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In patients with head and neck cancer, irradiation (IR)-sensitive salivary gland (SG) tissue is highly prone to damage during
radiotherapy (RT). This leads to SG hypofunction and xerostomia. Xerostomia is defined as the subjective complaint of dry mouth,
which can cause other symptoms and adversely affect the quality of life. In recent years, diagnostic techniques have constantly
improved with the emergence of more reliable and valid questionnaires as well as more accurate equipment for saliva flow rate
measurement and imaging methods. Preventive measures such as the antioxidant MitoTEMPO, botulinum toxin (BoNT), and
growth factors have been successfully applied in animal experiments, resulting in positive outcomes. Interventions, such as the
new delivery methods of pilocarpine, edible saliva substitutes, acupuncture and electrical stimulation, gene transfer, and stem cell
transplantation, have shown potential to alleviate or restore xerostomia in patients. The review summarizes the existing and new
diagnostic methods for xerostomia, along with current and potential strategies for reducing IR-induced damage to SG function.
We also aim to provide guidance on the advantages and disadvantages of the diagnostic methods. Additionally, most prevention
and treatment methods remain in the stage of animal experiments, suggesting a need for further clinical research, among which we
believe that antioxidants, gene transfer, and stem cell transplantation have broad prospects.

1. Introduction

Head and neck cancer is defined as a localized malignant
tumor of the head and neck. A commonly used treatment
regime includes surgery combined with RT [1]. Despite the
continuous progress in RT techniques, damage to the sur-
rounding healthy cells or tissues is possible. The SGs pro-
liferate slowly and are sensitive to IR; therefore, damage to
SGs is common and irreversible [2-4]. The potential
mechanism of IR leading to the loss of SG function has been

studied in animal models, which may be related to DNA
damage, loss of acinar cell number, increase in reactive
oxygen species (ROS), decrease in proliferation and dif-
ferentiation ability of stem/progenitor cells, and abnormal
calcium signaling. In later stages, it may be associated with
changes in blood vessels, glandular fibrosis, and in-
flammation [2, 5, 6].

SG dysfunction can lead to reduced salivary secretion,
resulting in xerostomia, which significantly affects the
quality of life of patients [1]. Saliva, although more than 99%
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water, contains many important functional components [7].
The proteins in saliva include mucin-, immunoglobulin-,
and proline-rich proteins, which play vital roles in lubri-
cation, antibacterial activity, defense, and protection of the
teeth [8-10]. Additionally, other components of saliva can
help digest food, regulate pH, strengthen the sense of taste,
neutralize harmful substances, and promote wound healing
[11]. Therefore, if SG function is damaged, leading to
xerostomia, it will inevitably have an impact on the whole
mouth, causing oral dryness, mucosal atrophy and ulcer,
mastication and swallowing difficulties, caries, infection, and
other serious consequences [1, 12].

A MEDLINE/PubMed search was conducted using the
terms “xerostomia” OR, “salivary gland hypofunction”
AND, “diagnosis” OR, “treatment” OR, “prevention” OR,
“questionnaire” OR, “saliva flow rate measurement and oral
moisture-checking device” OR, “imaging techniques” OR,
“advances in RT” OR, “antioxidants” OR, “botulinum toxin”
OR, “submandibular gland transfer” OR, “growth factors”
OR, “rapamycin and limonene” OR, “saliva substitutes” OR,
“pharmacological salivation agents” OR, “acupuncture and
electrical stimulation” OR, “hyperbaric oxygen therapy” OR,
“gene therapy” OR, “stem cells.” Published articles from
2010 to 2022 were included, and some significant references
were also reviewed. After the initial search, literature with
incomplete data and low credibility were excluded. Since
many of the methods in the prevention and treatment parts
mentioned in this article still lack sufficient clinical trials to
prove their effectiveness, we have included some results
from animal experiments to demonstrate the potential value
of the methods.

This article discusses the xerostomia diagnostic methods
that are currently being used and those being newly de-
veloped, as well as the current and potential strategies for SG
recovery and presents their advantages and disadvantages.
The primary aim is to provide guidance for further research
in this field.

2. Diagnosis

2.1. Questionnaire. Questionnaires, which are not limited to
the assessment of dry mouth but also cover other compli-
cations, play a significant role in evaluating xerostomia. They
are low-cost, easy to complete by patients and can be
evaluated by clinicians. This method can also be used for
long-term detection. However, the questionnaires are sub-
jective; therefore, they cannot always reflect the SG function
(13, 14].

