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A B S T R A C T   

Noise pollution is a growing environmental health concern in rapidly urbanizing sub-Saharan African (SSA) 
cities. However, limited city-wide data constitutes a major barrier to investigating health impacts as well as 
implementing environmental policy in this growing population. As such, in this first of its kind study in West 
Africa, we measured, modelled and predicted environmental noise across the Greater Accra Metropolitan Area 
(GAMA) in Ghana, and evaluated inequalities in exposures by socioeconomic factors. Specifically, we measured 
environmental noise at 146 locations with weekly (n = 136 locations) and yearlong monitoring (n = 10 loca
tions). We combined these data with geospatial and meteorological predictor variables to develop high- 
resolution land use regression (LUR) models to predict annual average noise levels (LAeq24hr, Lden, Lday, 
Lnight). The final LUR models were selected with a forward stepwise procedure and performance was evaluated 
with cross-validation. We spatially joined model predictions with national census data to estimate population 
levels of, and potential socioeconomic inequalities in, noise levels at the census enumeration-area level. Variables 
representing road-traffic and vegetation explained the most variation in noise levels at each site. Predicted day- 
evening-night (Lden) noise levels were highest in the city-center (Accra Metropolis) (median: 64.0 dBA) and near 
major roads (median: 68.5 dBA). In the Accra Metropolis, almost the entire population lived in areas where 
predicted Lden and night-time noise (Lnight) surpassed World Health Organization guidelines for road-traffic noise 
(Lden <53; and Lnight <45). The poorest areas in Accra also had significantly higher median Lden and Lnight 
compared with the wealthiest ones, with a difference of ~5 dBA. The models can support environmental 
epidemiological studies, burden of disease assessments, and policies and interventions that address underlying 
causes of noise exposure inequalities within Accra.   
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1. Introduction 

Noise from anthropogenic activities is pervasive in urban settings 
and can have adverse effects on human health and wellbeing (European 
Environment Agency, 2020; Hammer et al., 2014; Kang, 2017a; World 
Health Organization, 2018). Epidemiolocal studies from cities in Europe 
and North America have shown that exposure to noise from road-, rail- 
and aircraft traffic sources can lead to a range health effects, including 
impacts on annoyance, sleep quality, cardiometabolic diseases, and 
impaired cognitive function (Basner and McGuire, 2018; Guski et al., 
2017; Münzel et al., 2021; Thompson et al., 2022; van Kempen et al., 
2018; Vienneau et al., 2019). Modelling and mapping the spread of 
environmental noise, mostly in high-income cities, has revealed highly 
unequal distributions across and within cities, sometimes patterned by 
socioeconomic gradients (Dale et al., 2015; Dreger et al., 2019; Euro
pean Environment Agency, 2020). Within-city inequalities in noise 
exposure could also create and/or exacerbate existing health 
inequalities. 

Cities in sub-Saharan Africa (SSA), home to some of the world’s 
fastest-growing economies, are undergoing significant expansion and 
economic transformations. Growing SSA cities are now characterized by 
glaring urban transport problems, including traffic congestion, long 
commute times, and traffic related noise pollution (Amegah and 
Agyei-Mensah, 2017; Imoro Musah et al., 2020; Sietchiping et al., 2012). 
Traffic noise coexists with community/neighbor noise, such as loud, 
pervasive music from religious activities and informal/small businesses, 
making noise pollution in SSA cities an emerging health concern (Baloye 
and Palamuleni, 2015; Bediako-Akoto, 2018; Kazeem and Dahir, 2018; 
Wawa and Mulaku, 2015; Zakpala et al., 2014). Though common in 
European, North American, and increasingly in Asian cities (Aguilera 
et al., 2015; Council of the European Union, 2002; European Environ
ment Agency, 2020; Liu et al., 2020; Walker et al., 2017; Wang et al., 
2016; Xie et al., 2011) modelling and mapping of environmental noise to 
reveal levels and spatial variations are severely lacking within the SSA 
context. Thus, hindering local efforts to identify sources of noise, 
investigate health impacts, quantify burdens of disease, and design 
policies and interventions to mitigate noise and reduce inequalities in 
exposures. Furthermore, a major barrier for conducting a global burden 
of disease assessment due to environmental noise is a lack of exposure 
data in low- and middle-income countries, and thus generating estimates 
in these regions can contribute to that global effort. 

Propagation models, which are based on mathematical description of 
emissions and transmissions of sound through the environment, have 
been widely used for modelling noise from road-, rail-, and aircraft- 
traffic sources, particularly in European cities (Garg and Maji, 2014; 
Khan et al., 2018). However, a challenge for implementing propagation 
models in many low and middle-income regions of the world has been 
that national governments or even international corporations do not 
routinely collect much of the data that are needed for the models, such 
as road-traffic counts, vehicle fleet compositions, or building height and 
footprint information with fine enough spatial or temporal granularity 
(Aguilera et al., 2015; Kang, 2017b; Sieber et al., 2017). Alternatively, 
land use regression (LUR) models (Hoek et al., 2008), which are 
commonly used for the estimation of spatial variability in air pollution 
within cities (Hoek et al., 2008), have also increasingly been applied to 
noise in recent years in some high and middle-income country cities 
(Aguilera et al., 2015; Alam et al., 2017; Chang et al., 2019; Drudge 
et al., 2018; Fallah-Shorshani et al., 2018; Harouvi et al., 2018; Liu et al., 
2020; Raess et al., 2021; Ragettli et al., 2016; Walker et al., 2017; Wang 
et al., 2016; Xie et al., 2011). Currently, only one environmental noise 
LUR model has been developed in SSA, for informal settlements in South 
Africa (Sieber et al., 2017). A noise LUR model derives statistical re
lationships between measured noise metrics and predictor variables that 
represent a range of factors in the urban environment that are associated 
with the emission, propagation and attenuation of noise. Geospatial and 
meteorological predictor data (Hoek et al., 2008; Khan et al., 2018) are 

increasingly available globally; such as satellite derived land use mea
sures (Larkin et al., 2017) or locations of road networks and human 
activities from OpenStreetMap (Barrington-Leigh and Millard-Ball, 
2017). In urban SSA settings, where sources of noise are complex, LUR 
modelling is a cost-effective and attractive method for estimating noise, 
given that emissions (e.g., time-resolved traffic flows) and building 
canyon (e.g., building footprints and heights) data needed for 
propagation-based modelling are often not freely available or do not 
exist at all (Sieber et al., 2017). 

