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Abstract 

Objective:  Cardiovascular (CV) outcome trials have shown that in patients with type 2 diabetes (T2D), treatment 
with sodium-glucose cotransporter-2 inhibitors (SGLT-2i) reduces CV mortality and hospital admission rates for heart 
failure (HF). However, the mechanisms behind these benefits are not fully understood. This study was performed to 
investigate the effects of the SGLT-2i dapagliflozin on myocardial perfusion and glucose metabolism in patients with 
T2D and stable coronary artery disease (coronary stenosis ≥ 30% and < 80%), with or without previous percutaneous 
coronary intervention (> 6 months) but no HF.

Methods:  This was a single-center, prospective, randomized, double-blind, controlled clinical trial including 16 
patients with T2D randomized to SGLT-2i dapagliflozin (10 mg daily) or placebo. The primary outcome was to detect 
changes in myocardial glucose uptake (MGU) from baseline to 4 weeks after treatment initiation by [(18)F]2-deoxy-
2-fluoro-D-glucose (FDG) PET/CT during hyperinsulinemic euglycemic clamp. The main secondary outcome was to 
assess whether the hypothetical changes in MGU were associated with changes in myocardial blood flow (MBF) and 
myocardial flow reserve (MFR) measured by 13N-ammonia PET/CT. The study was registered at eudract.ema.europa.eu 
(EudraCT No. 2016-003614-27) and ClinicalTrials.gov (NCT 03313752).

Results:  16 patients were randomized to dapagliflozin (n = 8) or placebo (n = 8). The groups were well-matched for 
baseline characteristics (age, diabetes duration, HbA1c, renal and heart function). There was no significant change in 
MGU during euglycemic hyperinsulinemic clamp in the dapagliflozin group (2.22 ± 0.59 vs 1.92 ± 0.42 μmol/100 g/
min, p = 0.41) compared with the placebo group (2.00 ± 0.55 vs 1.60 ± 0.45 μmol/100 g/min, p = 0.5). Dapagliflozin 
significantly improved MFR (2.56 ± 0.26 vs 3.59 ± 0.35 p = 0.006 compared with the placebo group 2.34 ± 0.21 vs 
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Introduction
Type 2 diabetes (T2D) is associated with an increased 
risk of cardiovascular (CV) disease [1]. In patients with 
T2D, large CV outcome trials have shown that sodium-
glucose cotransporter-2 inhibitors (SGLT-2i) have ben-
eficial cardioprotective effects [2–7], regardless of the 
presence of established atherosclerotic CV disease or his-
tory of heart failure (HF) [6, 8], with reduction in major 
adverse CV events and CV deaths, as well as reduced 
risk of hospitalization for HF, and reduced progression of 
renal disease and all-cause mortality [9–14]. The multiple 
mechanisms hypothesized and investigated to explain the 
beneficial CV effects of SGLT-2i are the subject of con-
tinuous and intense debate.

First, SGLT-2i increase fasting levels of ketones and 
may thus enhance the use of this efficient metabolic fuel 
in the heart. Furthermore, increased levels of circulating 
ketones may have potentially beneficial effects on myo-
cardial perfusion, left ventricular ejection fraction (LVEF) 
and cardiac output [15]. Second, the glycosuric, diuretic 
and natriuretic effects of SGLT-2i may favorably impact 
LV function and myocardial contractility by increasing 
the preload, while reductions in blood pressure and arte-
rial stiffness may reduce the afterload. It has also been 
suggested that SGLT-2i may differ somewhat from clas-
sical diuretics, as they promote a greater reduction in 
interstitial versus intravascular volume [16]. Finally, the 
improvement in insulin resistance may be associated, and 
partly explained, by an increase in myocardial perfusion 
and/or glucose uptake.

