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The visual pigments known as opsins are the primary molecular basis for
colour vision in animals. Insects are among the most diverse of animal
groups and their visual systems reflect a variety of life histories. The study
of insect opsins in the fruit fly Drosophila melanogaster has led to major
advances in the fields of neuroscience, development and evolution. In the
last 25 years, research in D. melanogaster has improved our understanding
of opsin genotype–phenotype relationships while comparative work in
other insects has expanded our understanding of the evolution of insect
eyes via gene duplication, coexpression and homologue switching. Even
so, until recently, technology and sampling have limited our understanding
of the fundamental mechanisms that evolution uses to shape the diversity of
insect eyes. With the advent of genome editing and in vitro expression
assays, the study of insect opsins is poised to reveal new frontiers in evol-
utionary biology, visual neuroscience, and animal behaviour.

This article is part of the theme issue ‘Understanding colour vision:
molecular, physiological, neuronal and behavioural studies in arthropods’.
1. Introduction
Opsins are the most widely used photopigments across animals. Present in
basal lineages Ctenophora, Placozoa and Cnidaria, opsins have been widely
studied to understand the evolution of eyes and vision [1–5]. In the past 25
years, research into the molecular evolution, expression and function of insect
opsins has revealed extraordinary diversity of insect visual systems owing to
gene duplication and loss, coexpression and spectral tuning of opsins [6–9].
Since von Frisch established that honeybees could see in colour over 100
years ago, the study of insect colour vision has provided fundamental insights
into sensory physiology and animal behaviour [10].

The canonical role of opsins is that of light detection. Animal opsins are a
monophyletic clade of seven transmembrane G-protein-coupled receptors [5].
Visual opsins bind a vitamin A-derived molecule called the chromophore
(11-cis-retinal in vertebrates and 3-hydroxy-11-cis-retinal in the fruit fly Droso-
phila melanogaster) [11] (see box 1 for a glossary of terms). The chromophore
binds to the opsin protein at a conserved lysine residue, forming a functional
rhodopsin visual pigment molecule. Light activates rhodopsin through a chro-
mophore conformational change from 11-cis to all-trans, which initiates the G-
protein-mediated phototransduction cascade, leading to ion exchange and
amplification of light information into a cellular signal [12]. Opsin protein
sequences, opsin coexpression and filtering effects determine the wavelength
of light to which photoreceptor cells respond. Opsins are particularly useful
in the study of genotype–phenotype relationships because their sequence and
expression are directly related to cell physiology and animal behaviour. The
degree of overlap in spectral sensitivities allows animals to discriminate
between wavelengths of light and underlies their colour vision (see also non-
spectral colours [13]).
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Box 1. Glossary of terms.

Bolwig organ name for the larval eye in D. melanogaster

BRh, B opsin blue-absorbing opsin homologue shared by insects

cell differentiation in development, when a cell phenotypically specializes and expresses the functional proteins of its specific adult

cell type, e.g. Rh3-expressing photoreceptor cell

cell specification in development, the point at which a cell is committed to a particular fate, e.g. photoreceptor cell precursor

chromophore vitamin A derived molecule that absorbs photons of light

cilliary opsin (c-opsin) monophyletic clade of opsins historically associated with the outer segment (a modified cilium) of vertebrate

photoreceptor cells, though now known to be found also in invertebrates

Cnidaria animal group including jellyfish, anemones, and corals

Coleoptera insect group including beetles

colour vision the ability to discriminate between light stimuli of differing wavelengths

compound eye the main visual organ of insects, made up of many repeating ommatidia

Ctenophora early-branching animal group including comb jellies

Diptera insect group including flies and mosquitoes

DRA the dorsal-most row(s) of ommatidia in the compound eye, typically expressing more ultraviolet or B opsin,

associated with polarized light detection and navigation

ERG method of recording a sum of photoreceptor sensitivities from a region of the eye extracellularly

eyelet photosensitive visual structure in the brain of adult insects

gene regulatory network a group of genes that interact with each other, affecting downstream gene expression and phenotype

holometabolous insects insects that undergo complete metamorphosis

homologue gene found in multiple groups with a shared common ancestor, can be an orthologue or paralogue

homologue/paralogue

switching

process by which one homologue/paralogue of a gene is swapped for another, achieving a similar function with a

new gene

Hymenoptera insect group including ants, bees and wasps

intracellular recording a method of recording from individual neurons, the best way to measure individual photoreceptor cell physiology

lamina distal-most layer of the insect optic lobe, associated with motion and contrast processing

Lepidoptera insect group including moths and butterflies

LWRh, LW opsin long-wavelength- or green-absorbing opsin homologue in insects

medulla more proximal layer of the insect optic lobe, associated with colour vision processing

microspectrophotometry a method measuring opsin absorbance spectra in the eye

morphogenetic furrow a physical groove of differentiating cells that sweeps in a wave across the developing D. melanogaster eye

non-visual opsins opsins that are not historically associated with vision, outside of rhabdomeric and ciliary opsin clades

non-spectral colour a colour that is perceived by sampling from non-overlapping photoreceptors

ocellus single chambered eye found on the dorsal head of most insects, with circadian and navigation-related functions

Odonata insect group including dragonflies, mayflies and damselflies

ommatidium a single unit of the compound eye containing photoreceptor cells, pigment cells and a focusing apparatus

opsin visual pigment protein

orthologue gene found in multiple animal groups related by inheritance from a single common ancestor, e.g. UVRh