To bridge the data and modelling gap of environmental noise in SSA 
cities and provide local data for policy formulation and environmental 
health assessments, we designed a LUR modelling study to predict and 
map spatial variations and inequalities in noise metrics within one of the 
largest and fastest growing metropolises in Africa. The models inte
grated noise data from a 1-year large-scale measurement campaign 
within the Greater Accra Metropolitan Area (GAMA) (Clark et al., 2020; 
Clark et al., 2021) with a suite of city-wide geospatial and meteoro
logical data. The final models were used to predict long-term (annual) 
averages of noise levels representing different periods of the day 
(LAeq24hr, Lden, Lday, Lnight) across the city. We also estimated census 
enumeration area population exposures and socioeconomic inequalities 
in noise levels within the Accra Metropolis (~2 million people), the 
urban core of the GAMA. In a secondary analysis, we built regression 
models to explore whether the intermittency of the sound environment, 
represented by the intermittency ratio metric, was associated with the 
features of the environment and other noise metrics at measurement 
sites. 

2. Material and methods 

2.1. Study location 

Our study was conducted in the GAMA (~5 million people), the most 
densely populated area in Ghana. Accounting for over a fifth of the 
country’s urban population, the region includes Accra Metropolis as its 
core (estimated population in 2010 and 2019: ~1.66 million and ~2 
million) (Ghana Statistical Service, 2019) and the port city of Tema. The 
GAMA is the political, economic, and administrative capital of Ghana, 
and while these sectors drive urban economic growth, vast inequalities 
in income, housing and environmental quality remain (Annim et al., 
2012; Dionisio et al., 2010; Fobil et al., 2010). As the population and 
city-limits have expanded over the years, demand for transportation has 
increased, with private vehicles or privately owned minibuses (known 
locally as trotro) as the main means of getting around (Imoro Musah 
et al., 2020). There is no train or tram services, and formal transit bus 
services are limited. Ride-shares such as Uber and Bolt, and 
motorcycle-taxis (‘Okada’), are more recently being used to complement 
the need for public transport (Acheampong et al., 2020). Noise pollution 
in particular, has been highlighted recently as an environmental health 
concern in local and international media (Bediako-Akoto, 2018; Kaledzi, 
2018; Kazeem and Dahir, 2018; Knott and Gyamfi Asiedu, 2019). 

2.2. Data 

2.2.1. Environmental noise measurement and metrics 
Between April 2019 and June 2020, we deployed sound level meters 

(SLM) near the roadside at 146 locations, comprising of 136 rotating (7- 
day) and 10 fixed (~1-year) measurement sites (Fig. 1). The fixed sites 
represent diverse land use, socioeconomic, and transport features. 
Rotating sites were selected through stratified random sampling based 
on land use features and population data (World Bank, 2014). The 
measurement campaign was briefly interrupted in April–May 2020 
during Accra’s COVID-19 pandemic lockdown and subsequent 
COVID-related stoppages. The noise measurements have been described 
in detail in our previously published protocol paper (Clark et al., 2020). 

We used Noise Sentry SLMs from Convergence Instruments (Québec, 
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Canada) to continuously record A-weighted sound levels (decibels 
(dBA)) which were integrated and logged every minute. The Noise 
Sentry is rugged in design, built to withstand high temperatures, and the 
digital MEMs microphone is protected against water and dust, which is 
necessary for a setting like Accra. We deployed the SLMs in weather 
protective custom designed enclosures which we attached to poles or 
trees near the roadside at ~ 4 m (±1 m) above ground, and at least 2 m 
away from the nearest façade. We undertook quality assurance and 
control (QA/QC) tests of SLM accuracy and precision throughout the 
campaign (Clark et al., 2020; Clark et al., 2021), which showed good 
agreement between the Noise Sentry SLMs and with a higher cost Type 1 
SLM (Cirrus Optimus Red). Further details on the SLMs, data collection 
protocol, and QA/QC practices undertaken throughout the measure
ment campaign are described in the protocol paper (Clark et al., 2020). 
We calculated A-weighted equivalent continuous sound levels (LAeq,T) 
for each site and date of measurement. Energy-based long-term average 
metrics, such as day-evening-night weighted (Lden) and daytime (Lday) 
and night-time (Lnight) noise levels are the mostly commonly used met
rics in epidemiological studies and are robustly associated with a 
number of adverse health outcomes (Basner and McGuire, 2018; Clark 
et al., 2020; Guski et al., 2017; Thompson et al., 2022; van Kamp et al., 
2020; van Kempen et al., 2018). As well, our previous descriptive study, 
which combined audio recordings with a deep learning acoustic classi
fier, found that road-transportation was a prominent sound source 
identified across measurement sites. Road-transportation sounds were 
particularly dominant in the city center (Accra Metropolis), and in 
commercial, business, and industrial areas (Clark et al., 2021). There
fore, throughout the paper and particularly with reference to Accra 
Metropolis, we refer to the measured and modelled data as environ
mental noise exposures, similar to previous noise LUR studies (Aguilera 
et al., 2015; Harouvi et al., 2018; Liu et al., 2020; Raess et al., 2021; 
Ragettli et al., 2016; Sieber et al., 2017; Wang et al., 2016; Xie et al., 

2011). 