A unifying hypothesis for the complex and interlinked 
mechanisms responsible for changes in myocardial 
metabolism and perfusion occurring with SGLT-2i treat-
ment is still missing. Previous data have demonstrated 
that the SGLT-2i dapagliflozin is able to remove gluco-
toxicity leading to an improvement in muscle insulin 
sensitivity [17]. It is well known that T2D is associated 
with cardiac insulin resistance, thus an amelioration of 
insulin sensitivity could lead to an increase of myocardial 
glucose uptake (MGU). Therefore, the aim of this study 
was to evaluate whether SGLT-2i treatment with dapa-
gliflozin compared to placebo improves glucose metabo-
lism in patients with T2D and coronary artery disease, 

by measuring MGU and whole-body insulin resistance 
and to determine whether this improvement is associ-
ated with an increase in myocardial flow reserve (MFR). 
Likely, a better understanding of the mechanisms of 
action of SGLT-2i in T2D patients could help understand 
the benefits of SGLT-2i in patients with HF.

For this reason, we conducted a multidisciplinary clini-
cal study on a well-selected population of T2D patients, 
using Positron Emission Tomography/Computed 
Tomography (PET/CT) to assess MGU and whole-body 
glucose uptake (WBGU) during euglycemic hyperin-
sulinemic clamp, MFR and LVEF. Other secondary out-
come analyses, i.e., change from baseline in white adipose 
tissue and microbiota are still ongoing. For details, please 
see reference [18].

Research design and methods
The study design of the DAPAHEART trial has been 
published recently [18]. The primary outcome was to 
detect changes in MGU from baseline to 4  weeks after 
treatment initiation by [(18)F]2-deoxy-2-fluoro-D-glu-
cose (FDG) PET/CT during hyperinsulinemic euglyce-
mic clamp. The main secondary outcome was to assess 
changes from baseline in myocardial blood flow (MBF) 
and MFR measured by 13N-ammonia PET/CT. The study 
was approved by the local ethics committee (Fondazi-
one Policlinico Universitario Agostino Gemelli IRCCS, 
study protocol code GIA-DAP-16-005) and registered at 
eudract.ema.europa.eu (EudraCT No. 2016-003614-27) 
and ClinicalTrials.gov (NCT 03313752). Informed, writ-
ten consent was obtained from all participants.

Trial design and participants
This was a phase III, single-center, randomized, two-
arm, parallel-group, double-blind, placebo-controlled 
study, consisting of a screening phase (days -14 to -1), 
a 4-week double-blind, placebo-controlled treatment 
phase and a 4-week follow-up phase. The placebo tablets 
were provided by the pharmaceutical company (identi-
cal in appearance, taste and smell). The randomization 
was performed by the hospital pharmacy. Inclusion cri-
teria were (1) T2D, 92) no previous history of myocardial 
infarction, (3) stable coronary artery disease (coronary 

2.38 ± 0.24 p = 0.81; pint = 0.001) associated with a reduction in resting MBF corrected for cardiac workload (p = 0.005; 
pint = 0.045). A trend toward an increase in stress MBF was also detected (p = 0.054).

Conclusions:  SGLT-2 inhibition increases MFR in T2D patients. We provide new insight into SGLT-2i CV benefits, as our 
data show that patients on SGLT-2i are more resistant to the detrimental effects of obstructive coronary atherosclero-
sis due to increased MFR, probably caused by an improvement in coronary microvascular dysfunction.

Trial registration EudraCT No. 2016-003614-27; ClinicalTrials.gov Identifier: NCT03313752

