)
of integrated circuits at these technology nodes. Thus, while LP with
shorter wavelengths (such as visible light)14, 15 enhances optical reso-
lution by up to two-folds and reduce crosstalk, they are affected by
large Si absorption restricting Si substrate thicknesses and generate
free carriers in Si which reduces the quality of the collected signals16.

Previously developed combinational logic analysis (CLA)
algorithms17–20 help to predict the shape of the ensembled signals.
Although CLA was useful in simple combinational cells in mature
technology, the methods described were neither scalable to smaller
technology nodes, nor automatable, posing fundamental limitations
towidespread adaptation. In thiswork19,21, we introduce analgorithmic
method consisting ofCLA, cross-correlations22, and clustering23 named
CCC (one C for each of the three aforementioned algorithms) that
leverages on the known available electrical information to aid in
aligning the optic probe and extracting the signals of interest. Analo-
gous to the selective auditory attention effect24, where prior knowl-
edge of the relative position, the pitch, and script of each speaker
would allow one to tune into a particular “speech”, we leverage on
prior knowledge of electrical and optical information to accurately
align the optic probe with the signal source of interest, and extract
signals from densely packed elements at the single-transistor and sub-
transistor resolution, up to 18-times smaller than the diffraction lim-
ited probe spot. The CCC allows scalability and can be combined with
scripts to control the laser probe to automate, and extract volumes of
useful information from the target circuitry. The results of this work
provide a different perspective to imaging optoelectronic systems
with compromised spatial resolution and extends theutility of infrared
laser probing to sub-10 nm technology nodes.

We performed LP on fin-shaped three-dimensional transistors
known as FinFETs25 using a solid immersion laser scanningmicroscope
(LSM) by electrically stimulating through the interconnects to the
transistors (top) while the optic probe is focused through the Si

substrate (bottom) for collection of optical signals, as shown in Fig. 1a.
Figure 1b is an optical micrograph of a 7-nm-node device collected
through the LSM. As observed, even relatively large alignment features
such as boundaries (isolation) between transistor arrays cannot be
discerned. Despite the mechanical stability of the laser scanner and
accuracy in probe deflections (sub-10 nm at highest LSM zoomand SIL
objective), the poor optical resolution leads to ambiguity in deter-
mining the physical position of the probe relative to the transistor or
the node of interest when compared with a computer aided design
(CAD) of the circuit layout. The red box marks an area of a cell to be
probed, consisting of over 40 transistors within a 670 nm× 480nm
area. A cell, which is a fundamental buildingblockof integrated circuits
is made up of a group of transistors (up to few dozens) and performs a
specific logic operation on the inputs. Nets are nodes of transistors
linked by interconnects and share the same electrical potential. Fig-
ure 1c is a scanning electronmicrograph (SEM) of the cell with its CAD
layout overlaid. The red circle indicates the size of the diffraction
limited laser probe spanning multiple transistors and nets within the
cell. Optical measurements track minute changes to the intensity of
light reflected from the transistors that correlate to the absorption by
free carriers that vary as transistors are switchedonandoff, as given by
Eq. 126.
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where Δα is the change in the absorption coefficient, λ is the wave-
length of light, q is the charge of an electron, C0 is the speed of light in
vacuum, ε0 is the permittivity in free space, nu is the refractive index of
undoped silicon, ΔNe and ΔNh are changes to carrier densities,me and
mh are effective masses, and μe and μh are the mobilities of electrons,
and holes respectively. As described by Soref and Bennet, for a large
change ΔNe of 1017 cm3, Δα changes by 0.1 cm−1. As the interaction

Fig. 1 | Laser Probing with algorithmic analysis to determine accurate probe
position. a Schematic of LP signal collection on an IC built on sub-10 nm FinFET
technology. An optic probe is focusedonto the active circuit tomeasure changes in
the reflectance while electrical tests are executed. As multiple transistors interact
with the optic probe simultaneously, the collected ensemble of optical signals from
transistors T1-T4 is processed by our CCC algorithm to extract signals from indi-
vidual transistors. b High-resolution LSM reflected micrograph using 2.9 NA and
1064 nm wavelength on the area of interest is unable to resolve features useful for
CAD alignment due to the limited optical resolution. The red box indicates the cell