2.2.2. Predictor variables 
We collected and collated spatial and temporal predictor variables 

that reflected factors in the urban environment associated with the 
emission, propagation, and attenuation of sound. Details of each pre
dictor variable and its source are included in Table 1. To capture land 
use/land cover, we used a raster dataset at 20 m resolution that mapped 
four land cover classes across the GAMA from Spot 5 imagery attributed 
to the year 2014 (World Bank, 2014). To characterize vegetation, we 
calculated the Normalized Difference Vegetation Index (NDVI) from the 
spectral signatures of green vegetation from 30 m resolution satellite 
imagery. We obtained a Landsat 8 satellite product held on the U.S. 
Geological Survey department website attributed to a cloud free day 
(cloud cover: 0.02%) in January 2020. January was considered as a 
mid-point in the measurement campaign. Other days with Landsat 8 
imagery were unusable for this purpose due to cloud cover over the area. 
However, there was minimal temporal variability of NDVI levels 
throughout the year due to Accra’s location near the equator. To esti
mate building density, we made use of a high-resolution spatial dataset 
of building footprints attributed to the year 2019/2020 from Maxar/
Ecopia (Price and Hallas, 2019), which we transformed into a dataset of 
building centroids (spatial center-point). This transformation was done 
due to the computational intensity of processing building footprints. To 
estimate human population density, we used population information 
from the most recent Ghana national census summarized within census 
enumeration areas (Ghana Statisical Service, 2010). Census enumera
tion areas are small geographic units with average population of 
750–800 people and area 0.03–0.04 km2 within the GAMA. To capture 
road-traffic sources of noise, we used a road-network shapefile from 
OpenStreetMap (OSM) (OpenStreetMap, 2015) downloaded in 2019. 
OpenStreetMap is an open-source editable global database of urban 

Fig. 1. Locations of rotating and fixed measurement sites in the Greater Accra Metropolitan Area (GAMA). The GAMA, Accra Metropolis, and Tema 
boundaries are from the Ghana Statistical Service, road-network and water-body shapefiles are from OpenStreetMap (2019). 
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geographic information which has grown rapidly over the years 
(OpenStreetMap, 2015). Barrington-Leigh et al. estimated that Open
StreetMap had 83% global coverage of roads as of 2016, and 45% 
coverage in Ghana (Barrington-Leigh and Millard-Ball, 2017). Though, 
we expect the road-network completeness in Accra in 2019 to be higher 
than the estimate for Ghana as Accra is a major capital city which would 
likely have higher coverage than other smaller cities/rural towns across 
the country, hence the lower country-wide average. As well, 
Barrington-Leigh et al. analysed data from 2016, and OSM is continually 
updated and improved overtime by users. To capture aircraft noise, we 
obtained the spatial boundaries of the Kotoka International Airport from 
Google Earth. For locations of human activity, we identified the latitude 
and longitude locations of churches, mosques, hospitals, primary and 
secondary schools, restaurants, shopping centers and markets, and 
bars/nightclubs from Google Places in 2019. We also obtained locations 
of bus stations/terminals from Google Places as an indicator of both 
human activity and road-transport sources. Finally, we retrieved data on 
elevation above sea level from a digital elevation model (DEM) for Af
rica at 90 m resolution (Verdin, 2017) and data on waterways from OSM 
(2019). 

Variations in atmospheric conditions can affect acoustic wave 
propagation (i.e., atmospheric absorption) (Ghinet et al., 2019; Kang, 
2017a; Truax, 1999), be sources of sound (e.g., rainfall), or influence 
human behaviors/activities that result in sound generation (Böcker 
et al., 2013). Thus, we collected time-resolved data on temperature 
(Celsius degree), wind speed (m/s), and relative humidity (%) at six of 
the fixed (~yearlong) measurement sites throughout the campaign with 
small weather meters (Kestrel 5500, Nelsen-Kellerman, Pennsylvania, 
USA). We also retrieved daily rainfall (mm) data from the Ghana 
Meteorological Agency (GMA). 

2.2.3. Predictor data pre-processing 
We created multiple buffers around the measurement sites which 

were based on the noise LUR literature (Aguilera et al., 2015; Ragettli 
et al., 2016): 50 m, 100 m, 200 m, and 500 m. We then mapped the 
spatial predictor variables to each buffer, centred by the coordinate 
location of the measurement site, through spatial overlay. We then 
clipped the spatial predictors so that only the features of the spatial 
predictors overlapping with each buffer remained. We calculated zonal 
statistics (e.g., average, sum, area) within each buffer, depending on the 
spatial predictor variable type (details in Table 1). Additionally, for 
distance variables we calculated the Euclidean distance from each 
monitoring site to the nearest major and secondary road and to the 
airport location and applied a square root transformation to capture 
potential non-linear relationships. 

2.3. Model building and evaluation 

We took a land use regression (LUR) approach to model and predict 
long-term average noise levels within the GAMA. Specifically, we con
structed models for LAeq1hr and fit separate models for the day and night 
hours. In accordance with the Ghana Standards Authority, we defined 
the day-time as 6:00am–9:59pm (night-time: 10:00 pm - 5:59am) 
(Ghana Standards Authority, 2018). We assessed the linearity of the 
relationships between noise levels and the (continuous) predictor vari
ables with bivariate scatter plots. We also initially built models which 
assumed (i) linear and (ii) non-linear associations (e.g., splines) between 
predictor and dependent variables and found that the predictive error 
between models was similar (Supplementary Information, Table S1). 
Therefore, we opted for the simpler modelling approach, which assumed 
linear relationships, and provided the added benefit of enhanced model 
interpretability. We additionally incorporated random intercepts for 
hour of the day to account for diurnal correlation of measured sound 
levels as well as random intercepts for site locations to account for any 
site-specific unmeasured variations. 

Our model selection process was aimed at identifying parsimonious 

Table 1 
Candidate predictor variables for LUR model selection.  

Variable type Categories Spatial 
calculation 

Source (Date) 

Road-network 
(Spatial line) 

Major roads; 
secondary/ 
tertiary roads; 
minor roads; all 
roads 

Total length 
within buffer 
(meters); 
Euclidean 
distance and 
square root 
distance to 
nearest (meters) 

OpenStreetMap 
(2019)  
Barrington-Leigh and 
Millard-Ball (2017) 

Airport (Spatial 
polygon) a 

– Euclidean 
distance and 
square root 
distance to 
nearest (meters) 

Google Earth (2019) 

Land cover 
(raster) 

Industrial, 
business, 
commercial 
areas; informal 
high-density 
residential; 
formal 
residential; 
‘other’ areas (e. 
g., forest, water, 
grassland, bare 
soil) 

Area (meters2) 
within buffer 

World Bank (2014) 
20 m × 20 m 

Locations of 
human activity 
(Spatial point) 

Schools, 
hospitals, bus 
stations/ 
terminals, 
restaurants, bars 
and nightclubs, 
churches, 
mosques, 
shopping centers 

Presence/ 
absence within 
buffer; count 
within buffer 

Google Places (2019) 

Normalized 
Difference 
Vegetation 
Index (raster) 

– Average value 
within buffer 
(range: 0–1; 
water (negative 
values) was 
omitted) 

United States 
Geological Survey – 
Landsat 8 imagery 
− 30 m × 30 m U.S 
Geological Survey (n. 
d.) 