Keywords:  Diabetes, Metabolism, Myocardial blood flow, Perfusion, PET, SGLT-2
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stenosis ≥ 30% and < 80% in at least one native major 
coronary artery), with or without previous percutane-
ous coronary intervention (> 6 months), with no evidence 
of critical restenosis and no indication to myocardial 
revascularization according to the current guidelines 
of the European Society of Cardiology [19], (4) glycated 
hemoglobin [HbA1c]: 7–8.5% or 53–69  mmol/mol on 
stable standard of care anti-hyperglycemic regimen, (5) 
diabetes duration < 10 years, (6) fasting C-peptide > 1 ng/
mL (0.33 nmol/L) at screening visit, (7) age: 40–75 years, 
(8) body mass index (BMI): 25–35  kg/m2, (9) women 
in surgical or natural menopause or with childbearing 
potential but unwilling to become pregnant during the 
study and non-breastfeeding women. Exclusion criteria 
were (1) type 1 diabetes or previous diagnosis of Latent 
Autoimmune Diabetes of Adults, (2) use of pioglitazone, 
loop diuretics or basal-bolus insulin therapy for at least 
3 months prior to the screening visit or use of systemic 
steroids less than 3 days prior to the screening visit, (3) 
NYHA class III or IV, (3) reduced LVEF (≤ 50%), (4) 
unstable angina, (5) moderate to severe renal impairment 
(estimated glomerular filtration rate < 60  mL/min/1.73 
m2) or overt proteinuria, (6) severe liver dysfunction, (7) 
contraindications to adenosine administration, (8) acute 
urinary tract infection, (9) history of breast, bladder or 
prostate cancer, (10) coronary artery disease with a coro-
nary stenosis ≥ 80% in a major coronary artery defined by 
invasive coronary angiography, (11) inability to provide 
informed, written consent. The study design is illustrated 
in Additional file 1: Fig. S1.

All participants were screened for all applicable inclu-
sion and exclusion criteria, underwent baseline assess-
ments, and were enrolled during the screening phase. 
Participants were randomly assigned in a 1:1 ratio to 
receive dapagliflozin (10  mg, orally, once daily) or pla-
cebo for 4 weeks. Randomization and packaging of medi-
cine were handled by the hospital pharmacy. Excess trial 
medication was returned, and the remaining number of 
capsules was counted to ensure compliance. All base-
line assessments were repeated at the end of treatment 
(4 weeks) and an 8-week follow-up visit was performed 
to assess safety and clinical parameters.

PET imaging and analysis
PET/CT was performed at baseline and after 4 weeks of 
treatment using a 3D PET/CT scanner (Biograph mCT, 
Siemens Healthcare).

FDG PET/CT during euglycemic hyperinsulinemic clamp
All PET studies were conducted after an overnight fast. 
A FDG PET/CT in conjunction with a hyperinsuline-
mic euglycemic clamp was performed to assess changes 
from baseline in insulin- stimulated MGU and WBGU. 

