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Abstract

Transcriptomic biomarkers can be used to inform molecular initiating and key events involved 

in a toxicant’s mode of action. To address the limited approaches available for identifying 

epigenotoxicants, we developed and assessed a transcriptomic biomarker of histone deacetylase 

inhibition (HDACi). First, we assembled a set of 10 prototypical HDACi and 10 non-HDACi 

reference compounds. Concentration-response experiments were performed for each chemical to 

collect TK6 human lymphoblastoid cell samples after 4 hours of exposure and to assess cell 

viability following a 20h-recovery period in fresh media. One concentration was selected for each 

chemical for whole transcriptome profiling and transcriptomic signature derivation, based on cell 

viability at the 24-hour time point and on maximal induction of HDACi-response genes (RGL1, 

NEU1, GPR183) or cellular stress-response genes (ATF3, CDKN1A, GADD45A) analyzed by 

TaqMan qPCR assays after 4 hours of exposure. Whole transcriptomes were profiled after 4 

hour exposures by Templated Oligo-Sequencing (TempO-Seq). By applying the nearest shrunken 

centroid (NSC) method to the whole transcriptome profiles of the reference compounds, we 

derived an 81-gene toxicogenomic (TGx) signature, referred to as TGx-HDACi, that classified 
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all 20 reference compounds correctly using NSC classification and the Running Fisher test. An 

additional four HDACi and seven non-HDACi were profiled and analyzed using TGx-HDACi to 

further assess classification performance; the biomarker accurately classified all 11 compounds, 

including three non-HDACi epigenotoxicants, suggesting a promising specificity toward HDACi. 

The availability of TGx-HDACi increases the diversity of tools that can facilitate mode of action 

analysis of toxicants using gene expression profiling.

INTRODUCTION

Early gene expression changes in response to a toxicant provide insight into the molecular 

initiating events (MIE) and key events (KE) involved in its mode of action (MOA). 

Transcriptomic signatures, or biomarkers, typically consist of a panel of genes that 

robustly and consistently respond to stressors belonging to specific mechanistic classes. 

Such biomarkers provide a pragmatic method for efficiently extracting mechanistic 

information from high-content transcriptomic data and can be used to detect early molecular 

perturbations that are predictive of chemical hazards. Therefore, increasing the diversity of 

available transcriptomic biomarkers will facilitate rapid screening of chemicals to identify 

potential MOAs and prioritize follow-up tests in toxicological assessment.

A study by Li et al. (2015a, b) generated DNA microarray gene expression profiles of TK6 

human lymphoblastoid cells exposed to 28 agents for 4 hours (Li et al. 2015a, b). TGx-DDI, 

a 64-gene toxicogenomic (TGx) biomarker of DNA damage-inducing (DDI) agents, was 

derived from these gene expression profiles of 13 DDI and 15 non-DDI reference agents. 

Four histone deacetylase inhibitors (HDACi), oxamflatin, trichostatin A, apicidin, and HC 

toxin (Helminthosporium carbonum toxin), were among the non-DDI agents in this initial 

training set. A very distinct expression pattern was observed for the four HDACi by visual 

inspect of a heatmap produced on 1628 genes that were perturbed by more 1.7-fold for at 

least one of the 28 agents used in TGx-DDI development. This expression pattern appeared 

to clearly distinguish the HDACi agents from the remaining compounds with various MOA 

such as topoisomerase inhibitors, tubulin inhibitors, electron transport chain inhibitors, and 

endoplasmic reticulum disruptors (Li et al. 2015a, b; Li et al. 2017).

Previous transcriptomic studies have identified signatures of HDACi for use in different 

contexts within toxicity assessment. Notably, Dreser et al. (2015) and Rempel et al. 

(2015) developed HDACi signatures in human stem cells for detecting disruptions in 

neurodevelopment (i.e., inhibited migration of neural crest cells) and distinguishing HDACi 

from mercurial compounds, respectively. Although these signatures demonstrated predictive 

abilities within their respective neurodevelopmental toxicity studies, they are limited in 

scope for broader applications due to the required exposure length (48-h and 6-day 

exposures) and the use of a specialized cell line. More recently, Yeakley et al. (2017) 

identified genes that were consistently responsive to trichostatin A, a non-selective HDACi, 

in a Templated Oligo-Sequencing (TempO-Seq) gene expression analysis of five cell types 

(MCF-7, PC-3, undifferentiated HL-60, and two differentiation states of HL-60) that were 

exposed for 6 h (Yeakley et al. 2017). The Li et al. (2015a, b) and Yeakley et al. (2017) 
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studies indicated that it may be possible to develop a transcriptomic biomarker of HDACi 

that can be measured after short exposures in vitro for applications in chemical screening.

Post-translational modification (PTM) of histones is one of the ways in which gene 

expression is regulated epigenetically; the N-terminus tails of histones are transiently 

methylated, phosphorylated, and/or acetylated, which alters nucleosome stability and the 

binding configuration of histones and DNA (Biswas et al. 2011; Audia and Campbell 2016). 

The lysine residues of histone tails are reversibly acetylated and deacetylated by histone 

acetyltransferases (HATs) and histone deacetylases (HDACs), respectively. The acetylation 

of histone tails weakens the association between histones and DNA, allowing access to 

DNA for transcription. Therefore, inhibiting HDACs leads to hyperacetylation of histones, 

prolonging the dissociation of histones and DNA, and generally leading to dysregulation of 

transcription (Gallinari et al. 2007; Seto and Yoshida 2013).