Orthoptera insect group including crickets and grasshoppers

paralogue one of two or more genes in a species related by duplication within a single lineage, such as LWRh1 and LWRh2

Pax6 transcription factor expressed early in development that determines eye tissue in many animals

photoreceptor cell light-sensitive cell typically expressing opsin, typically sensory neural cell

phototaxis an animal’s movement toward or away from light

phototransduction a G-protein-mediated signalling pathway by which light information is transduced into a biochemical signal in

photoreceptor cells

Placozoa early-branching group of small, free living, simple animals

polarized light photons of light that travel in a wave along a single plane
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precursor cell cell that undergoes a limited number of divisions to form daughter cells that differentiate

retrotransposition mechanism of gene duplication by which a transposable element inserts intronless mRNA encoding a gene back

into the genome as DNA

rhabdomere structure formed by photoreceptor cell microvilli through which light is guided and absorbed by expressed opsins

rhabdomeric opsin (r-opsin) monophyletic clade of opsins historically associated with expression in the microvillar rhabdom of invertebrate

photoreceptor cells, though now known to be found also in vertebrates

rhodopsin functional visual pigment complex of opsin protein and vitamin A-derived chromophore

sexual dimorphism distinct phenotype between males and females; can be gene expression, physiology, behaviour or morphology

spectral sensitivity the degree of response of a photoreceptor cell over wavelengths of light

spectral tuning process by which the sensitivity of a photoreceptor cell is shifted to detect new wavelengths of light, either

evolutionarily or via physiological plasticity

stemmata simple larval eyes with a limited number of opsins expressed

tetrachromacy having four independent sensory channels for colour vision

trichromacy having three independent sensory channels for colour vision (similar to normal human vision)

turbinate eye specialized dorsal compound eye enlarged on vertical stalks and unique to mayflies, in addition to the usual

compound eye

UVRh, UV opsin ultraviolet-absorbing opsin homologue shared by insects
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In addition to opsin biochemical function, understanding
the developmental processes leading to when and where
opsins are expressed is important to understanding colour
vision. Linking Pax6 (Eyeless) to eyes in all animals was
first recognized and functionally validated in D. melanogaster,
and the genetic tractability of this organism led to many
advances in how gene regulation is related to a complex
organ like the eye [14]. Studies of photoreceptor cell develop-
ment uniquely connect early development through terminal
differentiation to mature cell and tissue phenotype. New
research has revealed the complexity of the regulatory
networks that specify photoreceptor cell fate and differen-
tiation in D. melanogaster, and the relationship between
these regulatory networks and terminal cell differentiation
is perhaps one of the best understood of any complex trait
in biology. We first review what we have learned in D. mela-
nogaster and examine how this gene regulation has evolved in
other insects. We relate this to how the evolution of colour
vision has proceeded via opsin gene duplication and to
changes in opsin gene expression. While descriptions of
opsin expression patterns have expanded in other insects
over the past 25 years, much work remains to characterize
the developmental genetics behind opsin expression in
other species. To conclude, we suggest future avenues of
research in insect opsins as models for neuroscience, evol-
utionary biology and development.
2. What have we learned about opsin regulation
from Drosophila melanogaster?

(a) Genetic regulation of specification and terminal
differentiation of insect photoreceptor cells

Much of what we know about opsin-expressing photoreceptor
cell development in insects comes from D. melanogaster. Over
the past 25 years, work in D. melanogaster has shown that an
intricate process involving both stochastic and deterministic
mechanisms has led to the retinal mosaic in the compound
eye. Opsin regulation is intertwined with photoreceptor cell
differentiation and has taught us about cell differentiation
more broadly. While many reviews summarize eye develop-
ment (such as early determination by the retinal
determination network) inD. melanogaster,we focus on photo-
receptor cell specification (when the cell becomes committed
to a particular fate) and terminal differentiation (when the
cell matures and expresses markers of its specific adult func-
tion), synthesizing previous information with the most
recent work [15–18].

In D. melanogaster, like other insects, the compound eye is
made up of many repeating unit-eyes called ommatidia. Each
ommatidium is made up of eight photoreceptor cells labelled
R1–R8. The outer R1–6 cells express the opsin Rh1 in every
ommatidium in the retina and are broadband contrast and
motion-sensing cells that project to the lamina, while R7/R8
are the ‘inner’ photoreceptors that project to the medulla,
known to be involved in colour processing (figure 1a). The
opsin-expressing microvilli of these two cells are stacked
along the proximo-distal axis (R7 more distal) in the ommati-
dium, sampling from the same point in space. The typical R7
cell expresses either Rh3 or Rh4 (ultraviolet (UV)) opsin and
induces R8 to express either Rh5 (blue) or Rh6 (long-wave-
length or LW) opsin, respectively [20,21]. The ommatidia
expressing Rh3 in R7 and Rh5 in R8 are known as pale omma-
tidia while ommatidia expressing Rh4 in R7 and Rh6 in R8 are
known asyellowommatidia. The pale andyellow types are sto-
chastically found throughout the retina at a ratio of 35 : 65 in
typical laboratory fly stocks [17,22]. In D. melanogaster, like in
other insects [23], the dorsal-most row of ommatidia is
known as the dorsal rim area (DRA) and expresses only
Rh3 in both R7 and R8 cells. Insect DRA ommatidia are typi-
cally enriched with UV or blue-sensing cells and are involved
in polarized light detection for navigation [24,25]. A special-
ized yellow ommatidial type in D. melanogaster is found only
in the dorsal third of the eye and in addition to Rh4 also
expresses Rh3 in the R7 cell [17] (figure 1a).