Human 
population 
density within 
enumeration 
areas (Spatial 
polygon) 

– Average value 
within buffer 
(pop/km2) 

Ghana Statisical 
Service (2010) 

Centroid of each 
building 
(Spatial point) 

– Count within 
buffer 

Price and Hallas 
(2019) 

Rivers/ 
waterways 
(Spatial line) 

– Total length 
within buffer 
(meters) 

OpenStreetMap 
(2019) 

Elevation above 
sea level 
(raster) 
(meters)  

– U.S Geological Survey 
DEM (2017) (~90 m)  
Verdin (2017) 

Height of 
monitor off of 
the ground 
(meter) 

– – Measurement 
campaign Clark et al. 
(2020) 

Table includes all candidate predictor variables considered for the model se
lection process. The final models include a subset of these predictors which 
survived the model selection process. 

a Aircraft traffic at Kotoka airport (~1.8 million passengers a year) (Ghana 
Airports, 2017) is a fraction of what it is at other large airports in major cities 
such as Heathrow in London (~80 million passengers/year) (Heathrow Airport, 
2018) or Schiphol in Amsterdam (~71 million passengers/year) (Heathrow 
Airport, 2018). 
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and generalizable models that also maximized predictive accuracy. We 
employed a two-step approach where we first chose the buffer radii for 
each predictor variable that had the highest correlation with the noise 
levels in each model. Consistent with other LUR modelling studies, we 
also considered the direction of the association with our a priori as
sumptions (Aguilera et al., 2015; Fallah-Shorshani et al., 2018; Lee et al., 
2017; Ragettli et al., 2016; Sieber et al., 2017). Second, we used a 
stepwise forward model selection process to identify models with a 
reduced set of spatial predictor variables (Aguilera et al., 2015; Raess 
et al., 2021; Sieber et al., 2017). We began by inserting predictors which 
had the strongest bivariate associations with the noise levels (identified 
from the first step) and the process was stopped when the coefficient of 
determination (R2) was no longer improved by at least 1% (Aguilera 
et al., 2015; Chang et al., 2019). We considered removing predictor 
variables if their 95% confidence interval around the slope coefficients 
crossed zero; specifically, if the magnitude of the coefficient and the 
width of the confidence interval were large, we considered the estimate 
to be unstable and dropped the variable from the final model. The final 
models were then challenged by adding all excluded variables with their 
best buffer size (i.e., one buffer size per variable type) back into the 
models one by one to check if an improved model could be found. We 
also assessed whether there was collinearity present among predictor 
variables (r > 0.8), and if found, the predictor variable that was more 
correlated with the noise metric was retained in the model. 

We evaluated the fit and external predictions of the final models with 
cross validation. We ran 10-fold cross-validation holding out data from 
10% of random measurement sites (CV10%sites) and leave one site out 
cross validation (LOOCV). From the cross-validations, we calculated the 
median absolute errors, mean absolute errors, the mean errors, and the 
correlation of predicted and observed values (r and r2). Furthermore, we 
evaluated whether model assumptions were upheld using diagnostic 
plots to see whether the residuals were normally distributed and had 
random and constant variance. We also checked for any temporal and 
spatial patterns in the residuals. We checked spatial patterns by visu
alizing the residuals in variogram plots and calculated the Moran’s I 
statistic of spatial autocorrelation. Finally, we evaluated potential 
multicollinearity in the final models as a whole using variance inflation 
factors (VIF). 

2.3.1. Sensitivity analyses 
Since the primary aim of this analysis was to predict annual average 

noise levels across the GAMA, we could not use the weather data for 
spatial prediction as we only collected it at six sites in the city. However, 
we conducted sensitivity analyses to estimate the associations of noise 
levels with time-resolved weather conditions, specifically wind speed, 
temperature, relative humidity, and rainfall, and to investigate whether 
their inclusion in the main spatial models improved predictive accuracy. 
We additionally modelled the final predictor variable sets with Random 
Forest models as a sensitivity analysis for the choice of model infra
structure. Random Forest models have been shown previously to 
improve predictive accuracy over linear regression in a noise LUR study 
conducted in Canadian cities (Liu et al., 2020). 

2.4. Predicted noise level surfaces 

We made predictions of annual average noise levels for each hour of 
the day for an ~50 m × 50 m surface of unmeasured locations in the 
GAMA. Predictions of LAeq1hr were made onto 24 surfaces, each rep
resenting an hour of the day. From the 24, hourly surfaces, the LAeq24hr 
(the 24-h equivalent continuous sound level), Lden (day-evening-night 
sound level, a descriptor which penalizes 10 dBA for night-time and 5 
dBA for evening noise), Lday (day-time sound level), and Lnight (night- 
time sound level) metrics were logarithmically calculated. Lday was 
calculated with respect to day-time hours between 6:00–21:59 and Lnight 
between 22:00–5:59. Lden was calculated with respect to day-time hours 
between 6:00–18:59, evening between 19:00–21:59, and night-time 

between 22:00–5:59. We restricted predictions to areas which repre
sented the measurement sites so that we did not predict out of sample. 
Thus, we excluded areas that were covered by waterbodies, and/or areas 
that were fully grassland/forest (i.e., did not contain any roads). 

2.5. Population exposure to noise levels in Accra Metropolis 

We estimated the percentage of the population exposed to different 
levels of noise in Accra Metropolis. We first spatially overlayed the 
predicted noise level surfaces onto a map of enumeration areas from the 
2010 census in Accra Metropolis (Fig. S1). Enumeration areas reflect the 
location of residence at the time of the census and the smallest spatial 
administrative unit in Ghana. We then calculated average noise levels 
within each enumeration area and estimated the number of people 
exposed to varying noise levels of 5 dBA increments (e.g., 50–54 dBA, 
55–59 dBA, etc.) based on the population distribution in 2010. 