The Xerostomia Questionnaire, Xerostomia Inventory,
Summated Xerostomia Inventory, and visual analog scale
are commonly used to evaluate xerostomia, and their ef-
fectiveness has been confirmed [15-18]. In addition, the
Groningen RT-Induced Xerostomia questionnaire, which
was developed in 2010, was used to evaluate the degree of
xerostomia and salivary viscosity and is the only tool ex-
plicitly developed in the RT-induced xerostomia population
[14, 19]. The Groningen RT-Induced Xerostomia ques-
tionnaire contains 14 items that are measured during the
daytime and nighttime, allowing it to distinguish between
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a patient’s xerostomia in different time frames [19]. It has
good reliability, responsiveness, and criterion validity, but
Assas et al. found that the construct validity of the ques-
tionnaire was indeterminate [14, 19]. The Multidisciplinary
Salivary Gland Society questionnaire was created in 2021. It
mainly quantified the symptoms of xerostomia, including 20
questions and two scoring systems (Q3 for question an-
swering and Q10 for the visual analog scale). The reliability
coefficients of both scoring systems were >0.9; however,
more clinical trials are needed to further validate the
questionnaire. The developers of the MGSG questionnaire
recommend using the Q10 system because it is easier for
patients to understand and more accurate in translating into
different languages [20].

2.2. Saliva Flow Rate Measurement and Oral Moisture-
Checking Device. Many studies have shown a moderate cor-
relation between saliva flow rate and xerostomia, so it can also
be an indicator of xerostomia. In addition, the saliva flow rate
measurement can better reflect the SG function, which is more
accurate and reliable than the questionnaires in the evaluation
of SG function [21-23]. For some patients, measuring unsti-
mulated whole saliva (UWS), stimulated whole saliva (SWS), or
the saliva of a single SG or minor SGs is essential for a clinical
diagnosis [24]. The current and new methods for measuring
saliva flow rates are summarized in Table 1.

An oral moisture-checking device is used to diagnose
xerostomia by measuring the oral moisture of the lingual
and buccal mucosa [37]. The results of oral moisture
measurements have a weak positive correlation with saliva
flow rate, possibly because the chief complaint of xerostomia
is not always correlated with saliva flow rate [37]. Third-
generation oral moisture-checking devices have been widely
used in xerostomia diagnosis. Furthermore, Fukushima et al.
first confirmed the effectiveness of a fourth-generation de-
vice and its reliability in all age groups. However, the force of
the instrument sensor placed on the oral mucosa is difficult
to control [37, 38]. In conclusion, the oral moisture-
checking device appears to have excellent prospects.

2.3. Imaging Techniques. RT-induced gland atrophy and
necrosis can lead to pathological findings such as reduced
volume, increased heterogeneity, and unclear boundaries of
the gland, which can evaluate SG function and then predict
xerostomia [3]. Contrast-enhanced computed tomography
with high-density structural and spatial resolution can
quickly examine the appearance and cysts of the SGs with
ease. However, it has certain ionizing radiation; therefore,
ultrasound imaging and magnetic resonance imaging (MRI)
can be used to evaluate SG function in non-invasive con-
ditions without ionizing radiation [3, 39]. Ultrasound im-
aging is used to evaluate gland function based on the
information obtained from ultrasound scans, such as size,
inflammation, and homogeneity [40]. It is cost-effective but
does not adequately reveal lesions [39, 41]. MRI evaluates the
degree of SG injury based on the decrease in volume and
increase in signal intensity of T2-weighted images [42]. The
MRI detection of SGs is highly sensitive, expensive, and
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heavily affected by metals [3, 42]. Salivary gland scintigraphy
is an imaging technique used to measure the uptake and
excretion of SGs using the radioactive tracer Technetium-99m
pertechnetate [43]. Salivary gland scintigraphy has the ad-
vantages of being noninvasive, easy to perform, reproducible,
and well tolerated by patients. However, the lack of accurate
quantitative reference values and the absence of standardized
protocols limit its widespread application [43, 44].