area to be probed and the circle within indicates the size of the optic probe spot.
c SEMmicrograph of the cell area to be probed overlaid with the CAD layout of the
FinFET, gates (green), fin (yellow), and contact (violet). The bright circles in the
micrograph are vias which route electrical signals to transistors. The red and black
circles indicate the approximate areas of interaction of the optic probe with the
circuit. d LP signal waveforms collected at ~32 nm from each other (Pos1 and Pos2)
in a 3-µs time window. Multiple levels exist in each waveform because of the
ensemble of individual signal sources under the optical probe. The blue arrows
indicate instances in time where the waveforms differ from each other.
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volume of light with the affected free carriers is microscopic, the
change in reflected power is therefore only a few microwatts, which
necessitates the averaging over millions of test loops to improve the
signal to noise ratio. A detailed description of the flip chip
technology27, setup for dynamic fault isolation28, and signal generation
in laser probing systems29 is available in literature.

LP waveforms are created by recording changes to the amplitude
of reflected light, triggered by carrier fluctuations within the active
regions of the transistor as the transistor switches between electrical
states. Figure 1d shows laser probed waveform traces from two posi-
tions (red and black) that are collected from physical locations merely
32 nm apart, and their corresponding approximate positions are
marked in Fig. 1c. The waveforms illustrate the aforementioned chal-
lenges: (1) The waveforms exhibit multiple intensity levels as marked
by blue arrows. While the electrical state of a digital circuitry is binary,
i.e., either ON or OFF, these intermediate intensity levels occur due to
the superposition of signals from multiple transistors (or electro-
optical crosstalk) within the optic probe, and their respective mod-
ulation capacity (MC) as discussed later. Decomposition of the
ensemble signal into its individual transistor or net constituents, ie,
overcoming the electrooptical crosstalk, is important for waveform
interpretation and analysis. (2) A displacement in the position of the
optical probe by 32 nm (<18% of the optical resolution) already shows
significant deviations in the waveform, underscoring the importance
of accurate probe positioning despite the lack of optical resolution.
The method we propose will solve these challenges by extracting the
signals from the different individual transistors through the proposed
CCC algorithm.

Results
Positional cross-correlations for accurate probe placement
To improve the accuracy of alignment between the physical device
with CAD, we introduce a method to achieve sub-10 nm level of beam
positioning accuracy through a process of correlation between simu-
lations and actual waveforms collected from the cell. As a cell is made
of many transistors, a positional cross-correlation helps to ensure that
thewaveformcollected is a representation of the transistors within the
cell that are of interest. Amultitude of LP waveforms (raw) is collected
from different positions (xr) within the cell and is correlated using
Pearson’s correlation coefficient (PCC) to CLA simulation waveforms
on different positions (xs) within the cell, ie, the position of the CLA
simulation waveforms is treated as points of reference to pinpoint the
location of the raw waveform. PCC is calculated as described in Eq. 222.

PCC=
covðCLA, RawÞ

std CLAð Þ*stdðRawÞ ð2Þ

A complex cell comprising of about 24 transistors built with sub-
10 nm technology with aMC is shown in Fig. 2a. The optic probe spans
~190 nm and interacts with multiple transistors at any physical posi-
tion. A multitude (23 counts) of raw waveforms are collected from the
physical device by positioning the probe at ~32 nm step size from left
to right as indicatedby the ‘X’s. Each of thesewaveforms are correlated
one at a time with CLA simulations performed along the same axis at
1 nm increments. Simulations along the longer axis for the cell of
interest can be completed within a minute on a modern computing
workstation,which canbeacceleratedproportionally by increasing the
step size.

The correlation method allows the user to pin-point the exact
location of the transistor of interest with an accuracy of 10 nm. As the
device ismadewith 7 nm technology, sub-transistor structures such as
the gates and the drains are dimensionallymuch smaller than the optic
probe as shown, contributing to the probe placement resolution. As an
example, two neighboring raw waveforms r1 and r2 (locations indi-
cated by purple and green dots respectively) are shown in Fig. 2(b).