Prior to the PET scan, patients were asked to void their 
bladder, and a polyethylene cannula was inserted in a 
superficial forearm vein for infusion of glucose, insulin 
and FDG. A second cannula was threaded into a super-
ficial vein of the opposite arm or hand, for blood glucose 
sampling. At time 0, a primed-constant insulin infusion 
(40 mU·min−1·m2 of body surface area) was started. The 
prime consists of four times the final constant rate for the 
first 4  min, followed by two times the constant rate for 
3  min. Euglycemia was maintained using a 20% glucose 
infusion adjusted according to frequent plasma glucose 
measurements. Under near-steady metabolic state condi-
tions, the exogenous glucose infusion rate approximates 
the total amount of glucose metabolized by all tissues, 
representing an index of whole-body insulin sensitivity 
or WBGU (expressed in mg/min per kg of body weight). 
Blood samples for measuring chemistry and hormones 
(e.g., plasma glucose, insulin, C-peptide, glucagon) were 
drawn at −10  min and at steady state. After at least 
60 min of hyperinsulinemic-euglycemia, a CT scout and 
a low-dose CT scan were performed to localize the car-
diac region and to correct subsequent emission data for 
tissue attenuation (75  mA, 120  kV, 0.938 pitch, 0.5  s of 
rotation time and 5  mm of slice thickness). Then, FDG 
(185 MBq) was infused over 15 s, and a 50-min dynamic 
scan was carried out (framing 12 × 10 s, 3 × 20 s, 4 × 30 s, 
5 × 60 s, 8 × 150 s, 4 × 300 s). PET images were corrected 
for detector efficiency (normalization), system dead 
time, random coincidences, scatter, and attenuation, and 
reconstructed with an ordered subsets expectation maxi-
mization (OSEM) iterative algorithm, using 2 iterations 
and 21 subsets, applying point of spread function (PSF) 
correction and time of flight (TOF). A post-reconstruc-
tion Gaussian filtering with 3-mm full width at half maxi-
mum (FWHM) was applied. A 200 × 200 matrix size, 
zoom 2, was used for dynamic images. FDG image analy-
sis was performed using the Cardiac PET Modeling Tool 
(PCARDP) software (version 4.2 by PMOD Technologies 
LLC). The full dynamic study was used for MGU calcula-
tion, regions of interest (ROIs) were drawn on the short 
axis images of the LV and the arterial input function was 
extracted from a volume of interest (VOI) placed in the 
LV cavity. Myocardial glucose fractional uptake rates 
were estimated using Patlak graphical analysis [20], usu-
ally applied for the analysis of FDG, which can be mod-
eled as a 2-tissue compartment model with K4 = 0. The 
measured PET activity is divided by plasma activity and 
plotted at a “normalized time” (integral of input curve 
from injection divided by instantaneous plasma activity). 
A lumped constant of 1.0 and the plasma glucose level 
of the patient were entered and MGU (μmol/100 g/min) 
was obtained from the regression slope MGU = slope * 
plasma glucose/lumped constant.
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Resting and stress 13N‑ammonia myocardial perfusion PET/
CT
Patients were studied according to the European Asso-
ciation of Nuclear Medicine (EANM) procedural guide-
lines for PET/CT quantitative myocardial perfusion 
imaging with 13 N-ammonia at rest and during pharma-
cologic stress (370 + 370  MBq) with adenosine (140  µg/
kg/min for 6 min) [21]. PET images were reconstructed 
as described above. The dynamic list sequence was 
reframed for quantitative assessment of MBF measure-
ments (framing: 10 × 5  s, 1 × 10  s, 6 × 30  s, 1 × 360  s) 
and 16-bin ECG-gated myocardial perfusion analysis for 
LVEF measurement. Stress and resting MBF were com-
puted from the dynamic stress and rest imaging series, 
respectively, using a commercially available software 
(syngo.PET Myocardial Blood Flow by Siemens Health-
care). Quantitative perfusion estimates were derived as 
follows: short axis orientation procedure, LV contour 
definition, calculation of the time-activity curves and fit-
ting of a 2-compartment kinetic model for 13N-ammonia 
to generate stress and resting MBF values in ml/g/min. 
To account for changes in resting MBF caused by cardiac 
workload, additional resting MBF values were obtained 
by correcting for rate-pressure product (RPP), an index of 
myocardial oxygen consumption, using the following for-
mula: corrected resting MBF = (resting MBF/RPP) × 104. 
Coronary flow reserve (CFR) was calculated as the ratio 
of stress to resting MBF. Corrected CFR values were also 
calculated using resting corrected MBF.

Laboratory measurements
The following variables were measured at baseline and 
at the end of the study: Hematology: complete blood cell 
count, glycated hemoglobin; Serum chemistry: aspartate, 
aminotransferase (AST, SGOT), alanine aminotrans-
ferase (ALT, SGPT), alkaline phosphatase (ALK-P), cre-
atine kinase (Creatine Phosphokinase, CK, CPK), serum 
creatinine (Scr), electrolytes – sodium, potassium, chlo-
ride, calcium, albumin, uric acid; Urinalysis: pH, protein, 
glucose, leukocyte esterase, blood, Microscopy if dipstick 
positive for blood or leukocyte esterase.