2.6. Socioeconomic inequalities of enumeration area noise levels in Accra 
Metropolis 

We investigated whether noise levels in Accra Metropolis were 
associated with measures of enumeration area socioeconomic status 
(SES). Measures of consumption levels ($) (Deaton, 1992; Deaton and 
Zaidi, 2002) and inequalities in consumption may be a cause of, and/or a 
result of, physical and social environments, opportunities, access, se
curity, and empowerment within households and communities. Impor
tantly, consumption is a reflection of what people can afford and can 
access. Thus, our main measure of area-level SES was median log 
equivalized household consumption (Ghanaian Cedi (GH₵)) within 
each enumeration area. Household consumption was first derived from 
total annual real household expenditures and rent captured within the 
2012–2013 Ghana Living Standards Survey (GLSS) (93% response rate) 
(Expenditures: food, beverages and alcohol, tobacco, clothing and 
footwear, housing, electricity, water, gas and other fuels, furnishings, 
equipment, routine maintenance, health, transport, communications, 
recreation and culture, education, hotels, cafes and restaurants, and 
miscellaneous goods and services). To then estimate median household 
consumption within all enumeration areas, we combined the GLSS with 
the 100% sample of the most recent census (2010) in small area esti
mation models (Corral et al., 2020; Elbers et al., 2003) which derived 
relationships between consumption, area and other factors such as asset 
ownership, education, employment, housing quality, and 
socio-demographics. It is worth noting that the datasets used to predict 
SES (i.e., consumption) and noise levels are independent. As secondary 
SES measures, we used census data on the number of individuals within 
each enumeration area with post-secondary education (education 
measure) and the number of unemployed individuals (unemployment 
measure). These measures are aggregates of household level SES, indi
vidual education and unemployment, summarized at the enumeration 
area-level, and represent proxies for area-level SES measures. 

We estimated Pearson correlations between enumeration area SES 
measures with noise levels and summarized noise distributions across 
quintiles of the SES measures (5 groups, 20% of enumeration areas in 
each group). We further investigated whether differences between 
groups were statistically significant using difference-in-means tests with 
a p-value cut-off of <0.05. 

2.7. Predictors of urban sound intermittency 

There is emerging evidence that the degree of noise intermittency, 
characterized by the intermittency ratio metric, can be independently 
associated with some adverse health outcomes, or can act as an effect 
modifier of the relationship between noise levels and health outcomes 
(Brink et al., 2019b, Brink et al., 2019a; Eze et al., 2017; Foraster et al., 
2017; Thiesse et al., 2020; Vienneau et al., 2022). Therefore, we con
ducted a secondary analysis and examined intermittency ratio metrics at 
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each measurement site. The intermittency ratio is defined as the per
centage of sound energy in the total energetic dose that is created from 
distinct sound events that exceed a threshold (Wunderli et al., 2016). 
Following the calculation procedure in Wunderli et al. (2016) (Equation 
in S1), we used a threshold of +3 dBA above the LAeq,T for the time 
period to calculate intermittency ratios for the day (IRday; 
6:00am–9:59pm) and night-time (IRnight; 10:00pm–5:59am) periods for 
each site. We then followed the same model building process as 
described in Section 2.3 to identify the potential environmental factors 
associated with the degree of day and night-time intermittency ratios at 
the measurement sites. For these models, day and night-time noise levels 
(Lday, and Lnight) were additionally incorporated into the modelling 
process as predictors, and we post-hoc evaluated whether land use 
classifications assigned to each measurement site by the field team (see 
(Clark et al., 2021) for details) modified the associations of the predictor 
variables in the final models through interaction terms. 

Analyses were conducted in R (R version 3.6.3) and some data vi
sualizations using ArcMap ® software by Esri (Version 10.8). 

3. Results 

3.1. Noise level LUR model performance and predictor variable 
associations 

The final models included between five and six spatial variables 

(Table 2). LAeq1hr was positively associated with road-traffic predictors 
(i.e., length of major roads, length of secondary/tertiary roads) and the 
presence of restaurants, and negatively associated with variables rep
resenting vegetation (NDVI) and formal low/medium residential land 
use. The variables which explained the most semi-partial variance in the 
fixed effect component of the LAeq1hr models were NDVI and length of 
major roads. 

The median absolute errors (MAEs) of the final LAeq1hr models 
ranged from 2.9 to 3.4 dBA with CV10%sites and the correlation of pre
dicted and observed values (r) ranged from 0.72 to 0.74 (r2: 0.51 to 
0.54). The mean error (ME), a measure of bias, was close to zero, indi
cating no systematic under or over prediction (Table 3). Results from 
LOOCV were very similar. We did not find evidence that model as
sumptions were violated, and model residuals were randomly distrib
uted. Furthermore, Moran’s I for the residuals indicated a tendency 
towards spatial randomness (Range of model’s Moran’s I values: − 0.06 
to 0.05). Variance Inflation Factors in the final models were low, be
tween 1.0 and 2.0, indicating very low or no correlation among the 
variables in the final models that could inflate the coefficients. As a 
sensitivity analysis, we used Random Forest models to generate pre
dictions using the final predictor variable sets and found no improve
ment in MAE (Table S2). As an additional sensitivity analysis, we 
included time-resolved weather variables into the final spatial models 
and found significant associations between weather variables and 
LAeq1hr, but no improvement in the overall model predictive accuracy 
(Table S3). 

3.2. Spatial patterns of noise levels in the greater Accra Metropolitan area 

Spatial patterns of day and night-time noise levels in the GAMA were 
nearly the same, though day-time noise levels were higher by approxi
mately 7–8 dBA (Fig. S2). Accra Metropolis, the most populated and 
urbanized area of the GAMA, had some of the highest predicted Lden 
(median: 64 dBA), as well as the port city of Tema in the east of GAMA 
(median: 62 dBA) (Fig. 2). Predicted Lden was highest near major roads 
(median: 69 dBA), followed by secondary/tertiary roads (median: 63 
dBA), and then near minor roads (median: 60 dBA) (Table 4). The peri- 
urban periphery in the north and west of the GAMA had the lowest levels 
of Lden (median: 58 dBA) and Lnight (median: 50 dBA) (Fig. 2). 