The 18 known human HDACs are organized into four classes based on the sequence 

homology shared with yeast deacetylases. Classes I, II, and IV HDACs are Zn2+-dependent 

and class III HDACs are NAD+-dependent in their catalytic activities (Seto and Yoshida 

2013). Class II is further divided into classes IIa and IIb. Protein expression and activity 

levels differ across the four main classes and the two sub-classes within class II based 

on tissue and cellular localization (Morris and Monteggia 2014; Wright and Menick 2016; 

Millard et al. 2017; Rajan et al. 2018). Class I HDACs are ubiquitously expressed and are 

located in the nucleus, while classes II and IV contain both nuclear and cytoplasmic HDACs 

with tissue-specific expression patterns (Park and Kim 2020).

Along with other agents that modulate the PTM of histones, HDACi are considered 

epigenotoxicants. Several chemicals present in the environment, such as methoxyacetic acid, 

resveratrol, and butyrate, have been identified as HDACi (Wade et al. 2008; Ventrelli et 

al. 2013; Chang et al. 2014). The downstream effects of HDACi exposure are broad due 

to the diverse roles that HDACs play in the cell; the effects of HDACi include activation 

of pro-apoptotic genes, disruption in cell cycle, and inhibition of DNA repair (Bose et 

al. 2014). Dysregulation of PTM of histones has implications in developmental toxicity, 

neurotoxicity, and carcinogenesis (Audia and Campbell 2016).

In the present study, we identified and tested a transcriptomic biomarker of HDACi, named 

TGx-HDACi, to address the limited tools available for identifying toxicants that operate 

through the inhibition of HDAC as the MIE. To do this, we expanded on the original 

TGx-DDI sample sets in TK6 cells, with a long-term vision to enable rapid screening for 

genotoxicity and epigenotoxicity using a single high-throughput transcriptomic analysis. We 

first constructed a reference compound set containing HDACi and non-HDACi chemicals. 

The HDACi chemical set was limited to the inhibitors of the classical, Zn2+-dependent 

human HDACs that constitute HDAC classes I (HDACs 1 to 3 and 8), II (HDACs 4 to 7, 9, 

and 10) and IV (HDAC 11); these HDACi contain Zn-binding groups and inhibit HDACs by 

chelating the Zn from the active site (Zhang et al. 2018). Sirtuins, the NAD+-dependent class 

III HDACs, are not affected by these HDACi and, thus, require a different class of chemicals 

for inhibition (Seto and Yoshida 2013). To provide an adequate representation of both the 

HDACi and non-HDACi classes while keeping the training set at a reasonable size and 
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balanced between the two chemical classes, we focused on the inhibition of classical, Zn2+-

dependent HDACs for HDACi biomarker derivation. Gene expression profiling was applied 

to cells exposed to HDACi and non-HDACi chemicals using TempO-Seq (BioSpyder). 

The TempO-Seq platform was selected because it is amenable to working on cell lysates 

in 96- and 384-well format, enabling high-throughput application for chemical screening. 

The nearest shrunken centroid (NSC) method was applied to the whole transcriptome 

profiles of the reference compounds to derive the TGx-HDACi biomarker (Tibshirani et al. 

2002). The performance of TGx-HDACi was evaluated by classifying an external validation 

compound set containing HDACi, non-HDACi, and non-HDACi epigenetic modulators 

(inhibitors of histone acetylase, histone methyltransferase, and histone demethylase), using 

different statistical analyses (probability analysis using NSCs, principal component analysis, 

hierarchical clustering, and running Fisher test).

MATERIALS AND METHODS

Chemicals

The list of compounds in the reference set (10 HDACi and 10 non-HDACi) and in 

the external validation set (four HDACi and seven non-HDACi), the tested and selected 

concentrations, and the manufacturers are summarized in Tables 1 and 2. The HDACi 

compounds were selected based on published reviews on HDACi and commercial 

availability (Bose et al. 2014; Damaskos et al. 2017). The non-HDACi were chosen to 

span multiple MOA from the set of 28 agents used to develop the TGx-DDI biomarker by Li 

et al. (2015a, b). An additional three chemicals that are non-HDACi epigenetic modulators 

(histone demethylase, methyltransferase, and acetyltransferase) were included in the external 

validation set (Balasubramanyam et al. 2004; Girard et al. 2014; Lochmann et al. 2018).

Cell Culture and Treatments

Existing RNA samples from TK6 cells treated with three HDACi (oxamflatin, HC toxin, 

and apicidin), and 10 non-HDACi reference compounds, that were produced in a previous 

study (Cho et al. 2019) were used alongside new samples generated for the present work; 

the older RNA samples were produced in 2015 and stored at −70°C until this study in 

2018. The oxamflatin and apicidin samples were included in the HDACi reference set for 

biomarker derivation and the HC toxin samples were included in the external validation set. 

The samples of the remaining eight HDACi reference compounds and ten external validation 

compounds (three HDACi and seven non-HDACi) were newly generated. The Cho et al. 

(2019) study was an extension of the TGx-DDI biomarker work by Li et al. (2015a, b). 

Chemical concentration selection and cell exposure methods for these samples are described 

by Li et al. (2015a, b). The concentration selection for the remaining chemicals was based 

on a modification of that approach (described further below). Cell culture and exposure 

methods described herein are consistent with the 2019 study.