Sialography is another important imaging method the
allows a better prediction of xerostomia by assessing the
status of the salivary ducts [45]. Owing to the drawbacks of
X-ray sialography, such as the injection of contrast agents,
ionizing radiation, and the considerable risk of intubation
failure, an advanced magnetic resonance (MR) sialography
has been proposed [3, 46]. MR sialography uses saliva itself
as the contrast medium, which enables the technique to
observe changes in a small amount of saliva in the salivary
ducts to effectively assess IR-induced xerostomia [46]. In
general, MR sialography offers high security, high accuracy,
and has the potential for development [3, 46].

3. Prevention

3.1. Advances in RT. Compared to traditional RT, intensity-
modulated radiation therapy (IMRT) can adjust IR
according to the shape of the target region. It can maximize
the IR dose to tumors and reduce the dose that endangers
normal tissues and organs, thereby improving the thera-
peutic effect [47]. Several studies have found that IMRT can
efficiently preserve or restore SG function better than
conventional RT [47, 48]. Analysis by Ge et al. also showed
that the health condition and cognitive function were sig-
nificantly better in patients in the IMRT group than in the
conventional RT group [47]. Volumetric modulated arc
therapy (VMAT) is a promising treatment technique [49]
that significantly increases the number of beams, improves
efficiency, and reduces the uncertainty of equipment
[50, 51]. Compared with IMRT, VMAT has advantages such
as dose sparing, improved uniformity, reduced IR range, and
aiding in alleviating acute dysphagia [49, 52].

In recent years, intensity-modulated proton therapy
(IMPT), an emerging and promising treatment for head and
neck cancer, is showing reduced toxicity to healthy tissues
compared to IMRT and VMAT [53, 54]. This is because the
Bragg peak phenomenon of proton beam therapy can gen-
erate a more favorable dose distribution curve than photon-
based RT techniques [54]. However, IMPT is still challenged
by uncertainty in the particle range and the difficulty of
adapting to complex anatomical structures [53].

With the development of science and technology, new
RT techniques have gradually replaced traditional RT
techniques, providing excellent locoregional control and
toxicity reduction [51]. However, owing to more pro-
fessional operating techniques and expensive equipment,
popularizing new RT techniques is difficult.

3.2. Antioxidants. Maintaining a normal calcium concen-
tration in acinar cells is a key factor in stimulating salivary

secretion, but the presence of ROS will disrupt the normal
transfer of intracellular calcium, as shown in Figure 1 [55].
Several experiments have shown that the initial level of ROS
in SG cells increases after IR, and the following radioactive
protective agents are able to scavenge oxygen free radicals
and inhibit oxidative stress.

TEMPOL is a superoxide dismutase (SOD) analog
[56, 57]. In mouse models, TEMPOL has been reported to
protect against IR-induced SG injury [57, 58]. Mito-
TEMPO, as a mitochondria-targeted antioxidant, is similar
to TEMPOL, but it contains lipophilic cationic triphenyl,
which enables it to easily penetrate the lipid bilayer and
accumulate in the mitochondria [59]. Thus, all TEMPOL
nitrogen oxides can reduce IR-induced transient receptor
potential melastatin-2 activation by scavenging H,0O, or
ROS, inhibit caspase-3, prevent the decrease in stromal
interaction molecule 1 protein, maintain the store-operated
Ca’" entry pathway of normal Ca®* entry mechanism, and
protect acinar cells and microvascular endothelial cells
[56, 60]. It can also selectively protect normal cells from the
harmful effects of IR without affecting the radiosensitivity
of tumor cells [56, 58, 60]. This is because such substances
may be rapidly converted to hydroxylamine in tumors [58].
However, these TEMPOL nitrogen oxides cannot resolve
the quality of saliva, such as the decrease in lysozyme
level [56].

Alpha-lipoic acid, a natural compound with strong
antioxidant effects, can chelate metal ions, inhibit the for-
mation of oxygen free radicals, and regenerate many anti-
oxidants. SG cells can be protected by preserving the signals
induced by parasympathetic innervation and releasing re-
generation signals that promote cell proliferation. When the
dose is sufficient, it can also radiosensitize tumor cells [4, 61].
Epigallocatechin 3-gallate (EGCG), a phenolic antioxidant,
inhibits free radical chain reactions by capturing peroxide
free radicals. It is superior to other catechins because of the
six phenolic hydroxyl groups in its structure [62]. A certain
dose of EGCG effectively prevented apoptosis in IR-injured
epithelial cells and protects against oxidative stress and
inflammatory cell infiltration [63, 64]. However, the ab-
sorption and oral bioavailability of EGCG are low, and its
role in the physiological conditions of SGs after an injury has
not been studied extensively [65].