3.3. Population exposures to noise in Accra Metropolis 

Almost the entire population in the Accra Metropolis lived in 
enumeration areas where the average Lden and Lnight exceeded the WHOs 
(European) guidelines for road-traffic noise (Lden: 53 dBA; Lnight: 45 dBA) 
(World Health Organization, 2018) (Fig. 3) and furthermore exceeded 
55 dBA Lden and 50 dBA Lnight. The majority of the population in the 
Accra Metropolis lived in enumeration areas with average Lden of 60 to 
64 dBA (31%, 515,873 people) or 65 to 69 dBA (53%, 876,098 people) 
and average Lnight of 55 to 59 dBA (54%, 888,181 people) (Table S5, 
Fig. S3). With a recent projection of around 2 million people in Accra 
Metropolis in 2019, we expect the current numbers of people exposed to 
be higher than our estimates which are based on the 2010 census. 

Table 2 
Mean associations of noise levels with spatial predictor variables in the final LUR 
modelsa.  

Model Predictor 
variables 

Predictor 
variable unit 

Buffer 
size (m) 

Coefficient [95% 
confidence 
interval] 

LAeq1hr for all day-time hours (dBA)  
Intercept – – 65.2 [64.2, 66.3]  
Total length of 
major roads 

Standardizedb 

(meters) 
100 2.5 [1.2, 3.7]  

Total length of 
secondary/ 
tertiary roads 

Standardized 
(meters) 

200 1.8 [0.9, 2.8]  

Formal low/ 
medium 
residential area 

Standardized 
(meters2) 

200 − 0.8 [-1.5, − 0.1]  

Normalized 
difference 
vegetation index 

Standardized 
(value) 

50 − 2.8 [-3.7, − 2.0]  

Number of 
restaurants 

Count 100 1.4 [0.5, 2.4]  

Population 
density 

Standardized 
(people/km2) 

500 0.8 [-0.4, 2.0] 

LAeq1hr for all night-time hours (dBA)  
Intercept – – 57.2 [55.2, 59.2]  
Total length of 
major roads 

Standardized 
(meters) 

100 3.0 [1.7, 4.4]  

Total length of 
secondary/ 
tertiary roads 

Standardized 
(meters) 

200 2.2 [1.2, 3.3]  

Formal low/ 
medium 
residential area 

Standardized 
(meters2) 

200 − 1.3 [-1.9, − 0.5]  

Normalized 
difference 
vegetation index 

Standardized 
(value) 

50 − 2.2 [-2.9, − 1.5]  

Number of 
restaurants 

Count 100 1.8 [0.8, 2.9]  

a Models incorporated random effects for site and hour of the day. Mean as
sociations of spatial predictor variables were adjusted for monitor height in the 
model. The coefficients of predictor variables in the main models had the same 
direction in bivariate models (Table S4). 

b Continuous variables were standardized by subtracting the data mean and 
dividing by the data standard deviation. A 1-point change in a standardized 
variable corresponds to a 1 standard deviation increase on the original scale. 

Table 3 
Final noise level LUR model prediction accuracy from 10-fold 10% random site 
hold-out cross validation (CV10%sites).  

Model r r2 Median 
absolute error 

Mean 
absolute 
error 

Mean 
error 

LAeq1hr for all day- 
time hours (dBA) 

0.74 0.54 2.92 dBA 3.60 dBA − 0.34 
dBA 

LAeq1hr for all 
night-time hours 
(dBA) 

0.72 0.51 3.38 dBA 4.01 dBA − 0.41 
dBA 

r2 approximates R2. 
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3.4. Area-level socioeconomic inequalities of noise in Accra Metropolis 

We observed an inverse relationship between enumeration area 
noise levels and our primary metric of SES (consumption) in Accra 
Metropolis. The poorest enumeration areas (bottom 20% of SES distri
bution) had statistically significant (p < 0.01) higher Lden (median: 69 
dBA) compared with the wealthiest enumeration areas in the top 20% 
(median: 64 dBA) with a stepwise gradient for enumeration areas in 
between (Fig. 4). The same trend held for night-time noise levels. 
Though, even within a SES quintile, there was considerable variation in 

Fig. 2. Predicted noise levels in the Greater Accra Metropolitan Area. Predictions were made for a fixed height of 4 m off the ground onto an ~50 m × 50 m grid 
of the city and calculated from the 24 surfaces of long-term hourly averages. Grey areas on the map represent areas excluded from prediction as they are out of sample 
(e.g., water bodies, forest/grassland). Legend: LAeq24hr (dBA): 24-h equivalent continuous A-weighted noise level; Lden (dBA): Day-evening-night equivalent 
continuous A-weighted noise level. Lden was calculated with respect to day-time: 6am-6pm (13 h); evening: 7pm–9pm (3 h); night-time: 10pm-5am (8 h); Lday (dBA): 
Day-time equivalent continuous A-weighted noise level (6am-9:59 pm); Lnight (dBA): Night-time equivalent continuous A-weighted noise level (10:00pm-5:59 am). 

Table 4 
Predicted noise levels in the Greater Accra Metropolitan Area (GAMA), Accra 
Metropolis, and stratified by road-networks.   

LAeq24hr 

(dBA) 
Lden (dBA) Lday (dBA) Lnight (dBA) 

GAMA 57.0 (54.8, 
59.3) 

60.2 (58.2, 
62.4) 

58.5 (56.1, 
60.7) 

51.2 (49.6, 
53.3) 

Roadsa     

Major roads 65.1 (61.8, 
68.4) 

68.5 (65.2, 
71.8) 

66.4 (63.0, 
69.8) 

59.9 (56.6, 
63.4) 

Secondary/ 
tertiary roads 

60.3 (57.5, 
63.3) 

63.4 (60.9, 
66.4) 

61.7 (58.8, 
64.7) 

54.3 (52.3, 
57.2) 

Minor roads 57.2 (55.1, 
59.4) 

60.3 (58.4, 
62.4) 

58.5 (56.3, 
60.8) 

51.3 (49.7, 
53.2) 

Accra Metropolis 61.2 (58.0, 
64.2) 

64.1 (61.1, 
67.0) 

62.7 (59.4, 
65.6) 

54.4 (51.8, 
57.4) 

Data summarized as median and interquartile ranges (IQR). 
a 100 m buffers were created around each road type and average noise levels 

were calculated amongst all the points within the 100 m buffers corresponding 
to each road-type. 