Statistical analysis
Considering an expected delta between the two groups 
(dapa group vs placebo group, change from baseline) on 
MGU of 8.7 μmol/100 g/min and a standard deviation of 
9.9, 23 patients per treatment group are considered a suf-
ficient number to reject the null hypothesis that the pop-
ulation means of the two groups are equal with a power 
of 80% and an alpha of 0.05. Assuming a 10% loss in each 
group due to protocol violations/loss to follow-up, we 
estimate that the total number should be 26 patients per 

group. The details of sample size estimation and statisti-
cal analysis are available in the study design [18] and sup-
plemental material. Data are presented as mean ± SEM 
or median (95% Confidence Interval, CI) as appropriate. 
Data were examined for normal distribution. Paramet-
ric and/or non-parametric tests were used, as appro-
priate. Within group differences were assessed using 
the t-test (or equivalent non-parametric test) for paired 
data; between group differences were assessed using the 
t test (or equivalent non-parametric test) for unpaired 
data. In addition, tests for repeated measurements were 
used to account for treatment versus group effects and 
interactions.

Results
Study population
A total of 16 patients were included in the study and 
randomized to receive dapagliflozin (n = 8) or placebo 
(n = 8) (Additional file 1: Fig. S2).

In one patient, all FDG data were excluded from the 
analysis because post-treatment FDG PET/CT images 
were not evaluable while pre- and post- myocardial per-
fusion data were considered. Patient compliance was gen-
erally high in both groups. No study drug-related severe 
adverse events were observed.

Demographic and baseline characteristics of each treat-
ment group are summarized in Table 1.

Table 1  Baseline characteristics

Data are mean ± SEM. HbA1c, glycated hemoglobin; BMI, body mass index; CAD, 
coronary artery disease; eGFR, estimated glomerular filtration rate

Baseline characteristics Placebo (n = 8) Dapagliflozin 
10 mg (n = 8)

P value

Male sex, N (%) 5 (62.5) 8 (100)

Age, years 67 ± 2.2 66 ± 2.6 P = 0.7

Diabetes duration, years 8.25 ± 0.6 6.3 ± 1.0 P = 0.2

HbAlc, % 8.1 ± 0.2 7.8 ± 0.1 P = 0.45

Fasting glycemia (mg/dl) 136 ± 17 140 ± 12 P = 0.5

C-peptide (ng/ml) 1.4 ± 0.3 1.7 ± 0.2 P = 0.6

BMI, kg/m2 28.5 ± 1.0 27.3 ± 1.1 P = 0.3

Body weight, kg 81.8 ± 4.7 81.8 ± 2.6 P > 0.9

Heart rate, bpm 61 ± 4 65 ± 4 P = 0.9

Systolic BP, mmHg 135 ± 5.2 143 ± 5.1 P = 0.2

Diastolic BP, mmHg 71 ± 3.8 68 ± 4.4 P = 0.4

CAD (previous PCl/no PCI) 4/4 3/5 P = 0.3

eGFR (ml/min) 90.6 ± 3.1 85.8 ± 6.2 P = 0.5

Medications

Metformin 8 (100) 7 (87.5)

DPP- 4i 4 (50) 3 (37.5)

GLP-1RA 2 (25) 1 (12.5)

Basal insulin 2 (25) 3 (37.5)

Sulfonylurea 2 (25) 1(12.5)
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The groups were generally well balanced.

Primary and main secondary endpoints
There was no significant change in MGU during eug-
lycemic hyperinsulinemic clamp in the dapagliflo-
zin group (2.22 ± 0.59 vs 1.92 ± 0.42  μmol/100  g/min, 
p = 0.41) compared with the placebo group (2.00 ± 0.55 
vs 1.60 ± 0.45, p = 0.5; Fig. 1A, B).