Erythropoietin, an endogenous glycoprotein hormone,
increases when IR damages SG microvessels, ischemia, and
hypoxia. Recombinant human erythropoietin has been
shown to balance SOD and ROS levels [56, 66]. Notably,
recombinant human erythropoietin administration may also
activate erythropoietin receptors in cancer cells, making
them IR resistant [66]. The specific mechanism of eryth-
ropoietin function in the glands and methods to reduce its
tumor-protective effect are aspects of future research.
Cordycepin, also known as 3-deoxyadenosine, has been
reported to clear ROS and inhibit mitochondrial damage
[67-69]. It is known to promote the mRNA expression levels
of alpha-amylase 1 and aquaporin-5. However, cordycepin
can be rapidly deaminated by adenosine deaminase in vivo;
currently, the only solution to its short half-life is to increase
its dosage [69].
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FIGURE 1: Model showing the early consequences of RT and
mechanisms of persistent decrease in salivary secretion. Adenosine
diphosphate ribose (ADPR) is the intracellular ligand that binds to
and gates. TRPM2: transient receptor potential melastatin 2. MCU:
mitochondrial Ca2+ uniporter. SOCE: Store-operated Ca2+ entry.
STIMI1: stromal interaction molecule 1, IR: irradiation. ROS: re-
active oxygen species [55].

Amifostine is a broad-spectrum cell protector and the
only US Food and Drug Administration-approved drug with
a radiological protective effect [70]. Alkaline phosphatase
levels were higher in normal tissues than in tumor cells.
Amifostine is hydrolyzed to reactive sulthydryl compounds
(WR-1065) by alkaline phosphatase in normal tissues, which
can also play a role in scavenging oxygen free radicals and
protecting cellular substructures to selectively prevent injury
caused by IR [70, 71]. Its tumor-protective effect is con-
troversial, but there is currently no evidence that amifostine
reduces the efficacy of RT [72, 73]. Systemic administration
of amifostine has serious side effects such as acute cutaneous
and mucosal toxicity, hypotension, hypocalcemia, and
vomiting [70]. Retroductal cannulation and injection can
bypass systemic circulation, provide direct glandular access,
and be locally administered to the SGs, reducing hypotensive
effects compared with intravenous administration [74].

3.3. Botulinum Toxin. BoNT has been shown to inhibit
SNAREs involved in acetylcholine release at the neuro-
glandular junction and receptors involved in acinar cell
granule exocytosis to prevent xerostomia. Therefore, it can
temporarily atrophy SGs and reduce the number of granules
secreted from acinar cells. This may make acinar cells sig-
nificantly less sensitive to IR, which protects the SGs [75-77].

A study found that mice that received intraglandular
injections of BoNT showed increased salivary flow rate,
increased glandular weight, and decreased periductal fibrosis
after RT compared to that in noninjected animals. This
suggests that BONT has an anti-inflammatory effect that can
attenuate RT-induced periductal fibrosis and neutrophil
infiltration [78]. In addition, studies have reported that
BoNT is safe and effective in humans. It also has a radio-
sensitizing effect on tumors and can be effectively used in
combination with RT [79, 80].

Notably, several studies have shown a positive effect of
BoNT on the prevention of xerostomia, although the use of
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BoNT requires more clinical trials since most of the current
studies are limited to animal experiments [81].

3.4. Submandibular Gland Transfer. Recent studies have
demonstrated that transferring the submandibular gland to
the submental space can effectively reduce IR damage to the
SGs and prevent xerostomia. Seikaly et al. reported that
submandibular gland transfer was better than oral pilo-
carpine in preventing xerostomia, leading to an improved
quality of life [82, 83]. However, submandibular gland
transfer also has complications caused by surgery and many
contraindications. Additionally, the potential risk associated
with this method of incorrectly interpreting submandibular
gland images resulted in a higher IR dose to the sub-
mandibular gland [84-86]. In this regard, to reduce the
impact of IR on the submandibular gland, transferring
a submandibular gland to the patient’s forearm during RT
and re-transplanting the gland back to its original position
after RT was proposed. This study showed that IR-induced
SG hypofunction is reduced. However, forearm transfer
could only serve as a potential preventive approach until
further validation [87, 88].