In D. melanogaster, photoreceptor cell specification begins
first with the R8 cell. Atonal increases Senseless expression,
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Figure 1. Insect photoreceptor cell arrangements, specification and regulation of differentiation. (a) Top, schematic representation of D. melanogaster ommatidial
types. R1–R6 labels outer photoreceptor cells while R7 and R8 are inner photoreceptor cells involved in colour vision. Distinct ommatidia vary by opsin expression in
inner photoreceptor cells. Right, corresponding maximum sensitivities (λmax) of photoreceptor cells measured in vivo incorporate pigment filtering and other photo-
receptor cell dynamics (from [19]). Bottom, Hymenoptera and Lepidoptera have an additional photoreceptor cell in their ommatidia. The R1/R2 cells in butterflies
and R1/R5 cells in bees are the ‘inner’ photoreceptors and contribute to colour vision, and both are R7-like in the D. melanogaster numbering scheme. The small R9
cell in bees and butterflies is equivalent to the R8 cell in D. melanogaster. The additional photoreceptors have allowed for three main ommatidial types with regard
to UVRh opsin expression in the retinas of bees and butterflies as opposed to two in D. melanogaster. (b) The specification of photoreceptor cells in each omma-
tidium is stereotyped and proceeds via temporal differences in the expression of transcription factors. R8 is specified first, followed by R2/R5, then R3/R4, then
R1/R6, with R7 specified last. Transcription factors known to be important for subtype specification are shown within each cell. (c) Once cells are specified an
interconnected series of transcription factors are expressed to terminally differentiate each photoreceptor cell. These networks are characterized by a series of feed-
forward bistable loops of regulation, mutual inhibition and a combination of stochastic and deterministic choices. Arrows are positive regulatory relationships while
T’s are negative regulatory relationships. Black shows active pathways while grey indicates pathways not activated in each subtype. Otd, Orthodenticle; Dve, Defective
proventriculus; Ey, Eyeless; Pph13, PvuII-PstI homology 13; Sal, Spalt complex; Pros, Prospero; Run, Runt; Ss, Spineless; Tgo, Tango; Melt, Melted; Wts, Warts; Sens,
Senseless; Hpo, Hippo pathway.
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inhibiting Rough, leading to R8 cell fate (figure 1b). The cell-
adhesion protein Hibris is also involved in signalling for
proper R8 specification [26]. R2 and R5 are specified next,
where Rough is highly expressed and represses Senseless
leading to R2 and R5 cell fate. Rough suppresses Seven up
in R2/R5, but Rough is not expressed and Seven up is upre-
gulated in R3/R4 and R1/R6 which are next to be specified.
R3/R4 cell fate requires the Spalt complex [27] while R1/R6
cell fate requires Lozenge which in turn upregulates BarH1 in
R1/R6. Finally R7 is specified last, where the receptor
tyrosine kinase Sevenless is expressed and binds to Boss in
the R8 cell. Epidermal growth factor receptor (EGFR) signal-
ling from R1/R6 activates the Ras pathway which in turn
upregulates Prospero in R7. Notch is also involved in block-
ing differentiation in R7 until Sevenless is upregulated highly
enough to overcome this, in a distinct mechanism from EGFR
signalling in R1–R6 [28] (figure 1b).

Next, photoreceptor cell differentiation involves a com-
plex series of overlapping events that work in concert to
ensure proper and robust opsin expression in each cell. Rh1
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has been shown to be directly activated by Pax6/Eyeless [29].
Defective proventriculus (Dve) is also expressed in R1–R6
and activates Rh1. Differentiating R7 and R8 inner photo-
receptors, both of which mediate colour vision (the former
of which also contributes to motion vision [30]), involves
the precise restriction of specific opsins and activation of
others. Following specification, the Spalt complex is a
marker for inner photoreceptor cell differentiation (R7/R8)
[31] where it blocks Dve and thus Rh1 expression. R7
expresses Prospero, which inhibits Rh5 and Rh6 opsin
expression [32]. R8 expresses Senseless which promotes
expression of these opsins and blocks Rh3/Rh4 expression
[33]. Then, a stochastic choice in each R7 results in Spineless
expression in a subset of cells across the retina as differen-
tiation proceeds [34,35]. Spineless leads to Rh4 expression
and yellow ommatidial fate. Together with Tango, Spineless
induces the R8 cell to express Rh6. In the absence of Spine-
less, Rh3 is expressed in R7 and Rh5 is expressed in R8
(figure 1c).

A variety of interdependent regulatory loops pattern the
retina and dictate opsin expression. A bistable loop of the
mutually inhibiting proteins Melted and Warts ensures
robust expression of opsins in R8 cells. Whereas Melted pro-
motes Rh5 and blocks Warts, Warts promotes Rh6 and blocks
Melted [36]. Another feedforward loop involves Orthodenti-
cle (Otd/Crx). In the absence of Dve, Otd is a permissive
factor that leads to pale ommatidial fate by activating Rh3
and Rh5 expression in R7 and R8 cells. Spalt complex
blocks Dve in pale ommatidia, but Dve expression in
yellow ommatidia represses this permissive Otd, blocking
Rh3 and Rh5 expression. In the dorsal third retina, lower
Dve expression and Iroquois complex expression activate
Rh3 coexpression with Rh4 in dorsal yellow ommatidia
[16,37,38]. Recently, another feedback loop was discovered,
showing that interaction with stereotyped upstream Runt
expression contributes to the stochastic Spineless expression
that determines pale or yellow ommatidial types [39]
(figure 1c). Feedforward, feedback and bistable loops build
redundancy and modularity into this system and have
become hallmarks of robust developmental processes in
other complex traits. The study of these genetic regulatory
programmes has contributed to our modern view of develop-
ment, and further study will continue to yield new insights
that explain how complex traits develop.