The rawwaveforms are compared to the CLA simulation waveforms of
different positions. The best correlated CLA simulations to r1 and r2
are traced in black. The red and blue dashed traces are simulations
10–30 nm away from the best correlated simulation. A strong devia-
tion in relative amplitudes can be observed in these simulations
despite a displacement of just 5–15% of the optic probe size. This
strong deviation forms the basis of the probepositioning accuracy and
is derived from the changes offered by the fluctuations in MC.

The placement resolution is realized through thresholding the
PCC distribution. As shown in the heat map (Fig. 2c), a range of
simulation positions can strongly correlate with each raw waveform.
The position dependence of the spread in PCC profile is shown in
Fig. 2d, where the PCC spread (pcc1 – pcc4) for four waveforms are
overlaid by aligning the peak PCCs together. The position at which
thesewaveforms were collected aremarked in Fig. 2b. The PCC spread
profiles appear to be similar or worse than the distribution of the optic
probe. A placement resolution better than 10 nm can be achieved on
pcc3 and pcc4 when a thresholding of 0.1% is applied (Supplementary
Table 1). The super-resolution positioning accuracy is achieved
through the accurate determination of the location of the peaks of a
diffraction limited point spread function, reminiscent of fluorescence
microscopy techniques such as stochastic optical reconstruction
microscopy30 though we have no fluorescence in this context.

However, somepositionsmaynot be resolvedwith such accuracy,
as resolution depends on the spatial variation in MC and is reduced if
neighboring circuitry do not offer variations in MC, such as parallel
transistors. The broader distributions of pcc1 and pcc2 are likely due to
unavailability of distinct electrical signals from the local area and could
only be resolved to 34 nm and 16 nm, respectively. Even at 34 nm, the
placement resolution has improved tomore than five times the optical
resolution limit of the tool.

Signal extraction of a single net
Once the CAD is aligned with the help of themethods described in the
previous section, every circuitry in the field of view is automatically
also aligned to CAD, making navigation to any circuity within the view
easy and accurate. In addition to accurate probe placements, CLA
simulations are useful in extracting signals from individual nets within
a probed area and in understanding if the observed waveforms are
defective. In the following section, we discuss the signal extraction
methodology, and the application of simulations to a failure analysis
performed on a defective microprocessor at sub-10 nm technology.

To extract a signal from a single net (Rnet), a rawwaveform (Wo) is
first collected from the area of interest, preferably centered at, or
containing the net and is processed with signal subtraction techniques
as described below. Through positional correlations described in the
previous section, the accurate physical location is determined. Then,
the crosstalk signal (SCT) is simulated by removing the electrical
information to the net of interest and calculating the signals from the
environment of the net. When the crosstalk waveform is scaled
appropriately and subtracted from the raw waveform, it can produce
the signal of interest. As the simulation and raw waveforms are nor-
malized, a direct subtraction between theWo and SCTmaynot yieldRnet

directly. A time-invariant scaling parameter (Cnet) is introduced to
extract Rnet from Wo and SCT as shown in Eq. 3.

Rnet tð Þ=Wo tð Þ � Cnet � SCT tð Þ ð3Þ

As the nets of interest in our circuitry is expected to have only two
levels under normal operation, the Cnet can be determined through a
combination of clustering algorithms23 that separate the waveform
into two clusters while minimizing a loss function (Loss1) shown in
Eq. 4. Each cluster is formed by applying a k-means clustering
algorithm23 to Rnet, which is commonly used to split a distribution into
k number of clusters. The algorithm clusters the waveform into two
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groups (k = 2). Clusters cl(H) and cl(L) represent the ON and the OFF
states of the net.

Loss1 = std clðHÞð Þ+ stdðclðLÞÞ ð4Þ

Optimizing recursively between Eqs. 3 and 4 using gradient
descent31, this artificial intelligence (AI) algorithm can identify the ideal
Cnet for the smallest Loss1. Alternatemethods such as linear searchwith
coarse and fine step sizes or even trial and error may also be used to
identify a suitable Cnet. Figure 3a shows a portion of the layout of the
same cell that was previously described. Raw waveforms (r1–r4) are
collected from positions marked brown, green, purple and magenta,
respectively. These waveforms are position correlated using methods
described in the previous section. Three nets n9 (blue), n15 (orange),
and n16 (red) under the optical probe are investigated. Net n9 com-
prises 4 fins, each 50nm long and <10 nm wide, n15 comprises 2 fins,
each50nm long and<10 nmwide, andn16, the smallest net, comprises

2 gates each with a drawn width and length of about 10 nm. These
signals are extracted by calculating Rnet via Eqs. 6 and 7. The extracted
waveforms for each net n9, n15 and n16 from the raw waveform r2 are
shown as the colored waveforms in Fig. 3b.