3.5. Growth Factors. Although the mechanism of xerostomia
recovery is still unclear, it is noteworthy that in addition to
vascular and nerve recovery, the related molecular regula-
tory mechanisms have been discussed widely. Pathways such
as Wnt/S-catenin, Hedgehog, PDGF-FGF, Chrm1/HB-EGF,
and laminin/integrin are thought to play important roles in
xerostomia recovery. The PDGF-FGF pathway explains the
possible mechanism of interaction between epithelial cells
and neural crest-derived mesenchymal stem cells. The Wnt/
p-catenin pathway plays a key role in the formation of
branching morphology. Transient activation of the Wnt/
B-catenin pathway was observed to reduce SG injury caused
by RT, which may be related to its role in inhibiting apo-
ptosis and preservation of functional SGs cells. However,
a specific explanation of the above mechanism is beyond the
scope of this review [89-91].

RT-induced xerostomia is associated with p53-
dependent apoptosis; therefore, a variety of growth factors
are considered to prevent this injury [92]. In this review,
various typical growth factors have been described. Insulin-
like growth factor-1 has the potential to treat xerostomia as
assessed in animal experiments which may be mediated
through increased levels of sirtuin-1. Sirtuin-1 promotes
DNA repair in cells and maintains the activation of protein
atypical kinase C zeta, ultimately promoting inhibition of SG
dysfunction and apoptosis by stimulating activation of the
endogenous Akt pathway [93-96]. Similarly, keratinocyte
growth factor-1, hepatocyte growth factor, and epidermal
growth factor are also believed to inhibit apoptosis through
the Akt pathway to protect SGs and can positively affect stem
cell proliferation [97-99].

In addition, vascular endothelial growth factor is be-
lieved to improve blood flow in SGs and restore their
function [100]. However, vascular endothelial growth factor
treatment is mostly limited to animal experiments, and
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further research is needed to determine whether it can be
applied in clinics for xerostomia treatment.

3.6. Rapamycin and Limonene. Rapamycin and rapalogue,
CCI-799, can induce autophagy by inhibiting target mTOR
complex 1 to maintain SG homeostasis [101-104]. CCI-799
can increase SOD expression to suppress excessive ROS,
which may be related to autophagy. Furthermore, CCI-799
has been shown to restore salivary flow rate, increase am-
ylase levels, and inhibit the compensatory proliferation of
cells [59, 104, 105]. Therefore, rapamycin and CCI-799 have
potential use in xerostomia.

The presence of aldehyde dehydrogenase 3Al
(ALDH3A1) prevented excessive aldehyde accumulation
from damaging the SGs. RT led to a decrease in ALDH3A1,
which further promoted acinar cell apoptosis and reduced
spheroid formation [92, 106]. Saiki et al. identified an al-
dehyde dehydrogenase activator, limonene, to be safer and
more acceptable than previous Alda89 (safrole) [106, 107]. It
has been experimentally confirmed that limonene can de-
crease aldehyde levels and improve SG function without
protecting the growth of tumors that also contain ALDH3A1
[106]. However, its application is limited owing to its higher
doses [108].

4. Treatment

4.1. Saliva Substitutes. Saliva substitutes are one of the most
effective measures to relieve xerostomia caused by RT and
have antibacterial and preventive effects on tooth de-
mineralization. However, they can only be retained for
a short time in the oral cavity and may trigger allergic re-
actions in patients [109-112]. An edible saliva substitute like
oral moisturizing jelly is noteworthy because it contains
buffering agents, has a neutral pH, and can improve the
swallowing ability of patients, in addition to relieving
xerostomia. This resolves the concern regarding commer-
cially available saliva substitutes not being recommended
owing to the use of preservatives [109, 113]. Additionally,
hyaluronic acid solutions at certain concentrations are
similar to saliva in terms of viscosity, elastic modulus, and
network structure. They exhibit antibacterial and antioxi-
dant effects, making them a potential candidate for a saliva
substitute [12, 114].

4.2. Pharmacological Salivation Agents. Pilocarpine is an
imidazole-based alkaloid and as a typical muscarinic M3
receptor agonist, it can act on SGs to increase the saliva flow
rate. It can also promote the supplementation of adenocytes,
which may be due to the promotion of SOX2* cell activity
[1, 115]. Research is being conducted to develop targeted
delivery methods to minimize the side effects of drugs.
Malallah et al. believe that fast-disintegrating buccal tablets
containing pilocarpine can be rapidly dissolved or decom-
posed orally. This method can stimulate SGs and attenuate
the off-target effect of the drug, but evidence to prove its use
in the clinic is lacking [116]. Another idea is the use of oral
adhesives, which can improve the retention time of drugs at

treatment sites. Chitosan and other substances used have
shown adhesion, stability, and controlled slow release to the
mucosa [117].