Patients treated with dapagliflozin showed a signifi-
cant improvement in MFR (2.56 ± 0.26 vs 3.59 ± 0.35; 
p = 0.006) compared with the placebo group (2.34 ± 0.21 
vs 2.38 ± 0.24; p = 0.81; p for interaction = 0.001). Cor-
rection for resting RPP confirmed MFR increment in the 
dapagliflozin group (2.22 ± 0.25 vs 3.23 ± 0.4; p = 0.008; p 
for interaction = 0.019; Fig. 2A). Resting MBF was signifi-
cantly lower in the dapagliflozin group, even after correc-
tion for resting RPP (1.15 ± 0.09 vs 0.92 ± 0.10 mL/min/g; 
p = 0.005) compared with the placebo group (1.20 ± 0.10 
vs 1.18 ± 0.17  mL/min/g, p for interaction = 0.045; 
Fig.  2B). There was a trend toward an increase in 
stress MBF in the dapagliflozin group (2.32 ± 0.15 vs 
2.64 ± 0.20 mL/min/g) compared with the placebo group 
(2.47 ± 0.15 vs 2.36 ± 0.16 mL/min/g; p = 0.054; Fig. 2C).

Both rest and stress LVEF did not significantly change 
in the DAPA group (60 ± 4% vs 63 ± 5% at rest and 
61 ± 4% vs 64 ± 4% during pharmacological stress, 

p = 0.27 and p = 0.11 respectively) compared with the 
placebo (59 ± 3% vs 60 ± 3% at rest and 60 ± 3% vs 
60 ± 4% during pharmacological stress, p = 0.77 and 
p = 0.66 respectively).

Systemic metabolic effects of dapagliflozin and glycemic 
control
There was a numerical increase of WBGU during eugly-
cemic hyperinsulinemic clamp in the dapagliflozin group 
(3.0 ± 0.53 vs 4.1 ± 0.52  mg/kg/min, p = 0.06; Additional 
file 1: Fig. S3). HbA1c significantly decreased after treat-
ment in the dapagliflozin group (7.8 ± 0.2% vs 7.1 ± 0.2%, 
p = 0.0003). There were no significant changes in other 
clinical and laboratory parameters after dapagliflozin 
treatment.

Discussion
This phase III, single-center, randomized, two-arm, paral-
lel-group, double-blind, placebo-controlled study showed 
that, in T2D patients, 4  weeks of treatment with dapa-
gliflozin increased myocardial flow reserve (MFR) and 
reduced resting myocardial blood flow (MBF), which was 
significant even after correction for cardiac workload. In 
addition, no effect on myocardial glucose uptake (MGU) 
was observed after treatment with dapagliflozin, while 
there was a numerical increase in whole body glucose 
uptake (WBGU) as measured directly with PET during 
the hyperinsulinemic euglycemic clamp.

Our results on resting MBF confirm those of previous 
studies using myocardial perfusion imaging with PET in 
T2D patients treated with SGLT-2i and provide new evi-
dence on MFR. Lauritsen et al. [22] reported that 4 weeks 
of treatment with empagliflozin significantly reduced 
resting MBF, even after adjustment for cardiac workload, 
but did not significantly affect MFR. Oldgren et  al. [23] 
also described a not significant decrease in resting myo-
cardial perfusion after 6 weeks of dapagliflozin treatment 
but they did not measure MFR. In the study by Jürgens 
et al. [24], resting MBF decreased after 13 weeks of treat-
ment with empagliflozin even in patients with T2D and 
high CV disease risk while MFR did not change signifi-
cantly. Our study demonstrates, for the first time, a sig-
nificant increase in MFR (stress/rest MBF) in a diabetic 
population after SGLT-2i treatment. This improvement 
was due to the combination of a significant reduction in 
resting MBF and an increase in stress MBF, which was of 
borderline statistical significance.