The extracted waveforms for each net n9, n15, and n16 are shown
in Fig. 3b, and their correlations as a function of position tabulated in
Fig. 3c. The following observations can be made: First, the extracted
waveforms for net n9 and n15 correlate well with the expected timing
diagram (black traces) in Fig. 3b. As shown in the correlation values as a
function of position in Fig. 3c, a strong correlation more than 90% is
observed for the larger nets, n9 and n15. The correlation of n9 (97%) is
larger than n15 (90%) likely because n9 is larger than n15. Likewise, the
weakest correlation is observed for smallest net,n16. Second, although
weak, a correlation of 58.9% on net n16 is still significant. Remarkably,
by extracting the signal from a net with a drawn width and length of
about 10 nm, we show that the method can isolate a net 18 times
smaller than the optical probe’s diameter, or about 125 times smaller

Fig. 2 | Accurate probe positioning at the target transistor. a Physical layout of
cell (670 nm wide) under observation. The tiny squares represent the gate-fin
overlap and the longer horizontal bars represent the source or drain segments of
the fin. The polygons with the same color fluctuate with the same electrical signal
while polygons with diagonal textures are power supplies and do not toggle. The
yellow ‘X’s represent the raw waveform positions (xr) from which each of 23
optically probed (raw) waveforms are collected within the cell. Raw waveforms r1
and r2 are collected from positions indicated by the violet and green circles with
diameters equal to the FWHM of the probe. b LP waveforms traces comparing r1
and r2 with CLA simulations. The best correlated simulations positions (xs) for r1
(xs =471 nm) and r2 (xs = 497 nm) are colored in black. Overlaid are also simula-
tions at positions xs −10 nm, −20 nm, and −30 nm in red and xs +10 nm, +20 nm,

and +30 nm in blue. c Heat map of the positional correlation between the raw
waveforms (xr) on X-axis (32 nm increments) with simulations (xs) performed
along the same axis with a resolution of 1 nm on Y-axis. A strong positive corre-
lation is represented in deep red, and a strong inverse correlation is in deep blue.
As the positions of the optic probe is changed along the X-axis, the physical
positions correlate well with the corresponding positions in the simulation. The
trend line connects the best correlated xs with xr. d Graph compares the variation
in PCC index with the simulation positions for four physical positions (pcc1–pcc4)
marked by colored rings in c. In dotted black is the Gaussian optic probe dis-
tribution, which is sharper than the PCC distributions of each of the correlations,
indicating that the method does not violate the optical diffraction limit of the
system.
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area. As the net size reduces, the extracted signal becomes noisier. The
noise in the waveform extracted from n16 is high because the signal
intensity from the tiny net is weak in comparison to the electronic and
optic noise of the system. Finally, the best correlated position for n9 is
at r1, for n15 is r2/ r3, and n16 is at r2. When compared to their physical
positions in Fig. 3a, it is apparent that the positional placement con-
tributes to the variation in signal strength of the extracted signal. The
signals from individual nets can be extracted best when the optical
probe is most accurately cantered on the net. These results agree well
with expectations, as the optical probe is expected to be modulated
most by the element when the peak power of the probe interacts most
with that element.

Defect prediction
CLA simulations most importantly are used to predict the defect
location by comparing the collected raw waveforms with artificially
injected failures within the cell. In this section, we detail a failure
analysis case study performed at 7 nm technology node, taking
advantage of these waveform simulations. The failing microprocessor
was a reject from a manufacturing process and automated test
equipment-based diagnostics revealed that a 3-input combinational
logic cell from Fig. 2 could contain a defect. The inputs of the cell are
numbered A1–A3 and the physical layout of this cell is shown in Fig. 4a.
The laser was positioned using cross-correlations with a known good
cell in the field of view. Raw waveforms were collected from approxi-
mately the center of the failing cell, and with a reference cell that was
injectedwith the same series of inputs. Thewaveformswere compared
with the simulations as shown in Fig. 4b. The bad waveform showed
mismatches with the CLA and the good waveforms at multiple cycles,
confirming the diagnostic results.