TK6 cells (ATCC# CRL-8015; ATCC, Manassas, VA) were cultured in suspension in 

RPMI1640 medium (Gibco) supplemented with 10% v/v heat-inactivated horse serum 

(Gibco; New Zealand origin) and 200 µg/mL sodium pyruvate (Gibco), at 37°C and 5% 

CO2. The density was maintained between 1x105 and 1x106 cells/mL in a T75 flask.
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In the range finding experiments for concentration selection, TK6 cells in 96-well or 6-well 

plates were exposed to eight to ten concentrations of each compound in two technical 

replicates for 4 hours to measure cell viability at the 24-hour time point (post 20-hour 

recovery in media) or to extract RNA for qPCR analyses. The tested concentration ranges of 

reference and validation compounds are listed in Tables 1 and 2, respectively. The cells were 

exposed to each compound prepared in their respective vehicle solvents (1% water, dimethyl 

sulfoxide (DMSO), or methanol (MeOH) v/v in medium) at a density of 4 x105 - 5x105 

cells/mL.

In the definitive study, TK6 cells were exposed to each compound at the selected 

concentrations for 4 hours on three separate occasions to generate three replicates of RNA 

samples for whole transcriptome profiling.

Cell Viability Measurement by MTT Assay

Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT) assay (R&D Systems, Minneapolis, MN) after 4-hour exposures followed 

by 20 hours of recovery in medium at 37°C, on a SpectraMax microplate reader (Molecular 

Devices). Cell viability was calculated as the percentage of viable cells in treatments 

compared to vehicle control.

Total RNA Extraction and Quantitative Reverse Transcription PCR

TK6 cells were harvested after 4-hour exposures to all compounds. Total RNA was extracted 

and purified using the RNeasy Mini Kit (Qiagen, Toronto, ON, Canada) following the 

manufacturer’s protocol. The quantity and quality of each extracted RNA sample was 

assessed using a NanoDrop ND-100 spectrophotometer (Thermo Scientific, Burlington, ON, 

Canada) and an Agilent 2100 Bioanalyzer or an Agilent TapeStation (Agilent Technologies, 

Mississauga, ON, Canada). All RNA samples had A260/280 absorbance ratios of ≥2.0 and 

RNA integrity number (RIN) between 7.5 and 10.

The concentration optimization method used by (Li et al. 2015a, b) was modified to select 

the HDACi treatment concentrations for whole transcriptome profiling. The concentration-

response of three genes, RGL1, NEU1, and GPR183 (referred to as the “HDACi indicator 

genes”), was measured in two technical replicates using TaqMan gene expression assays 

(Applied Bioscience, Burlington, Canada). These three genes were selected because: (1) 

they had the largest fold change in expression in TK6 cells following exposure to four 

HDACi (oxamflatin, trichostatin A, HC toxin, and apicidin) and (2) they were not altered by 

any of the non-HDACi exposures (Li et al. 2015a, b). Specifically, RGL1 and NEU1 were 

upregulated and GPR183 was downregulated across the four HDACi. The concentration 

that induced the highest fold changes in the three indicator genes after 4-hour exposure, 

without overt cytotoxicity in the MTT assay after a 20h-recovery (less than 50% reduction 

in viability at 24 h) was identified and selected for each chemical for whole transcriptome 

profiling.

For non-HDACi compounds, the concentration-responses of the three stress response 

indicator genes used by (Li et al. 2015a, b) (ATF3, GADD45A, and CDKN1A) were 

measured in two technical replicates. GUSB was measured in all samples for normalization. 
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The delta-delta Ct method was used to normalize and calculate the fold change in the 

indicator genes (Vandesompele et al. 2002). Again, the concentration that induced the 

highest fold changes in these three indicator genes after 4-hour exposure, without overt 

cytotoxicity in the MTT assay after a 20h-recovery (less than 50% reduction in viability at 

24 h) was identified and selected for each chemical.

HDAC Enzyme Activity Assay

A FLUOR DE LYS® HDAC fluorometric cellular activity assay kit (Enzo Life Sciences, 

Farmingdale, NY) was used to measure relative HDAC enzyme activity levels in TK6 cells 

treated (n=3) with the 20 reference compounds and 11 external validation compounds at 

the selected concentrations for 4 hours, to confirm that the compounds are either HDACi or 

non-HDACi in TK6 cells at these concentrations. Briefly, as per the manufacturer’s protocol, 

TK6 cells were plated in a 96-well plate at a density of 1 x105 cells/well in 99 µL of RPMI 

medium without phenol red containing the FLUOR DE LYS HDAC substrate. In each well, 

1 µL of the treatment solution was added, resulting in a final concentration of 1 % v/v in 

the medium. The cells were treated with each compound and vehicle solvent in triplicates. 

Fluorescence of the deacetylated product generated from the reaction between HDAC and 

the FLUOR DE LYS enzyme substrate was measured (Ex. 360 nm, Em. 460 nm) using 

a SpectraMax Gemini microplate reader (Molecular Devices) after 4 hours of exposure. 

HDAC enzyme activity levels were measured as arbitrary fluorescence units (AFU).