The cis regulatory biochemical interactions of some of
these genetic relationships have been elucidated. As men-
tioned above, Pax6/Eyeless binds directly to the Rh1
promoter and activates expression. There is also evidence
that Pax6 is a general activator for all D. melanogaster rhodop-
sins [29,40]. In R8 cells which are competent to express Rh5
throughout their lifetime, expression and functional activity
of Rh6 directly inhibits Rh5 expression [41]. A conserved
11 bp palindromic motif is found in the proximal promoter
of phototransduction genes expressed in all D. melanogaster
photoreceptors but is modified in rhodopsins with restricted
photoreceptor cell expression domains, such as Rh1 found
only in R1–6 cells or Rh5 found only in R8 cells. Differences
in rhodopsin expression are owing to specific base-pair
mutations that break the palindrome, resulting in changes
to this site’s affinity for binding repressors and activators,
PvuII-PstI homology 13 (Pph13), Dve and Otd [42]. Recent
work swapping promoter domains from multiple rhodopsins
has revealed a complex regulatory landscape in addition to
this palindromic sequence that delineates photoreceptor
subset specific expression. Each rhodopsin-specific promoter
landscape evolved by duplication from a simple single pan-
photoreceptor rhodopsin followed by subsequent divergence
for specificity of expression [43]. This highlights the impor-
tance of duplication as a mechanism for generating novel
genetic material (reviewed below), and that by linking devel-
opment and evolutionary biology we can more deeply
understand how visual systems work [43].
3. Genome editing
Advances in CRISPR/Cas9 editing technology have allowed
researchers to validate gene functions and discover genetic
interactions. In terms of insect eye development, in Droso-
phila, CRISPR deletion of an eyeless enhancer site resulted in
a small eye phenotype [44]. This enhancer was not only
important for eyeless expression, but also for Decapentaplegic
expression and proper formation of the morphogenetic
furrow [44]. In terms of photoreceptor cell fate, CRISPR
knockouts revealed the genes and interactions necessary for
compound eye retinal mosaic choices [45]. While eye devel-
opment genes are difficult to knock out owing to their
deleterious effects, opsin and eye colour gene knockouts
have revealed genes important for visually guided behaviour
[46], phototaxis [47] and eye pigmentation [48–51].
4. Opsin regulation in other insects
In other insects, relatively little is known about development
and opsin regulation, despite Hymenoptera and Lepidoptera
being major visual ecology models [52–54]. One key theme to
emerge in the last 25 years is the understanding of homology
between the inner colour photoreceptor cells between D. mela-
nogaster, Lepidoptera, and Hymenoptera. In butterflies and
bees but not beetles, the equivalent of D. melanogaster inner
photoreceptor R7 was independently ‘duplicated’ with two
R7-like cells spanning the length of the ommatidium, while
the R8 cell has been miniaturized and sits at the proximal-
most part of the ommatidium. In Lepidoptera and Hymenop-
tera, this proximal cell is called R9. R1/R2 and R9 project to the
medulla similar to R7/R8 in D. melanogaster, all presumably
contributing to colour vision [55]. The difference is that R1/
R2 (R7-like) in bees and butterflies alter their particular opsin
expression with either blue- or UV-absorbing opsins, unlike
inD. melanogasterwhere R7/R8 do this. The R9 cell (R8 homol-
ogue) so far has only been shown to express long-wavelength
opsin (LWRh) in all ommatidial types althoughmore sampling
is required [18,56]. In most other insects, including crickets,
locusts, dragonflies and beetles, no such cell type diversifica-
tion occurred, and the arrangement of photoreceptors in
ommatidia is similar to D. melanogaster. This suggests the
additional R7-like cell evolved independently in bees and
butterflies (figure 1a, bottom).

Until recently, the molecular logic, which led to three
ommatidial types in the main retina of bees and butterflies
and only two main types in D. melanogaster, was unknown.
As mentioned above, in D. melanogaster, Spineless is
expressed stochastically in a subset of R7 cells and directs
the expression of particular opsins in both R7 and R8 yielding
either pale or yellow ommatidia. In the swallowtail butterfly
Papilio xuthus, Spineless is also expressed stochastically in a
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subset of R1 and R2 cells, both of which are homologous to
the D. melanogaster R7, with ON expression leading to blue
opsin (BRh) expression and OFF yielding ultraviolet opsin
(UVRh) expression [45]. As a result, there are two Spineless
decisions within each ommatidium yielding three combi-
nations of UV/UV UV/blue or blue/blue ommatidial types
[45]. (This pattern is complicated in nymphalid butterflies
with the recent discovery of the coexpression of BRh and
LWRh opsins in a subset of R1/R2 cells in Heliconius, produ-
cing three additional ommatidial classes, and the existence of
R1/R2 photoreceptors with both blue- and LW sensitivities
across a variety of nymphalid species [57,58].) In Heliconius,
which are rare among Lepidoptera and other insects for
duplicating a UV opsin [8], yet more combinations of omma-
tidial types exist where a choice between BRh, UVRh1 or
UVRh2 is made [59]. Counts of ommatidial types in multiple
species within this genus have shown stereotyped percen-
tages for these novel ommatidial types, suggesting there
may be an additional stochastic yet well-controlled step simi-
lar to what we see with Spineless [60]. Other than this, there
is no experimental evidence showing that genetic regulation
in D. melanogaster opsin-expressing cells is conserved in
either Hymenoptera or Lepidoptera.