The waveform was segmented into constituent input combina-
tions (eight segments for 3-input cells) and compared with the CLA
amplitudes for each input. It was observed that when the input A2 was
forced high, irrespective of other inputs were the most mismatched,
and suggested that the defect could be located on a net associated
with the input A2. As multiple defects could explain this observation,

over twenty potential defects of resistive shorts nature were selected
for further analysis. Four such defects are shown in Fig. 4a, (marked in
red and orange polygons, D1–D4). SPICE models32 were generated to
model the electrical behavior of each transistor/net within the cell
containing each of these defects sequentially, and corresponding CLA
simulations were conducted. It is worthwhile to note that while resis-
tive shorts were investigated for this study, other defects such as open
interconnects could also be considered.

The simulations with defects were correlated with the bad wave-
form (black trace) as shown in Fig. 4(c). The simulation with a defect
D2, consisting of a resistive short between net A2 and VDD had the
strongest correlation to the bad waveform. Some of the related cor-
relations are summarized in Fig. 4d. Although the bad waveform cor-
related with the original CLA simulation with a strength of only 84%, it
correlated with a simulation that included defect D2 overwhelmingly,
with a strength of 96%. Though defects at other positions offered
varying strength of correlations, the strongest, from our defect simu-
lations were with D2 and was therefore the strongest candidate for
physical analysis and material characterization.

Physical analysis was then performed by removing metal inter-
connects recursively with careful inspections of target circuitry. A
2-wire resistance measurement was performed using in-situ Nano-
proberwithin a SEMat the contact layer as shown inFig. 4e. Theprobes
were landed on the gate and the drain of the transistor indicated by
defect D2, that would normally exhibit a high (giga ohms) resistance
and non-linear change in current conducted across the terminals.
However, as shown in Fig. 4f, a low-resistance short was observed,
which confirmed the root cause and supported the defect location
hypothesis.

Discussion
Continuing technology scaling requires a thorough feedback from
failing devices that can help improve fabrication processes, reliability,
and silicon design. Scaling beyond 20 nm technology node has
become particularly difficult due to imaging resolution limits and
increased complexity in failure analysis. In this work, we have shown
conclusively that algorithmic methods and deduction can overcome
some fundamental challenges posed by optical resolution limitations
to laser probing on cutting edge technology electronic devices.
Interestingly, the resolution is achieved through unique electrical
signature within the target circuitry without violating the optical dif-
fraction limit of the laser probing setup. As technology scales, more
transistors andmore variation inmodulation capacity can be expected
within the optic probe. Counterintuitively, the resolution of our
technique can be expected to improve further with technology scaling
due to the increased complexity of signals within the optic probe,
limited only by fine displacement resolution of the laser scanning
hardware. Hence, adopting these methods will be beneficial for failure
analysis where the spatial resolution of the optical system is unable to
keep up with the spatial resolution of lithography in future
technology nodes.

As technology is scaled, the simulation load increases pro-
portionallywith the number of transistors in consideration. As the run-
time for the simulation of 7 nm cells take only ~1–2 s per waveform, the
process is extremely scalablewith technology. Iterative loops of probe
placement deflections and cross-correlations can be automated to be
used for large volume signal extractions effectively. However, to suc-
cessfully apply these methods to a large area, the precursor files such
as thephysical layout, SPICEmodels and test pattern stimuli need tobe
prepared in advance and is an area of active development.

Methods
Computation of modulation capacity
The amplitude of the LP waveform is a function of the variation in the
reflected optic power. The total reflected power can be separated into

Fig. 3 | Signal extraction down to the gate level. a A section of the layout under
observation. Four raw waveforms are collected from positions marked by circles
(r1–r4). Nets n9, n15, and n16 are collocated within the optic probe in each of the
positions. b Graph showing extracted waveforms from n9, n15, and n16, from r2
overlaid with expected timing diagrams in black. c Table summary of the highest
correlations (pcc) of each extracted net with its corresponding timing diagram
shows that the strongest signal-to-noise ratio of the extracted signals is achievedon
the largest physical net n9, and occurs when the optic probe is positioned most
accurately on the net (at r1). Remarkably, the signals from a gate net n16 which
spans <200nm2 in area can be extracted with a 58.9% correlation to the expected
signal at r2 despite the optic probe spanning a lateral area >25,000 nm2.
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static (does not change) and dynamic components (relative changes
with electrical stimuli). By estimating the changes to the dynamic
components, we can predict the shape of the ensemble probed
waveforms. The process can be explained with the help of the sche-
matic shown in Fig. 5.