Whole Transcriptome Profiling

Two 96-sample TempO-Seq Human Whole Transcriptome Assay kits (BioSpyder, Carlsbad, 

CA) were used to generate sequencing libraries using total RNA from TK6 cells following 

the manufacturer’s protocols (Yeakley et al. 2017). Three replicates, each generated from 

cells exposed on different days, were used for the whole transcriptome analysis of each 

chemical. One 96-well plate was loaded with the reference compound samples and the 

HDACi validation samples. Existing samples of TSA were sequenced with this batch, but 

these data were omitted because the transcriptional responses in the three replicates of TSA 

were low and did not contribute to biomarker derivation. It is possible that the treatment 

concentration of 66 nM was insufficient to induce robust transcriptional responses. Thus, 

concentration selection for TSA was repeated using the approach described above and 

300 nM was selected for generating three new replicates. The second 96-well plate was 

loaded with the non-HDACi validation samples and the newly generated TSA samples. The 

libraries were prepared approximately 5 months apart. On each 96-well plate, 2 replicates of 

negative control (water only), human universal reference RNA, and human brain total RNA 

were included for quality control and assessment. Each RNA sample (approximately 100 

ng/µL) was diluted in an equal volume of the 2 × TempO-Seq Lysis buffer to a final RNA 

concentration of approximately 50 ng/µL. Two µL of this mixture were used (RNA input 

of 100 ng) in the annealing of detection oligos (DO) to RNA, followed by the removal of 

unbound DOs by a nuclease and the ligation of bound DOs. The ligated DOs were amplified 

by PCR using tagged primers to generate sequencing libraries. Finally, the libraries were 

pooled and quantified by qPCR using a KAPA SYBR FAST Universal qPCR kit for Illumina 

sequencing platforms (Roche, Wilmington, MA). Library building failed for one of the three 

replicates of methotrexate (MTX) and, thus, we moved forward with two replicates for 

Cho et al. Page 6

Arch Toxicol. Author manuscript; available in PMC 2022 September 04.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



this treatment. The pooled libraries were sequenced on an Illumina NextSeq 500 using a 

75-cycle flow cell.

TempO-Seq Data Processing

The BCL files were converted to FASTQ files and the reads were demultiplexed using 

bcl2fastq v. 2.20.0.42. The FASTQ files were then processed using the “pete. star. 

Script_v3.0” (freely provided by BioSpyder with the library kits). The script uses star v.2.5 

and the qCount function from QuasR to align the reads and to extract the feature counts 

specified in a Gene Transfer Format (GTF) file from the aligned reads, respectively. We 

first confirmed low signal (< 0.3%) from negative controls (water only) included on all 

TempO-Seq plates. We referred to boxplots of total mapped reads for each sample and 

hierarchical clustering of all samples to identify poor quality data and remove outliers. A 

dissimilarity of >0.2 with the main data set was applied as a filter to identify outliers. From 

this analysis, one water control, one replicate of pracinostat and one replicate of tacedinaline 

were removed. The median number of mapped reads for the samples in the experiment was 

4.5 million; the lowest sample had 1.9 million mapped reads.

The correlation between the two replicates of human universal reference RNA and human 

brain reference RNA within each plate was analyzed; human brain total RNA samples had 

within-plate correlations of 0.997 and 0.998, and human universal reference RNA samples 

had a within-plate correlation of 0.999 on both plates. The correlation between the human 

brain reference RNA samples and the universal reference RNA samples across the two plates 

ranged from 0.713 to 0.735 and from 0.781 to 0.794, respectively.

Using R 3.4.1, the read counts of all samples were normalized as counts per million (CPM) 

(Law et al. 2014). The CPM calculated for each chemical treatment was then normalized to 

its vehicle control. The three replicates of each treatment were averaged. A cut-off of >9 was 

applied to the CPM read counts. The TempO-seq count data are available on NCBI’s Gene 

Expression Omnibus (GEO) under the accession number GSE164478.

Signature Derivation

The nearest shrunken centroid (NSC) method was applied to the TempO-Seq gene 

expression profiles of the 20 reference compounds to derive the HDACi transcriptomic 

signature (Hastie et al. 2001; Tibshirani et al. 2002; Li et al. 2015a, b). The NSC 

method was performed in the R statistical environment using the pamr function 

(www.bioconductor.org). Here, the standard centroids of the HDACi and non-HDACi classes 

was estimated by computing the mean expression level of each gene and dividing by the 

within-class standard deviation.

The shrinkage parameter was determined with an aim of establishing a transcriptomic 

biomarker containing 50–100 genes. 10-fold cross validation was employed to identify 

shrinkage parameters that produced gene panels within this range with classification 

accuracy (Hastie et al. 2001). For 10-fold cross validation, the 20 reference compounds 

were divided evenly into 10 groups each containing a compound from the HDACi class 

and the non-HDACi class. At each round within the 10-fold cross validation, one of the 

10 groups was treated as the test set, while the remaining 9 groups are used to build the 
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classifier to classify the test set as HDACi or non-HDACi in a NSC probability analysis; 

compounds were assigned to the HDACi class if the probability of membership was above 

90%. A cross-validation error of 1/20 (95% accuracy) was allowed to generate gene panels 

within the target range for size.

A shrinkage value of 3.449 was selected to generate an 81-gene panel that yielded 

95% accuracy in 10-fold cross validation. We named this gene panel the TGx-HDACi 

transcriptomic biomarker.

External Validation

To assess the performance of the 81-gene TGx-HDACi transcriptomic biomarker, an 

additional 11 compounds were classified using three different statistical analyses: 

probability analysis, principal component analysis (PCA), and hierarchical clustering. A 

compound was classified as HDACi if the probability of membership in the HDACi class 

was above 90%. The PCA was performed using the prcomp in R (www.r-project.org) and 

hierarchical clustering was performed using the hclust function in R using average linkage 

and Euclidean distance using the TGx-HDACi gene set. A compound was classified as 

HDACi if it clustered with the HDACi reference methods compounds.