Fig. 3. Cumulative densities of the proportion of the Accra Metropolis 
population living in enumeration areas (EA) with varying noise levels. The 
solid grey vertical line and the dashed black vertical line shows the Lden and 
Lnight limits for road-traffic noise based on WHO guidelines for the European 
region, respectively (World Health Organization, 2018). 
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noise levels. 
An inverse, but slightly weaker, relationship was found for noise 

levels and the number of individuals with post-secondary education 
within enumeration areas (Table 5). The enumeration areas in the 
lowest quintile of this distribution had a median Lden of 69 dBA 
compared with the wealthiest enumeration areas at 65 dBA. The 
weakest relationship was found for the number of unemployed in
dividuals in enumeration areas (Table 5). 

3.5. Predictors of intermittency ratios 

Intermittency ratios for both the day and night-time hours were 
negatively associated with predictor variables representing roads with 
large and constant traffic flows, such as the length of major and sec
ondary/tertiary roads within buffers around measurement sites 
(Table S6). However, the intermittency ratio for the day-time hours was 
positively associated with the length of minor roads within buffers, 
likely capturing sparse and intermittent sounds of road-traffic on these 
types of roads (Table S6). NDVI was positively associated with the 
intermittency ratio in the day-time hours, possibly due to the low 
background sound levels in areas with higher vegetation, and thus the 
ability of day-time intermittent sound events to emerge from 

background. In both the day and night-time models, noise levels (Lday 
and Lnight) were significantly positively associated with intermittency 
ratios, and the magnitudes of the associations were modified by land use 
classifications at each measurement site (Table S6). 

4. Discussion 

Environmental noise has been increasingly recognized as an envi
ronmental exposure of public health importancein growing SSA cities. 
However, there is scarce city-level data on environmental noise expo
sure to aid local policy and decision making or investigate and quantify 
health effects. Our study is the first of its kind in SSA to model, map, and 
investigate city-wide socioeconomic inequalities of predicted environ
mental noise exposures within a major African metropolis. We found 
that nearly all areas in the GAMA had Lden and Lnight levels which 
exceeded international guidelines. The highest levels were in the city 
center and near major roads. Noise levels were not equally spread across 
neighborhoods as we found evidence that lower SES neighborhoods 
generally had higher levels compared with their wealthier counterparts. 

Noise levels in Accra were positively associated with traffic-related 
variables, particularly major roads (highways, motorways), similar to 
previous LUR studies in North America (Fallah-Shorshani et al., 2018; 
Liu et al., 2020; Ragettli et al., 2016; Walker et al., 2017), Europe 
(Aguilera et al., 2015; Alam et al., 2017), Asia and the Middle East 
(Chang et al., 2019; Harouvi et al., 2018; Wang et al., 2016), and South 
Africa (Sieber et al., 2017). Multi-lane and higher-speed roads can 
facilitate higher traffic volumes, and attract a fleet composition with a 
higher percentage of heavy vehicles that can produce higher noise levels 
in these areas (Curran et al., 2013). The mechanisms by which motor 
vehicles generate noise is multi-faceted (Kang, 2017a) and include en
gine sounds, tire contact with the road and driver behavior such as 
honking (Vijay et al., 2015). Thus, interventions to reduce road-traffic 
noise can take on many forms, including vehicle emissions reduction 
(e.g., modifications to engines and tire materials), land use planning and 
transport management (e.g., separation between roads and buildings), 
the modification or creation of structures such as noise barriers or green 
vegetation (Curran et al., 2013; Kang, 2017a), and behavioral change 

Fig. 4. Distribution of enumeration area (EA) Lden and Lnight across quintiles (20% increments) of EA socioeconomic status (SES) in Accra Metropolis. SES: 
EA median log equivalized household consumption. The upper and lower limits of the black box represent the interquartile range of the distribution and the hor
izontal line within the box represents the median. Each colored point represents an EA average noise level (dBA). 

Table 5 
Correlation between enumeration area (EA) Lden and Lnight and EA socio
economic status metrics. Table shows Pearson correlation coefficients and 
95% confidence intervals around correlation estimates.   

Median log equivalized 
household 
consumption 

Number of individuals 
with post-secondary 
educationa 

Number of 
unemployed 
individualsa 

Lden − 0.45 [-0.49, − 0.41] − 0.34 [-0.38, − 0.30] − 0.21 [-0.25, 
− 0.17] 

Lnight − 0.39 [-0.43, − 0.36] − 0.29 [-0.33, − 0.25] − 0.18 [-0.23, 
− 0.14]  

a The relationship was the same between the number and the percentage of 
individuals with post-secondary education or who were unemployed within 
each enumeration area. 

S.N. Clark et al.                                                                                                                                                                                                                                 



Environmental Research 214 (2022) 113932

9

interventions (e.g., ban on horns/honking) (Ali and Tamura, 2003; 
Gettleman, 2020; Vijay et al., 2015). In Accra, it was estimated that 20% 
of roads are still unpaved, particularly in the poorer neighborhoods 
(ASIRT, 2014); thus modifying pavement material (Curran et al., 2013; 
Donavan, 2005) could potentially reduce some road-transport noise, 
particularly on higher-speed roads (Eurocities, 2015). As well, given the 
dominance of transport by private vehicles, the local government in 
Accra could consider changes to urban design, placement of key ser
vices, safety measures and public messaging that inspire modal shifts 
towards cycling and walking and mass transit, as a mechanism to reduce 
road-traffic noise in the city. These interventions also have added ben
efits related to reductions in vehicular air pollution and greenhouse gas 
emissions and an increase in physical activity through active transport 
(Giles-Corti et al., 2010; Nieuwenhuijsen, 2021). Recent measures to 
curb vehicular air pollution emissions in Ghana, such as the regulation 
and taxes imposed on the import of old (and often noisy) vehicles into 
the country, may have an indirect impact on road-transport related 
noise. 