First, we construct a high-resolution (1 nm in x and y) two-
dimensional model of the circuitry’s physical layout called the mod-
ulation map (MM) which represents the spatial distribution of the
relative modulation that the device would impart to the optic probe.
The map includes all active areas where relative changes to free car-
riers are expected, such as the gate, source and drain regions of each
transistor, and is normalized to the PMOS drain as a convention. Sec-
ond, we construct a timing map (TM) of the same circuitry, which
combines the electrical models of the circuitry and test stimuli
sequences. Since the test vectors changewith time, the timingmapcan
be construed as a three-dimensional matrix, with the third dimension
representing time. A piecewise multiplication of the modulation map
with the timing map is a time-varying three-dimensional matrix called
the modulation capacity (MC)33 and is described in Eq. 5. The MC thus
represents the influence of the physical device on the optic probe
over time.

Next, wemodel the optic probe as aGaussian distribution. The full
width at half-maximum spread (FWHM) of the probe is related to the
wavelength (λ) and numerical aperture (NA) using Abbe’s criteria, as
shown in Eq. 69. Moreover, the standard deviation (σ), is related to the
FWHM described in the same equation34. Therefore, σ can be repre-
sented in terms of λ and NA as shown in Eq. 7. For the system used in
this work, λ = 1064 nm, NA = 2.9, FWHM is 183 nm, and σ = 77 nm. The
optical intensity distribution (L) centered at position (x0, y0) is shown
in Eq. 8. The reflectedpower fromaparticular pixel (x, y) at a given time
is a function of the product of the modulation capacity of the pixel at
that time with the optical power on that pixel. The total dynamic
reflected power is calculated by integrating the reflected power from
every pixel of interaction between the device and optic probe as shown
in Eq. 9. The ensemble waveform, which we call CLA waveform, is
proportional to the dynamic reflected power. It is normalized between
−1 and 1, and can then be plotted as a function of time.

MC x, y, tð Þ=MM x, yð Þ � TMðx, y, tÞ ð5Þ

FWHM=0:5
λ
NA

= σ:2
ffiffiffiffiffiffiffiffiffiffi
2ln2

p ð6Þ

Fig. 4 | Accurate defect location prediction using waveform simulation.
a Physical layout of the failing cell showing internal connections. A1–A3 are inputs
to the cell. Also highlighted are few potential defects (short)(D1–D4) that could
explain the failure.bRawwaveforms collected from the failing cell (solid black) and
an identical good cell (solid green), with the reference CLA waveform (dashed
blue). The bad waveform has many mismatches, particularly when input A2= 1.
cWaveforms overlaid with CLA simulations of defective cells with defects D1– D4.

CLA waveform simulated with defect D2 (red dashed) matches the raw waveform
(solid black) with >96% correlation. d Table shows strong correlation between bad
raw waveform and CLA simulation with defect D2. e SEM micrograph of the sus-
pected transistor probed electrically by 2-wire nanoprobe (probes positions indi-
cated by yellow). f Current–Voltage curve confirms a resistive short between the
suspect net A2 (gate) with VDD (source). The dashed lines represent compliance
limits set at 1 µA.

Fig. 5 | Schematic of the MC and CLA simulation. MM contains the relative
modulation that the device imparts to the optic probe L. TM changes with each
input stimulus, affecting the modulation over time. MC combines MM and TM to
contain a time variant map of the relative modulations. A simple integration of the
dot product between MC and L produces the dynamic reflected power, which is
presented as the simulated waveform CLA(t).
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Data availability
Due to the nature of this research, participants of this study did not
agree for their data to be shared publicly, so supporting data is not
available.

Code availability
Due to the nature of this research, participants of this study did not
agree for their code to be shared publicly.
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