Classification by Running Fisher Test

The use of the Running Fisher test to determine the predictive accuracy of a 

transcriptomic biomarker has been described (Corton et al. 2018). Briefly, the 

TGx-HDACi biomarker consisting of the 81 genes and average fold-change values 

across all of the HDACi compounds was uploaded to the BaseSpace Correlation 

Engine database (URL: https://www.illumina.com/products/by-type/informatics-products/

basespace-correlation-engine.html; formally NextBio) (Kupershmidt et al. 2010). The gene 

expression profile of each HDACi or non-HDACi compound was compared to the biomarker 

using the Running Fisher test. For each pairwise comparison, the P‐value of the Running 

Fisher test and direction of the correlation were exported. p values were converted to − 

Log10 (p value). The − Log10 (p value) of compounds that were negatively associated 

with the biomarker were converted to negative numbers by adding a minus sign to indicate 

negative association. The reference set of 20 compounds was used to derive a –Log10(P‐
value) cut‐off of 15 that separated HDACi from non-HDACi. This cut‐off was then applied 

to the external validation set.

RESULTS

Concentration Optimization

To select the optimal concentration of each reference (training set) compound for 

whole transcriptome analysis, the concentration-responses of three indicator genes were 

measured to choose a single concentration inducing robust transcriptional responses for 

each chemical. RGL1, NEU1, and GPR183 were measured for HDACi compounds (an 

example is provided in Fig. 1A), and ATF3, GADD45A, and CDKN1A were measured 

for non-HDACi compounds (Supplementary Fig. S1 and S4). GPR183 was downregulated, 

and RGL1 was upregulated by all 11 HDACi in a concentration-dependent manner, as 

Cho et al. Page 8

Arch Toxicol. Author manuscript; available in PMC 2022 September 04.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

http://www.r-project.org/
https://www.illumina.com/products/by-type/informatics-products/basespace-correlation-engine.html
https://www.illumina.com/products/by-type/informatics-products/basespace-correlation-engine.html


expected. While NEU1 was upregulated by the eight non-selective, pan-HDACi, three class 

I-selective HDACi compounds, mocetinostat, entinostat, and tacedinaline, downregulated 

NEU1 (Supplementary Fig. S1). Moreover, there was a smaller in increase in the expression 

of RGN1 in these three treatments compared to pan-HDACi treatments (Fig. 1B). Cell 

viability was measured at the same concentrations using the MTT assay after 4-hour 

exposures and 20 hours of recovery in fresh medium (Supplementary Fig. S2 and S3). The 

selected concentrations induced the largest fold changes in their respective indicator genes 

without reducing cell viability below 80% at 24 h, except for AraC and docetaxel which 

decreased cell viability by 40% and 30%, respectively. Fig. 1B summarizes the expression 

levels of the three HDACi indicator genes measured after 4 hour exposures to HDACi at the 

selected concentrations.

HDAC Enzyme Activity Assay

HDAC enzyme activity was measured in TK6 cells treated with the 20 reference compounds 

and the 11 external validation compounds at the selected concentrations for 4 hours 

(Supplementary Fig. S5 and S6). All 10 reference HDACi and four validation HDACi 

significantly reduced HDAC activity compared to the vehicle control (one-way ANOVA, 

post-hoc Dunnett’s test; p-value < 0.05). Non-HDACi compounds did not induce significant 

reductions in HDAC activity compared to the vehicle control, except for garcinol, a histone 

acetyltransferase inhibitor.

Transcriptomic Signature of HDACi

To derive a transcriptomic signature of HDACi, the NSC method was applied to the TempO-

Seq whole transcriptome profiles of 20 reference compounds consisting of 10 HDACi and 

10 non-HDACi. After identifying the NSC shrinkage values that yielded 95% accuracy in 

10-fold cross validation, an 81-gene panel was identified that we named the TGx-HDACi 

transcriptomic biomarker (Supplementary Table SI).

The TGx-HDACi biomarker classified all 20 reference compounds accurately using NSC 

classification (Fig. 2A). The 81-gene expression profiles were further analyzed by PCA and 

hierarchical clustering (Fig. 3). In the PCA, the reference compounds formed two loose 

clusters that were separated by classes (Fig. 3; left panel), with HDACi compounds having 

negative PC1 and non-HDACi having positive PC1 values. Concordantly, the reference 

compounds branched into two clusters by class in hierarchical clustering (Fig. 3; right 

panel). Mocetinostat and tacedinaline, two selective inhibitors of Class I HDACs were 

separated from the main HDACi cluster in the scatterplot of the PCA. These two compounds 

also formed a separate branch within the HDACi cluster in hierarchical clustering. The 

overall prediction accuracy of the biomarker in classifying the reference set was 100%.

Based on correlation with the TGx-HDACi biomarker in the Running Fisher test, the 20 

reference compounds were ranked by –Log10(p‐value) (Fig. 4). A –Log10(P‐value) cut‐off 

that separated HDACi from non-HDACi was set at 15, which lay approximately halfway 

between the two classes. This threshold was applied to the external validation set to classify 

the compounds as HDACi or non-HDACi in the Running Fisher test.
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External Validation

To assess the performance of the TGx-HDACi biomarker in classifying external compounds, 

TempO-Seq gene expression profiles of an additional 11 compounds were classified using 

the biomarker in a probability analysis (Fig. 2B), PCA, hierarchical clustering (Fig. 3), and 

the Running Fisher test (Fig. 4). All compounds classified as expected using the probability 

analysis. In the PCA and hierarchical clustering, all 11 compounds clustered with the correct 

group within the reference compound set. Entinostat, a selective inhibitor of Class I HDACs, 

clustered with the two class I inhibitors in the reference set, tacedinaline and mocetinostat, 

in the PCA and the three compounds also formed a separate branch within the HDACi 

branch in hierarchical clustering. All 7 non-HDACi and 4 HDACi were correctly classified 

using the Running Fisher test with a –Log10(p-value) cut-off of 15.