Although little functional data exist, orthologous genes
known to be involved in D. melanogaster eye development
have been identified in the visual systems of many other
insects and are thought to be involved in similar ways to
D. melanogaster differentiation. Recent work has suggested
at least some transcription factor orthologues (Pax2/5/8,
Optix, Ocelliless and Araucan/Caupolican) involved in
D. melanogaster photoreceptor differentiation are potentially
regulating UV opsin expression in Heliconius butterflies [57].
In Tribolium, Pph13 and Otd are required for proper regu-
lation of both rhabdomeric opsin transcription and
rhabdomere morphogenesis [61]. The Glass gene is also
required for proper photoreceptor cell differentiation and
for Pph13 expression in both D. melanogaster and Tribolium
[62]. Unlike D. melanogaster and Tribolium, in scarabaeid bee-
tles, RNAi-mediated knockdown of Otd induces functional
ectopic eyes [63]. These ectopic eyes are located in the
medial dorsal head, where the ocelli (simple eyes) are
found in other insects, but nearly all beetles have lost their
ocelli [64], so this may be a reactivation of some vestigial
pathway. So far only a handful of insect orders are rep-
resented within the opsin regulation literature, and the next
years should bring functional studies in more diverse taxa.
5. Larval photoreceptors and ocelli
Holometabolous insects have evolved complete metamor-
phosis from ancestral insect lineages that do not have such
an extreme transformation [65]. The larvae of holometabo-
lous insects typically have simple eyes called stemmata
with a limited number of photoreceptors and opsins com-
pared to the adult compound eye. Other insects that do not
exhibit complete metamorphosis have compound eyes in
larval stages, suggesting stemmata are derived evolutionarily
from compound eyes [66]. Although most stemmata are
simple, some lineages have elaborated these structures
considerably, especially among holometabolous larvae [66].
The molecular differences between larval eyes and adult
structures are poorly studied in most insects, obscuring
conclusions about the homology of eyes within arthropods
and across the animal tree of life.

Nearly all functional molecular data come from D. mela-
nogaster. The larval eye, also known as the Bolwig organ, is
made up of 12 photoreceptor cells that express the same
opsins as R8 cells in adults (Rh5, four cells or Rh6, eight
cells) [67]. Primary precursor cells are specified by Atonal
[68], then these cells recruit secondary precursors via EGFR
signalling [67]. The primary precursors differentiate into
Rh5-expressing cells while the secondary precursors express
Rh6. Despite a similarity to the 35 : 65 ratio seen in adult
ommatidia, this process is deterministic and not driven by
stochastic choices [68]. Spalt and Otd are required for Rh5
expression and repression of Seven up while Seven up
blocks Spalt and thus Rh5 in Rh6-expressing cells [67,68].

During metamorphosis, the Rh6-expressing cells of the
Bolwig organ die, and the Rh5 cells switch to Rh6 expression
forming an adult extraretinal photosensitive structure known
as the eyelet, which mediates circadian entrainment [69,70].
Senseless also acts to maintain Rh5 in larval photoreceptor
cells, while it blocks apoptosis during metamorphosis and
promotes Rh6 expression in the adult eyelet [71]. Further-
more, Pph13 (Hazy) is required for Rh5 and Rh6 expression
in the larva but during metamorphosis blocks Senseless
expression in Rh6-expressing cells, leading to apoptosis
[71]. Not much is known about the stemmata of other insects;
however in the adult butterfly, Vanessa cardui, eyelets exist
and express both UVRh and LWRh [72], unlike in D. melano-
gaster where only the UV-absorbing Rh5 is expressed.

The adult forms of winged insects also contain medial
ocelli, single chambered, optical structures on the dorsal
side of the head [73]. These ocelli and compound eyes are
thought to have been split from some ancestral eye prior to
the rise of Arthropoda [74]. Subsequent duplication of
opsins allowed for differential expression and thus separation
of distinct visual tasks [75]. In D. melanogaster, Rh2 is
expressed only in the ocelli, resulting in violet-sensitive
photoreceptor cells [76]. It has recently been shown that
Homothorax (Hth) is expressed in ocelli and represses Rh1
expression while promoting Rh2 in these photoreceptor
cells [77]. Hth appears to cause a fate switch between Rh1
and Rh2 because Rh2 expression can only be induced by ecto-
pic Hth in outer photoreceptor cells of the compound eye,
which normally express Rh1. This observation further sup-
ports that Rh1 and Rh2 are the result of a gene duplication
that allowed for neofunctionalization of light-mediated
tasks [77]. Ocellus-specific duplicates of opsins are common
in most insect orders: specific UV and LW opsins are found
only in ocelli in the cricket Gryllus bimaculatus [78], in mul-
tiple dragonfly species [7], and in bees [79,80] (figure 2).
Together this further supports that opsin gene duplication
has coincided with the evolution of novel sensory structures
and allowed for neofunctionalization of light-mediated tasks.
6. Opsin expression patterns in insect
photoreceptor cells