The effect of SGLT‑2i on myocardial glucose uptake
We had initially hypothesized [18] that treatment with 
SGLT-2i in patients with T2D affects cardiomyocyte 
metabolism via the glucose substrate, assessed by MGU 
measurement during hyperinsulinemic euglycemic 

Fig. 1  Myocardial glucose uptake (MGU). A Data are mean ± SEM; 
B FDG PET/CT images during euglycemic hyperinsulinemic clamp 
of two representative cases: fused and 3D maximum intensity 
projection anterior views pre- and post-placebo and pre- and 
post-dapagliflozin, respectively
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clamp, and MBF. However, our results did not support 
the initial hypothesis on the effect on myocardial insu-
lin sensitivity, as MGU did not change significantly after 
4 weeks of dapagliflozin treatment. This is in line with the 
study published by Latva-Rasku and colleagues, which 
demonstrated that 8-week treatment with dapagliflo-
zin does not affect tissue insulin sensitivity and MGU as 
measured with PET in T2D patients [25], but contrasts 
with other studies which instead described an increase in 
insulin sensitivity [26–28]. Succurro et  al. [29] recently 
demonstrated that T2D patients randomized to empa-
gliflozin showed a significant reduction in MGU during 
hyperinsulinemic euglycemic clamp after 26  weeks of 
treatment as compared to patients randomized to glime-
piride who showed an increase in MGU. Empagliflozin 

treatment was also associated with a significant increase 
in WBGU compared to glimepiride, which induced a 
reduction in WBGU.

However, our finding of a significant improvement in 
MFR and resting MBF in T2D patients after SGLT-2i, 
even though not associated with MGU changes, does 
not exclude the metabolic hypothesis of a substrate shift 
in favor of ketones and/or an increase in free fatty acid 
(FFA) utilization that may be associated with an improve-
ment in myocardial perfusion. Improvement in FFA 
oxidation has been largely demonstrated in whole body 
studies [27]. This hypothesis is confirmed by the sig-
nificant decrease in fat mass induced by SGLT-2i [30]. 
Nevertheless, two previous studies demonstrated that 
SGLT-2i did not affect myocardial FFA uptake in T2D 

Fig. 2  Myocardial perfusion: Myocardial flow reserve (A); resting myocardial blood flow (MBF) corrected for rate pressure product (B); stress 
myocardial blood flow (C); Data are mean ± SEM; **p < 0.01. Myocardial perfusion PET images of two representative cases: regional and global 
myocardial blood flow (MBF) and myocardial flow reserve (MFR) quantification at rest and during adenosine stress pre- and post-placebo (D) and 
pre- and post-dapagliflozin (E), respectively
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patients without HF as measured by PET [22, 31] while 
FFA uptake was significantly increased in the liver [31].

The effect of SGLT‑2i on myocardial flow reserve 
and the improvement in coronary microvascular 
dysfunction hypothesis
One of the major advantages of PET is that it can meas-
ure MFR, the ratio of MBF during near maximal coro-
nary vasodilation to rest MBF, an integrated measure of 
flow through both the large epicardial coronary arteries 
and the microcirculation. In absence of obstructive coro-
nary artery disease, as in our study population, the MFR 
may reflect the coronary microcirculation function. [32]. 
There are many alternative hypotheses that could explain 
the reduction in resting MBF after treatment with dapa-
gliflozin, even after correction for rate-pressure prod-
uct, such as a more efficient use of oxygen in myocytes, 
a reduction in myocardial oxygen consumption due to a 
reduction in contractility or an improvement in coronary 
microvascular dysfunction secondary to the chronic pro-
inflammatory state of T2D [33, 34].