The overall classification accuracy of the TGx-HDACi biomarker in external validation 

was 100%. Table 3 summarizes the results of the TGx-HDACi analysis of the 11 external 

validation compounds.

DISCUSSION

MOA-specific transcriptomic biomarkers provide a practical approach to efficiently identify 

MIE and KE perturbations from high-content gene expression data. The availability of 

diverse transcriptomic biomarkers will enable rapid screening of gene expression profiles for 

multiple MOAs concurrently. Currently, there are no transcriptomic biomarkers of HDACi 

that are adequate for applications in chemical screening after short-term exposures in vitro. 

Herein, we developed an 81-gene biomarker of HDACi that can be measured after 4-hour 

exposures in TK6 cells and assessed in parallel with the TGx-DDI transcriptomic biomarker 

for genotoxicity.

The TGx-HDACi biomarker was derived from TempO-Seq whole transcriptome gene 

expression profiles of TK6 human lymphoblastoid cells exposed for 4 hours to a reference 

compound set consisting of 10 HDACi and 10 non-HDACi compounds. The classification 

capability of TGx-HDACi was first assessed by classifying the reference set, followed by 

an external validation set consisting of four HDACi and seven non-HDACi compounds. 

Four different statistical analyses, probability analysis, PCA, hierarchical clustering, and 

the Running Fisher test, were used to assess the classification capabilities. The biomarker 

demonstrated 100% accuracy in classifying the 20 reference compounds and the 11 external 

validation compounds as HDACi or non-HDACi in all analyses. Notably, three of the 

seven non-HDACi validation compounds were histone modulators: garcinol, a histone 

acetyltransferase inhibitor, GSK-J4, a histone demethylase inhibitor, and 3-deazaneplanocin 

A (DZNep), a histone methyltransferase inhibitor (Balasubramanyam et al. 2004; Girard 

et al. 2014; Li et al. 2015a, b; Lochmann et al. 2018). The external validation results 

suggest that the biomarker is capable of distinguishing HDACi from inhibitors of other 

histone modulating enzymes. Overall, the TGx-HDACi biomarker demonstrated a robust 

classification performance with a promising specificity toward HDACi in TK6 cells.

We applied four different statistical analyses to perform chemical classifications using TGx-

HDACi (Table 3). The use of probability analysis, PCA, and hierarchical clustering was 
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adapted from the three-pronged classification approach employed by Li et al. (2017) for 

TGx-DDI; the results of the three analyses were combined to make an overall chemical 

classification, in which a negative call was made only when all three analyses were negative, 

while one positive analysis led to an overall positive call (Li et al. 2017, 2019). This 

approach provides sensitivity to the biomarker assay and conservative negative calls of 

toxicity. The three-pronged approach is useful for assessing individual compounds rather 

than screening a large dataset. In contrast, the Running Fisher test enables rapid screening 

and ranking of chemicals within large databases such as Illumina BaseSpace Correlation 

Engine with existing transcriptomic data (Kupershmidt et al. 2010; Corton et al. 2018; 

2019). Concordant classifications made using the two approaches suggest that the two 

methods can be combined or applied separately to accurately classify chemicals in the 

TGx-HDACi analysis.

In the PCA of the reference and validation compounds (Fig. 3; left panel), three HDACi 

compounds, mocetinostat, entinostat, and tacedinaline, formed a distinct cluster away from 

the remaining HDACi. The three HDACi also formed a separate branch within the HDACi 

cluster in hierarchical clustering (Fig. 3; right panel). These three compounds are all 

benzamides that are selective inhibitors of class I HDACs (HDAC1, 2, 3, and 8), while 

the remaining HDACi in the reference and validation sets are pan-HDACi that inhibit classes 

I, II, and IV enzymes (Kraker et al. 2003; Agudelo et al. 2016; Surolia and Bates 2018). 

The differences between class I HDACi and pan-HDACi can be observed in the heatmaps of 

TGx-HDACi, in which the three class I HDACi induce expression patterns that are visibly 

different across the 81 genes compared to the rest of the HDACi set (Fig. 2). These results 

suggest that selective inhibitors of different classes of HDAC can be distinguished from 

each other by gene expression profiles in TK6 cells and that it may be possible to derive 

transcriptomic signatures for selective HDACi. The analysis also demonstrates the added 

value of the clustering approaches to classify chemicals, which can provide more insight into 

chemical similarities to understand the MOA. We note that TGx-HDACi addresses inhibitors 

of the classical, Zn2+−dependent human HDACs in classes I, II, and IV but not inhibitors 

of the NAD+-dependent class III HDACs (i.e., sirtuins). Future work is needed to develop 

biomarkers of class III HDAC inhibitors.