In contrast with the dearth of genetic regulatory studies of
opsins across insects, studies of opsin expression have
expanded to include multiple insect orders and have contrib-
uted to shifts in thinking about receptor patterning and
function. The number of opsins and their spatial patterns of
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Figure 2. Holistic opsin sequence, expression pattern and visual system function is only known in a few insects. Cartoons of exemplar systems are shown from major
insect orders. (a) Opsin sequences in example dipterans are coloured to match the general wavelength of absorption. Use of the same colour indicates orthologous
sequences. Names are specific to literature in each species. (b) Broad opsin expression patterns in the compound eyes (ce) and ocelli (oc) are shown. Dorsal rim area
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Hymenoptera, the honeybee Apis mellifera is best studied for colour vision behaviour, although other well-studied hymenopteran models (such as bumblebees)
also exist. The honeybee eye is sexually dimorphic with respect to opsin expression. (g) Lepidoptera is one of the best-studied insect groups for colour vision. Molecular,
physiological and behavioural examples exist in moths and butterflies. The Heliconius erato eye is sexually dimorphic and Heliconius is one of the few insect genera where
colour vision has been studied from molecular genetics to behaviour. (h) Beetles have lost the BRh opsin, and the retina is dominated by LWRh and UVRh opsins. (i)
Dragonflies are known to have greatly expanded their opsin repertoires based on transcriptomics but single-cell level expression data remain to be gathered. ( j ) Crickets
and locusts are classic models for studying the DRA owing to its conspicuousness in these species. Single-cell expression and physiology has been worked out but few
colour-specific behavioural studies exist. References: (a–e) [17,19,81,82], ( f ) [83,84], (g) [45,56,57,59,60,85–92], (h) [93], I) [7] and ( j ) [78,94].
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expression in the eye and/or their inferred expression based
on physiological measurements has been reviewed across
insects [6,17,85]. Regions, bands and spots of specialized
ommatidia expressing unique combinations of opsins are
found throughout insects and can be sex-specific [17]
(figure 2). The DRA is found in many insects, and evidence
from D. melanogaster (above) suggests that distinct regulatory
pathways lead to UV or blue opsins expressed in all or a
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subset of photoreceptor cells of the ommatidia in the DRA.
Dorsal/ventral expression and sex-specific regions of special-
ized ommatidia in bees and flies are used for locating prey or
mates in flight. These patterns of opsin expression remain
interesting from both developmental and behavioural per-
spectives and merit further study [17].

One way our understanding of sensory neurons has chan-
ged significantly is the ‘one cell one receptor’ rule, stating that
in sensory cells, a single molecular receptor is expressed to
the exclusion of all other possible receptors in any individual
cell [95]. It was thought until recently that the expression of
two opsins in a single photoreceptor cell would diminish
colour vision capability by the generation of a broadband
receptor. In contrast with this view, multiple insects have
independently evolved opsin coexpression in single photo-
receptor cells (figure 2) and new, though limited, evidence
suggests coexpression contributes to colour vision in some
instances [57,58,96]. In D. melanogaster, the dorsal yellow
ommatidial type expresses both Rh3 and Rh4 in the R7 cell.
The Rh1-expressing outer cells, though not coexpressed
with another opsin, are modified broadband receptors
which participate in colour vision [97]. In butterflies, a variety
of different opsin coexpression patterns is common, with
examples of coexpressing photoreceptor cells found in
nearly all major families. In the lycaenid Lycaena rubidus,
one BRh duplicate is coexpressed with LWRh opsin messen-
ger RNA (mRNA) in the dorsal eye of females only in all
R3-8 (outer) photoreceptor cells [98]. In Pieridae, Colias erate
expresses three distinct opsin mRNAs in a single cell [99].
Papilio xuthus (Papilionidae) has been shown to coexpress
two green-absorbing opsins. Both opsins participate in photo-
transduction, generating a double-peaked green cell [96],
which is used in the butterfly’s tetrachromatic colour vision
system [86]. Recently, a LW+B opsin cell type has been
found in Heliconius butterfly R1/R2 cells, and intracellular
recordings have identified a blue-green broadband cell
across Nymphalidae that could be this coexpressing cell
type [57,58]. In the desert locust Schistocerca gregaria, most
photoreceptor cells in the main retina coexpress blue and
green opsin mRNAs [100]. While not all photoreceptor cells
with opsin coexpression are involved in colour vision, some
probably are. Future work including behavioural assays
should focus on how photoreceptors with opsin coexpression
contribute to colour vision.