Previous studies have shown that myocardial function 
did not significantly change after dapagliflozin [31] and 
myocardial oxygen consumption was not significantly 
reduced by SGLT-2i [22, 31]. Therefore, the observed 
increase in MBF does not seem to be due to a reduc-
tion in myocardial oxygen consumption or contractility. 
An improvement in coronary microvascular dysfunc-
tion seems, therefore, a more appropriate interpretation 
of our data, and it might also help explain the nominal 
increase in stress MBF observed with dapagliflozin. Still, 
we can hypothesize that the positive effects of dapagli-
flozin treatment on MFR and resting MBF could be, at 
least in part, due to the action of dapagliflozin on the 
coronary endothelium, which results in a lower degree of 
endothelial inflammation/dysfunction and consequently 
less fibrosis, which, in turn, improves myocardial oxy-
genation/nutrient delivery. This hypothesis is supported 
by recently published in  vitro and pre-clinical studies 
on SGLT-2i and endothelial cells showing the positive 
effect of SGLT-2i on the myocardium, possibly target-
ing the coronary endothelium [35–38]. Moreover, the 
reduction in myocardial glucose overflow (i.e., glucose 
toxicity) may lead to reduced myocardial inflammation, 
which is mainly caused by the decrease in myocardial 
glucose uptake (due to hyperglycemia per se), which 
could also support the beneficial effects of SGLT-2i on 
coronary microvascular dysfunction [39, 40]. Finally, pos-
sible mechanisms of action of SGLT-2i are continuously 
being investigated. Some of these are independent of 
the hypoglycemic effect of SGLT-2i and could be associ-
ated with the improvement in micro- and macrovascular 
endothelial function in T2D patients such as the increase 

in circulating provascular progenitor cells [41] and the 
increase in flow-mediated dilation due to the increase 
in nitric oxide production [42]. In addition, the vaso-
dilatory action of SGLT-2i treatment by the inhibition 
of Na + /H + exchanger in cardiomyocytes [43] and by 
the selective stimulation of KV7 ion channels in arterial 
smooth muscle cells of resistance mesenteric arteries [44] 
has been recently reported in pre-clinical models.

In addition to the vasodilatory action of SGLT-2i treat-
ment, accumulating evidence suggests that dapagliflozin 
reduces cardiac remodeling by regulating the TGF-β1/
Smad signaling in a non-glucose-lowering dependent 
manner [45] and attenuates advanced glycation end 
product induced inflammation and apoptosis in diabetic 
nephropathy through AMPK-mTOR mediated autophagy 
pathway [46].

Our results, together with the above-mentioned data, 
have important potential clinical implications since 
endothelial dysfunction is a well-known potent marker of 
cardiovascular risk [34], and its attenuation may explain 
the cardioprotective effect of SGLT-2i beyond the hypo-
glycemic effect and possibly through mechanisms that 
are partly independent of glucose. However, the precise 
impact and mechanisms of SGLT-2i still need further 
research.

Limitations and strengths of the study
The present study has some limitations. Because of its 
complex exploratory design and restricted inclusion 
criteria, it was relatively small: a substantial number of 
potential participants refused to enter the study due to 
its complexity and fear of being in hospital during the 
COVID-19 pandemic. A larger sample size might have 
revealed additional or even substantial differences, mak-
ing the trends we observed statistically significant (i.e., 
stress MBF and WBGU increase in dapagliflozin group).

On the other hand, we studied the early effects of 
SGLT-2i on myocardial metabolism and perfusion using 
highly sophisticated and gold standard methods to assess 
insulin sensitivity (euglycemic hyperinsulinemic clamp), 
myocardial and whole body metabolism (glucose uptake 
calculated by FDG PET/CT during euglycemic hyper-
insulinemic clamp), MBF and MFR (by PET/CT with 
13N-ammonia) in a highly selected study population 
(T2D patients with a narrow HbA1c range and CAD not 
requiring revascularization or clinically stable after PCI).

Conclusions
The present study provides evidence that dapagliflozin 
treatment does not affect myocardial glucose uptake in 
patients with T2D without obstructive coronary artery 
disease, whereas a significant increase in myocardial flow 
reserve was observed. We speculate that this increase 
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might be caused by an improvement in coronary micro-
vascular dysfunction, thus providing another potential 
explanation for the CV benefits obtained with treatment 
with SGLT-2i. In particular, SGLT-2i render patients 
more resistant to the detrimental effects of obstructive 
coronary atherosclerosis by increasing MFR, probably by 
improving coronary microvascular dysfunction. Further 
studies are warranted to investigate these complex and 
interconnected pathophysiological mechanisms.
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