Although HDACs were initially known for deacetylation of lysine residues in histone tails, 

an increasing number of non-histone targets of deacetylation by HDACs are being elucidated 

(e.g., p53 (Brooks and Gu 2011)) and a broader range of activities beyond the epigenetic 

regulation of transcription have been associated with HDACs (Wright and Menick 2016; 

Narita et al. 2019). Acetylation and deacetylation of non-histone proteins by HATs and 

HDACs, respectively, regulate the stability and function of proteins involved in diverse 

cellular processes (e.g., DNA damage response (Thurn et al. 2013); mRNA elongation and 

splicing (Greer et al. 2015; Rahhal and Seto 2019); microtubule stabilization (Janke and 

Montagnac 2017)). Therefore, the transcriptomic changes observed under HDACi exposures 

may be due to inhibited deacetylation of not only histones but many other proteins, and 

perturbations of diverse pathways. Perhaps unsurprisingly, an enrichment analysis of the 81 

genes in Ingenuity Pathway Analysis of the TGx-HDACi biomarker genes did not reveal any 

significant enrichment of pathways, processes or upstream regulators (data not shown).
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There is a considerable overlap between the reference compound sets of TGx-DDI and TGx-

HDACi biomarker, as the latter was constructed by leveraging the 28 reference compounds 

used in the initial TGx-DDI study; all 10 non-HDACi and three of the HDACi reference 

compounds were shared in the development of the two biomarkers (Li et al. 2015a, b). 

TGx-DDI detects gene expression changes in response to agents that directly induce DNA 

damage, such as alkylators (e.g., methyl methanesulfonate) and topoisomerase inhibitors 

(e.g., campthothecin); four HDACi were included as non-DDI reference compounds. The 

non-HDACi reference set contains six DDI compounds that were part of the DDI reference 

set used to develop TGx-DDI. Consequently, there are only two genes, COIL and E2F8, are 

shared by the two biomarkers. Thus far, analysis of the two biomarkers in the same gene 

expression profile yields positive results that are mutually exclusive of one another.

Pleiotropic activities are characteristic of many HDACi. Genotoxicity has been identified as 

an off-target effect of a number of HDACi compounds. For example, TSA and vorinostat, 

both hydroxamates, are mutagenic in the Ames test and clastogenic in mammalian cells 

in vitro and in vivo through indeterminate mechanisms (Olaharski et al. 2006; Kerr et al. 

2010; Lee et al. 2010; Shen and Kozikowski 2016). Of note, TSA was a non-DDI reference 

compound for TGx-DDI. HDACi compounds are suspected to induce genotoxicity through 

indirect mechanisms such as the induction of reactive oxygen species (ROS) and oxidative 

stress, and inhibition of DNA repair (Zhang et al. 2007; Petruccelli et al. 2011; Li et al. 

2015a, b).

The TGx-DDI biomarker is enriched in p53-associated genes and a positive call is consistent 

with p53 activation (Corton et al. 2019). The lack of overlap in the induction of the 

TGx-HDACi and TGx-DDI biomarkers, despite the reported genotoxicity of many HDACi 

compounds, could be due to a combination of the indirect mechanisms leading to DNA 

damage (e.g., induction of ROS), the concentration and exposure duration required for 

HDACi to cause DNA damage (may require exposures longer than 4 h), and/or the 

perturbation of p53-related transcriptional responses to DNA damage via HDACi. Thus, 

when assessing chemicals using these two transcriptomic biomarkers, the possibility of 

a positive HDACi outcome suppressing the TGx-DDI biomarker response should be 

considered; pairing these biomarkers would clearly enrich mechanistic understanding of 

chemical effects.

Because HDACs are involved in the regulation of p53-related signaling and transcriptional 

activities, inhibiting HDACs interferes with p53 responses and thereby prevents proper 

DNA damage signaling and repair (Hamms and Chen 2007; Roos and Krumm 2016). For 

example, HDACi has been observed to attenuate the activation of Ataxia-telangiectasia 

mutated (ATM), an upstream regulator of p53 in DNA damage response, and to modulate 

p53-regulated responses to genotoxic stress such as apoptosis and DNA repair (Zhang et 

al. 2007; Jang et al. 2010; Brochier et al. 2013; Thurn et al. 2013). However, when we 

compared TGx-HDACi to a list of 350 p53-regulated genes curated by Fischer (2017), 

only three genes, CPEB4, YRK3, and FAS, were present in both gene sets (Fischer 2017); 

based on the 81 genes of TGx-HDACi, the impact of HDACi on p53 responses cannot 

be determined. Moreover, TGx-HDACi is just a small subset of genes that are affected 

by HDACi. An analysis of the whole transcriptome profiles of HDACi produced herein 
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would improve the understanding of the impact of HDACi on p53 responses. In addition, 

given that perturbations of various pathways are downstream events of HDACi-induced 

hyperacetylation of histones, exposures longer than 4 h may be required to observe the 

effects of HDACi on p53 responses.

Previous studies by Rempel et al. (2015), Dreser et al. (2015), and Yeakley et al. (2017) 

investigated transcriptomic responses to HDACi. Rempel et al. and Dreser et al. used human 

pluripotent stem cells to develop an 8-gene classifier to distinguish HDACi from mercurial 

compounds and to observe HDACi-induced perturbations in 35 genes related to neural crest 

development, respectively (Dreser et al. 2015; Rempel et al. 2015). Unsurprisingly, none 

of the genes analyzed in these studies overlap with TGx-HDACi as they were identified 

and selected based on very different criteria from the TGx-HDACi genes. In contrast, 21 

overlapping genes were identified in a list of 330 TSA-responsive genes generated by 

Yeakley et al.; the differential expression of these 330 genes measured by TempO-Seq were 

consistent across 5 cell types (MCF-7, PC-3, undifferentiated HL-60, and 2 differentiation 

states of HL-60) after 6 h of exposure (Yeakley et al. 2017). TGx-HDACi was one 

of multiple candidates for a potential HDACi biomarker, which indicates there may be 

additional genes in the Yeakley et al. gene set that can contribute to building an HDACi 

classifier. A biomarker reference compound set that includes data from other cell lines could 

possibly yield a biomarker of HDACi that can be measured in multiple cell lines.