(a) A note of caution: opsin messenger RNA does not
always equal opsin protein

Most studies of opsin expression in non-Drosophila insects
examine opsin mRNA expression using transcriptomics
instead of opsin protein expression using immunohistochem-
istry. We, along with other researchers, have found that
quantifiable opsin mRNA expression levels do not always
correspond to opsin protein expression. For instance in the
butterfly Heliconius melpomene, UVRh2 is expressed at low
levels in the eye and brain as assayed using RNA-Seq but
no protein is detected [60,101]. A similar finding of opsin
mRNA expression in the absence of opsin protein expression
has been found in bats and in the swallowtail butterfly Papilio
xuthus [102,103]. These findings suggest more mechanistic
studies of post-transcriptional opsin regulation are needed
to better understand the relationship between opsin genotype
and phenotype.
7. Opsin duplication
Studies of opsins can tell us about general trends and fates of gene
duplicates. Current knowledge indicates that duplications can
occur by a variety of mechanisms even in closely related groups
[104]. Similarly, selection can act on different sites to achieve
almost identical outcomes and selective pressure weakens with
additional duplication events [105,106]. The vast majority of
recent findings in insect opsins have come from surveys of
opsin genes or mRNAs together with phylogenetic studies.
Opsin genes evolve by coding sequence variation, gene dupli-
cation and gene loss. The insect opsin gene family includes four
non-visual opsin and three visual opsin clades, roughly corre-
sponding to mRNAs encoding UV-, blue- and LW-absorbing
photopigments (summarized in figure 3 and considered below).
General trends are that UVRh is duplicated less often than BRh
and LWRh; BRh has been lost in multiple insect orders and
LWRh is most variable with multiple duplications in most insect
orders. Overall UVRh, BRh and LWRh duplicates have resulted
in diversity in insect visual system function including modifi-
cations of sensitivity to light via spectral tuning mutations and
the evolution of sexual dimorphisms of the eye (figures 2 and 3).
(a) Long-wavelength opsins and tandem duplication
In insects, the most duplications and largest diversity in opsins
are that of LWRh, a finding foreshadowed by the first publi-
cation describing butterfly opsins in 1998 [117]. While there
are many hypotheses linking LWRh duplications to ecology,
the significance of LWRh duplications and expansions across
most insects remains unclear because few studies have exam-
ined the behavioural context in which a particular receptor is
used (e.g. [88,118]). Most Hymenoptera have two LWRh
opsins (one ofwhich is expressed in ocelli) [119–121]. A compre-
hensive study in Lepidoptera found that opsin duplications are
more common in diurnal species and that LWRhwas duplicated
more often than other opsins; specifically, LWRh has had
approximately 10 duplication events, while six have occurred
in BRh and three in UVRh [8]. In Diptera, the current LWRh
complement in mosquitoes has been produced by an estimated
18 or 19 duplication events [109,122]. At the genetic level, signa-
tures of gene evolution mechanisms include genes located in
tandem owing to unequal crossing over or a lack of introns by
retrotransposition [123]. In insects, we see LWRh evolution by
both of these mechanisms and probably others that are not as
easy to identify. In the water strider Gerris buenoi and in Ano-
pheles gambiae, four and five LWRh genes, respectively, are
located in tandem [110,122]. Some LWRh paralogues in moths
and Anopheles are intronless and are proposed to have evolved
by retrotransposition [109,111,124]. In mayflies, four LWRh
genes are in genomic clusters that vary in size and have under-
gone rearrangement between species [112]. A limitation in
investigating the molecular mechanisms by which LWRh
genes are undergoing expansions is a lack of high-quality con-
tiguous insect genomes. With chromosome-level genome
assemblies, searches for other signatures of gene evolution via
retrotransposition and other mechanisms become possible.
(b) Blue duplications, expansions and localized
expression in butterflies, bees and Paleoptera

Independent duplications of BRh have been found in butter-
flies. Pieris rapae and Lycaena rubidus have two BRh that
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underlie sexual dimorphism in their compound eyes [98,125].
In Pieris rapae, males have a double peak in blue sensitivity; in
Lycaena rubidus females, BRh is coexpressed with LWRh in R3-
8 cells while in males, BRh has entirely replaced LWRh in the
R3-8 cells in the dorsal region of the compound eye [98,125].
In both of these cases, the sexually dimorphic eye is believed
to be important for male behaviour and possibly for vision in
the blue spectrum. A related pattern of BRh opsin expression
is that of the honeybee Apis mellifera. Honeybee drones have
different ommatidia and photoreceptor morphology in their
dorsal eye region compared to workers [126]; at late pupal
stages, drones express a larger proportion of UVRh and BRh
compared to LWRhmRNAs while worker bees predominantly
express LWRh in their developing compound eye [127].
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Paleoptera (damselflies and dragonflies) has multiple
independent expansions in the number of BRh copies. Dam-
selfly and dragonfly adults are diurnal, brightly coloured,
territorial and possess large eyes. Larvae are aquatic. In 12
species surveyed, all species had 1 to 8 BRh genes [7].
Opsin regional expression in adult eyes, ocelli and larval
eyes varies between species [7]. In Odonata, BRh transcripts
are divided into three subgroups. Interestingly, BRh from
group a are upregulated in larval eyes, BRh from group b
are upregulated in the ventral adult eye, and BRh from
group c (which has the most duplications) are expressed in
the dorsal region of the adult eye [7]. Comparative opsin
studies in mayflies have not been as in-depth. Cloeon dipterum
has two BRh opsin genes which are located in tandem; one
copy is also specific to male turbinate eyes [112]. Variation
in Paleoptera visual systems is speculated to be related to
differences in behaviour, light ecology and microhabitat.

(c) Polarized light detection and paralogue switching in
Orthoptera

Although BRh, to our knowledge, is not duplicated in
Orthoptera, it is probably functioning in polarized light
detection. Insects use polarized light for orientation and navi-
gation (see reviews [128,129]). The specialized DRA found in
many insects often expresses only UVRh to detect polarized
light [23,128,130]. However, in Orthoptera, BRh is expres-
sed in the DRA and hypothesized to be important for
polarized light detection [131,132]. In the cricket, Gryllus
bimaculatus BRh and UVRh are expressed in the DRA while
in the desert locust Schistocerca gregaria, only BRh is expressed
in all photoreceptor cells of the DRA [78,100]. This is an
example of paralogue switching where Orthoptera have
swapped UVRh typically found in most insect DRAs for
the BRh paralogue. Studies thus far have shown that both
UVRh and BRh can be used for polarized light detection.
While LWRh is not typically used in polarized light detec-
tion, butterflies furnish an exception [86,89,133–135].