4.3. Acupuncture and Electrical Stimulation. Acupuncture,
which uses extremely thin solid metal needles inserted into
a suitable subcutaneous area, is a low-risk treatment that has
been reported to boost salivary secretion [118]. The
mechanism of acupuncture in the treatment of xerostomia
remains unclear. However, there are two possible expla-
nations. First, acupuncture stimulates the nervous system to
produce neuropeptides that have nutritional and anti-
inflammatory effects on SGs. Second, acupuncture has
a direct effect on SG blood flow [119]. However, most studies
on acupuncture have significant heterogeneity and low
comparability [120].

Similar to acupuncture, electrical stimulation has been
included in clinical studies as a treatment with fewer side
effects. Electrical pulses can stimulate nerves and affect the
SGs, such as transcutaneous electrical nerve stimulation
which is believed to directly stimulate the auriculotemporal
nerve [121]. Though these studies have revealed some positive
effects, the evidence is insufficient. The instruments need to be
refined in shape and material to provide the appropriate
electrical impulse to activate the nerves [122, 123].

4.4. Hyperbaric Oxygen Therapy. Hyperbaric oxygen therapy
(HBOT) has the ability to affect cytokine responses, induce
local angiogenesis, and mobilize stem cells [124, 125] which
suggests its potential in the treatment of SG dysfunction.
HBOT has been shown to improve xerostomia, the sense of
taste, and the swallowing ability of patients [126, 127].
However, most of these studies lack a sufficient sample size
and appropriate control groups. The efficacy of treatment is
controversial due to factors such as the placebo effect and
patient adaptation to xerostomia [126, 128]. The optimal
start time of HBOT after RT and the number of treatments
still need further research [126, 128]. Moreover, HBOT is not
widely accepted by patients because of its prohibitive cost
and inability to fully restore SG function [127].

4.5. Gene Therapy. After RT, the absence of a large amount
of primary fluid and damage to the acinar cells results in the
inhibition of the reabsorption of ions from primary saliva by
SG ducts, which may lead to an osmotic gradient between
the ductal epithelium and fluid in the ducts [129, 130]. In this
case, a convenient water channel can be constructed on duct
epithelial cells by transferring human aquaporin-1 (hAQP1)
cDNA to assist fluid secretion and relieve xerostomia, as
shown in Figure 2 [129, 130].

There are two main ways to transfer hAQP1 to SGs in
animal models: viral vectors and nonviral vectors
[129, 131, 132]. Viral vectors have a higher efficiency than
nonviral vectors, but they are more likely to trigger immune
rejection in hosts than nonviral vectors [132, 133].

The adenoviral vector is one of the most commonly used
vectors in gene therapy, with high transduction efficiency
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FIGURE 2: Schematic diagram of the mechanism of improving SG function after hAQP1 expression. Damaged SGs on the left and aquaporin-
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be secreted into the mouth. However, the “saliva” here is different from the saliva secreted by acinar cells in terms of concrete components

[129].

[134]. This vector has been successfully used in clinical trials
[129, 135, 136]. Owing to the immune rejection in hosts,
a recombinant serotype 5 adenoviral vector-encoding
hAQP1, AdhAQPI1 can only provide an effective thera-
peutic outcome for a short time in animal experiments.
However, a phase I trial showed that xerostomia was relieved
in 5 of the 11 subjects for 2-3 years, and the parotid flow rate
remained significantly elevated 3-4.7 years after treatment
[135-138]. This may be related to the lack of methylation of
the human cytomegalovirus promoter in human SG epi-
thelial cells [139].

Another commonly used viral vector is the serotype
2 adeno-associated viral (AAV2) vector, which triggers
milder immune rejection in the host [140]. The results
obtained in irradiated miniature pigs suggest that the use of
AAV2 as a transduction vector may serve as a way to in-
crease salivary flow over a longer period than AdhAQP1
[140]. The ultrasound-assisted gene transfer method is
noteworthy. In animal experiments, ultrasound-assisted
gene transfer can generate a “sonoporation” effect to as-
sist gene transfer to SG cells without introducing viral an-
tigens [131, 141]. In experiments to improve SG function in
irradiated miniature pigs, this approach achieved a thera-
peutic efficacy comparable to that of AdhAQP1 and reduced
the risk of immune responses in the host triggered by viral
vectors [131].