The concentration optimization strategy originally designed and applied by Li et al. (2015a, 

b) to develop the TGx-DDI biomarker was modified to select one concentration for each 

HDACi for whole transcriptome profiling and signature derivation. The three HDACi 

indicator genes, RGN1, NEU1, and GPR183, were chosen based on DNA microarray 

profiles of four HDACi produced in the aforementioned study. While GPR183 was among 

the 81 genes of TGx-HDACi, RGN1 and NEU1 were excluded. While GPR183 was 

consistently down-regulated by all HDACi, the responses in RGN1 and NEU1 varied 

between class I-selective HDACi and pan-HDACi. It is possible that when all 20 reference 

compounds were considered in the NSC method and cross-validation, the centroids of the 

two genes were below the final threshold and did not sufficiently contribute to the signature. 

The concentration-response analysis of three indicator genes by qPCR was nonetheless 

effective in identifying concentrations that were suitable for biomarker development, as 

demonstrated by the HDACi signature derived herein.

While the TGx-HDACi biomarker and other transcriptomic biomarkers can facilitate 

efficient analyses of high-content transcriptomic data, applications could be limited by 

several factors. The TGx-HDACi biomarker is currently limited to TK6 cells and the 

TempO-Seq gene expression platform; reliable classifications in other cell lines and different 

platforms would require further validation, similar to the extensive validation experiments 

performed for the TGx-DDI biomarker (Li et al. 2019). Furthermore, only one concentration 

of each validation compound was tested at one time point in this study. In a chemical 

assessment setting, multiple concentrations and exposure durations should be tested to 

enable different biomarker assay applications (e.g., TGx-HDACi and TGx-DDI might be 

detected at different concentrations and times) and quantitative analyses. Future studies 

will investigate the utility of the two biomarkers in an integrated approach to testing and 
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assessment, complementing predictive tools such as Adverse Outcome Pathways. Case 

studies will be performed to demonstrate and determine the optimal approach to integrating 

these transcriptomic biomarkers in chemical assessment.

In summary, we developed an 81-gene transcriptomic biomarker of HDACi to detect 

chemicals that operate through this MIE using gene expression profiles of TK6 cells. 

The biomarker accurately classifies HDACi in cross-validation and external validation 

experiments, in addition to distinguishing HDACi from other epigenotoxic mechanisms. 

Both the TGx-DDI and TGx-HDACi biomarkers can be analyzed concurrently in TK6 cells 

after 4-hour exposures. These biomarkers can be implemented as first tier tests in integrated 

testing and assessment of chemicals, or in MOA analyses, to efficiently identify the MIE of 

toxicants.

(Rempel et al. 2015; Dreser et al. 2015)
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ABBREVIATIONS

DDI DNA damage-inducing

HAT Histone acetyltransferase

HDACi Histone deacetylase inhibitor

KE Key event

MIE Molecular initiating event

MOA Mode of action

NSC Nearest shrunken centroid

PCA Principal component analysis

PTM Post-translational modification

TempO-seq Templated Oligo-sequencing

TGx Toxicogenomics
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Fig. 1. 
Quantitative RT-PCR measurements of the three HDACi indicator genes, RGL1, NEU1, and 

GPR183 A: The concentration-response of the three indicator genes in TK6 cells exposed 

to scriptaid, a reference HDACi, for 4 hours. The bars represent the averaged fold change 

of two technical replicates normalized to the vehicle control. Fifty µM was selected for 

whole transcriptome profiling. The expression profiles of all tested compounds are included 

in Supplementary Fig. S1 B: The fold changes in the three indicator genes measured in TK6 

cells exposed to HDACi at the concentrations selected for whole transcriptome profiling.
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Fig. 2. 
Heatmap of the TGx-HDACi biomarker genes in TK6 cells exposed to the reference (A) 
or validation (B) compounds for 4 hours. The gene expression profiles have been averaged 

across three replicates, except for Tac, Pra, and MTX (n=2). The biomarker genes are on 

the Y-axis and the chemicals are on the X-axis. Red indicates gene up-regulation and green 

indicates gene down-regulation in the heat maps. The bars above the heat maps show the 

class of the chemical and the prediction made by the biomarker in the probability analysis – 

HDACi in red and non-HDACi in blue.
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Fig. 3. 
Principal component analysis (left) and 2-dimensional hierarchical clustering (right) of 

the TGx-HDACi biomarker genes by TempO-Seq analysis following exposure to the 20 

reference and 11 external compounds for 4 hours. The data represent the average across 

three replicates, except for Tac, Pra, and MTX (n=2). Red font indicates reference HDACi 

and blue font indicates non-HDACi reference compounds. Green font indicates external 

validation compounds.
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Fig. 4. 
The Running Fisher test results for the 20 reference compounds and 11 external validation 

compounds using the TGx-HDACi biomarker expression profile. The red dots indicate 

HDACi and blue dots indicate non‐HDACi reference compounds. Purple and green 

dots represent the HDACi and non-HDACi external validation compounds, respectively. 

Chemicals are ranked by –Log10(P‐value) from the highest on the left to the lowest on the 

right. A cut‐off of 15 was derived from the reference set for use in classification. Chemicals 

above the cut‐off are classified as HDACi and ones below are classified as non‐HDACi.
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