(d) Ultraviolet opsin duplications
UVRh duplications are rarer among surveyed insects com-
pared to BRh and LWRh duplications. The mayfly Cloeon
dipterum has four copies of UVRh, and one of the UVRh
genes is only expressed in male-specific turbinate eyes [112].
UVRh duplications in the pea aphid (Acyrthosiphon pisum)
and in beetles (order Coleoptera) appear to have evolved to
overcome the loss of BRh [113,136]. A survey of 175 moths
and butterflies found only two independent UV duplications,
in Triodia sylvina (Hepialidae) and Chilo suppressalis (Crambi-
dae), in addition to that of Heliconius, described below [8].
Another lepidopteran with multiple UVRh copies is the
armyworm Mythimna separata. Mythimma separata has three
UVRh genes but only one copy is expressed at a level similar
to other visual opsin genes while the other two copies are
very lowly expressed [137]. In Lepidoptera where opsin
evolution has been extensively studied, the first discovery
of a UVRh duplication was made in the butterfly genus
Heliconius, famous for Müllerian mimicry [90]. In one of the
duplicates, UVRh2, some of the sites evolved under positive
selection within Heliconius compared to UVRh1, and in
other systems, these sites are associated with spectral
tuning [90]. Physiological recordings indicate UVRh1 encodes
a UV receptor, while UVRh2 encodes a violet receptor. Fol-
lowing duplication of UVRh, a remarkable diversity in
opsin expression patterns, including several forms of sexually
dimorphic UV opsin expression, has evolved within the
genus [60]. These opsin expression pattern differences, filter-
ing effects, and spectral tuning correspond to a diversity of
photoreceptor cell sensitivities [57,59,60]. Recent behavioural
experiments show that the two UV opsins are used in UV
colour vision in foraging Heliconius erato females, while
H. erato males, which express only one UV opsin, are colour
blind to the same UV discrimination task [89].
8. The role of opsins in colour vision: physiology
and behaviour

Studies of opsin presence, absence and expression establish
an experimental framework connecting molecular evolution
to expression level changes, photoreceptor sensitivity, and
colour visual behaviour. In Heliconius butterflies, UV opsin
duplication and divergence [90] led to sexually dimorphic
expression differences and photoreceptor cell sensitivities
[59,60], which has resulted in differences in adult colour
visual behaviour in the UV [89]. Transcriptomics and geno-
mics have been used to identify UVRh, BRh and LWRh
genes while electroretinograms, microspectrophotometry
and intracellular recordings have been used to determine
eye and photoreceptor cell spectral sensitivities [85]. How-
ever, in only a limited number of species and orders have
opsins been connected molecularly to sensory neuron pheno-
type, and in even fewer to organismal behaviour (figure 2).

(a) In vitro expression systems to study insect visual
pigment absorption spectra

A major contribution to the field of visual ecology is the
refinement of an in vitro insect opsin-expressing system
which permits the measurement of their absorption spectrum
[9]. Vertebrate ciliary-type opsins are often expressed and
purified in in vitro systems, and this has greatly aided in
understanding the specific contribution of opsin absorbance
to photoreceptor cell physiology, especially when in vivo elec-
trophysiology is a challenge [138,139]. These systems also
allow for targeted mutagenesis experiments to measure the
effect on opsin absorbance of spectral tuning site changes
[140]. Although insect rhabdomeric-opsins are ancestrally
related to vertebrate opsins, in vitro expression systems have
proven challenging [81,141] (but see [87,142]). The new
expression system established by Liénard et al. [9] should
greatly facilitate future research on insect opsin phenotypes.

(b) A need for behavioural studies
Behavioural studies are crucial for addressing the link
between opsin genotype and phenotype yet continue to be
relatively rare. Among hymenopterans, ants are believed to
have UV, LW and possibly B photoreceptors. Yet, behavioural
studies have found them to be dichromatic, where some are
capable of discriminating between UV and green wave-
lengths of light, while others can discriminate UV from
blue, and UV from green, but not between blue and green
[143–145]. In Lepidoptera, behavioural studies have found
that gene duplications and filtering pigments drive shifts in
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butterfly sensitivities allowing them to discriminate in the
UV, blue, green and red [86,88,89,133]. It is clear from avail-
able evidence that there is a direct relationship between
opsin genes and phenotypes, but it is important to remember
that much of what we know about insect opsins is based on
limited sequence data, and that much work remains in order
to build a more complete picture of opsin and eye evolution
in insects.
 .org/journal/rstb
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9. Concluding remarks
Colour visual systems with three–four colour receptor chan-
nels should be sufficient to adequately sample over the
entire visual spectrum in bright daylight. Nonetheless
cycles of opsin duplications occur, leading to increased num-
bers of colour channels in the visual systems of insects. The
number of channels subsequently gets pruned, which
explains the high level of turnover we see among opsins
throughout insect evolution [146]. Insects that make tran-
sitions between light environments, such as fireflies, diving
beetles and some moths, have additional selective constraints
shifting opsin repertoires in predictable ways [8,147,148].
However we still do not fully understand the selective
pressures for particular sensory arrangements and further
physiological and behavioural studies are needed to better
understand the role of selection and drift in the evolution
and diversity of sensory systems. Lepidoptera and Hymenop-
tera are rich with examples of unique visual ecology and
evolutionary transitions such as switches from nocturnal to
diurnal flying, and these transitions change opsin repertoires
[8,149]. With CRISPR/Cas9 genome editing becoming more
accessible in these insect orders, and with refinements of
in vitro opsin expression systems, investigating opsin spectral
tuning, expression and gene regulation in these classical
visual ecology models will be a fruitful avenue for future
research.
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