In addition to encoding hAQP1 to improve xerostomia,
the prevention of IR-induced SG hypofunction by
adenovirus-encoded growth factor and neurotrophic factor
deserves further investigation [142-144]. It has been shown
that injection of neurturin adenovirus into mouse SGs prior
to IR can reduce parasympathetic cell apoptosis, thereby
inhibiting IR-induced decline in SG function in mice
through acetylcholine signaling, which is essential for SG
development and regeneration [144-146].

4.6. Stem Cells. Stem cells are thought to play a vital role in
SG formation and recovery from damage, as shown in
Figure 3 [147]. Most of the existing treatment methods
involve temporary improvement of xerostomia. However,
the application of stem cells in its treatment provides the
possibility for the long-term recovery of SG tissue and se-
cretory function [148]. SG stem cells can be collected in
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FIGURE 3: Schematic diagram showing the location, proliferation,
and differentiation of stem and progenitor cells in SGs [147].

advance and implanted after RT. The collection of stem cells
often depends on their marker expression profiles.
According to known literature, c-kit (CD117) is the most
studied marker, CD49F, CD29, CD24, and CD133 also have
potential as markers and should be used in combination to
improve accuracy [149]. The potential of SG cells to aid their
recovery after RT was confirmed by isolating the c-Kit cell
population, producing a salisphere in vitro, and trans-
planting it [150, 151]. Salisphere transplantation can not only
replace the lost proliferative cells of the SGs post-RT but may
also benefit patients’ endogenous cells [152]. In addition, SG
organoids can be produced using 3D extracellular matrices,
which can make cell differentiation similar to that of SGs to
obtain a better 3D structure. For clinical applications, SG
organoids have been made with biocompatible magnetic
nanoparticles [148, 153-155].

Furthermore, the isolated stem cell population that can
be used for clinical treatment needs to be assessed. The
impact of the patient’s age, the number of cells to be
transplanted during treatment, the accuracy of transplant
cells delivered to the desired site, and confirmation of
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genomic stability during cell culture to prevent potential
cancer cells from being transplanted into the patient are
challenges for stem cell applications [147, 156]. Though the
role of stem cells in restoring SGs is still unclear, there is
a view that SG renewal is affected more by the proliferation
of acinar cells [157].

In addition to SG cells, stem cells derived from other
parts of the body have also been reported, among which
adipose-derived stem cells (ADSCs) are the most promising.
Meanwhile, mesenchymal stem cells from the bone marrow,
labial mucosa, and dental pulp have also proved valuable in
treating xerostomia [148]. It has been suggested that ADSCs
can be obtained by non-invasive surgery, and their potential
for induction of SGs cells has been confirmed, where this
transdifferentiation can be facilitated by platelet-rich fibrin
[158, 159]. However, there are studies that did not observe
significant transdifferentiation of ADSCs into SG. ADSCs
also secrete paracrine factors to maintain amylase secretion.
Although the mechanism of action remains controversial,
the positive effects of ASCs on SGs are certain [160]. No-
tably, ASCs were included in phase I/II clinical trials and
showed good safety and efficacy [161]. Bone marrow mes-
enchymal stem cells are also shown to increase the ex-
pression of SDF1-CXCR4, Bcl-2, and other proteins after
transplantation under hypoxic conditions, thus promoting
cell proliferation and differentiation, leading to the recovery
of SGs [162]. Injection of labial stem cell extracts improved
blood vessel, nerve, and cell recovery in mice, and increased
saliva flow rates by 50-60% [163]. Dental pulp stem cells can
be easily obtained, and their anti-inflammatory effects,
multipotent differentiation properties, and migration to
damaged tissues illustrate their potential for application in
the field of xerostomia treatment [148, 164]. Although they
have potential in the treatment of xerostomia along with SGs
cells, issues such as efficacy, preservation, transport
methods, and safety remain formidable challenges.

5. Conclusion

We found improvements in most diagnostic methods but
with shortcomings. Most of the prevention and treatment
methods are restricted to animal experiments, requiring
further clinical research, where antioxidants, gene transfer,
and stem cell transplantation have promising developmental
and therapeutic prospects.
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