Noise levels were generally higher in the city-core (Accra Metropolis) 
and in industrial (Tema Metropolis) areas (Drudge et al., 2018; Harouvi 
et al., 2018; Ragettli et al., 2016; Sieber et al., 2017) compared with 
outlying peri-urban and formal residential areas, where vegetation, 
which is a natural noise attenuator (Halim et al., 2015), was more 
abundant. Previous research on SSA cities suggests that outdoor noise 
sources in these settings extend beyond road, rail, and aircraft trans
portation and can include outdoor religious activities, social even
ts/gatherings, formal and informal commercial activities, and large and 
small-scale industrial activities (Olayinka, 2012; Samagwa et al., 2010; 
Zakpala et al., 2014). Additionally, the number of restaurants in an area, 
which may serve as a proxy for general ‘neighborhood’ sources of noise 
and commercial activities in our models, was positively associated with 
noise levels. Previous research from South Africa found that Lden levels 
were significantly positively associated with high neighborhood noise 
annoyance (Sieber et al., 2018). It is also common for restaurants in 
residential and commercial areas of Accra to play music from loud
speakers, and many restaurants in the city are ‘open-air’ concept, 
providing nearby residents with little protection from exposure to sound 
generated by the restaurants. Previous research from Tanzania studied 
noise at restaurants and found elevated levels both indoors and outdoors 
(Samagwa et al., 2010), in part due to music being played. The 
perception of different types of city sounds can vary widely between 
countries and are intricately linked to social, cultural, and contextual 
factors related to the time and place in which the sound is perceived, as 
well as personal preferences and demographics (Deng et al., 2020; Kang, 
2010, 2017c). Beyond a few small studies in SSA related to religious 
noise making (often accompanied by loud music) (Armah et al., 2010; 
Zakpala et al., 2014), and music from commercial shops (Ebare et al., 
2011), there is scarce research exploring whether elevated human 
speech and outdoor music sounds, generated within a restaurant envi
ronment, would be considered unwanted noise or just ‘sounds of city 
life’ by the local population in Accra. Therefore, future soundscape 
research studies conducted within this understudied environment would 
shed light on local perceptions of different types of sounds, and situa
tions and circumstances which impact perception. 

Almost all areas within 100 m of major and secondary/tertiary roads 
and within the Accra Metropolis (main city center), where road-traffic 
noise sources are highly prevalent (Clark et al., 2021), had predicted 
noise levels which exceeded the World Health Organization (WHO) 
guidelines for road traffic noise (Lden (53 dB), Lnight (45 dB)) (World 
Health Organization, 2018). Chronic exposure to road-traffic noise 
beyond these guideline thresholds is associated with adverse health ef
fects including sleep disturbance, annoyance, and cardiovascular dis
eases. While the guidelines were developed for the European region, 
with the majority of the evidence underpinning them from European 
and North American countries, the WHO report does state that the 
guidelines can be considered applicable in other regions and suitable for 

a global audience (World Health Organization, 2018). Furthermore, we 
found that almost the entire population in Accra Metropolis (~2 million 
people in 2019) lived in areas where Lden and Lnight exceeded 55 and 50 
dBA, respectively. Based on evidence from WHO commissioned sys
tematic reviews (2018) (Basner and McGuire, 2018; Guski et al., 2017), 
at and above these noise levels over 11% (11–49%) and over 4% 
(4–12%) of the population are likely to be highly annoyed (Lden) and 
sleep disturbed (Lnight) from road-traffic noise exposure, respectively 
(World Health Organization, 2018). As noise epidemiological research is 
currently lacking in Africa, future research in Accra can utilize our noise 
exposure surfaces to generate local evidence of the health effects of 
noise; this will have the effect of strengthening and diversifying the 
global literature base on noise health effects around the world. 

We found that in Accra, the poorest enumeration areas had higher 
median Lden and Lnight levels compared with the wealthier ones. Previous 
noise studies conducted in Europe, North America, and China using SES 
measures derived from material deprivation indicators, such as income, 
deprived living area, or mean dwelling value found similar trends (Casey 
et al., 2017; Dale et al., 2015; European Environment Agency, 2020; 
Lam and Chan, 2008). For our education measure, an indicator which 
may also reflect behavioral aspects, median noise levels were similarly 
lower in enumeration areas with a higher number of individuals with 
post-secondary education. Our analysis of area-level education and 
noise reflects results from a similar study in Montreal Canada (Dale 
et al., 2015). Though this relationship has had mixed results among 
studies that looked at individual-level associations in Europe (Dreger 
et al., 2019). In Accra, poorer communities are likely burdened by 
multiple environmental pollutants in addition to noise, as previous 
studies have found higher levels of PM2.5 air pollution concentrations in 
lower SES neighborhoods (Dionisio et al., 2010; Zhou et al., 2011). 

In a secondary analysis, we calculated intermittency ratios for each 
measurement site and explored the potential associations of environ
mental features and noise levels within LUR models. The challenge of 
modelling a metric, such as the intermittency ratio, with spatial LUR 
models is that the predictor variables are often temporally static, thus 
making it difficult to capture intermittency which is inherently time 
dependent. Predictors which vary in both time and space may have 
allowed us to capture noise intermittency better. Furthermore, the 
medium-low predictive accuracy of the intermittency ratio models could 
be due to the measurement of the metric itself. We calculated inter
mittency ratios with sound level data integrated every minute; thus, we 
would have missed some infrequent sound events/peaks that would 
have been lost in the integration. We can also only interpret our results 
within the context of the fixed event cutoff that we used (+3 dBA). If we 
had modelled intermittency ratios with stricter cutoffs, the estimated 
intermittency ratios in the GAMA would be lower (Clark et al., 2021). 

4.1. Strengths and limitations 

Our research is one of the first to develop a LUR model of noise in SSA 
(Sieber et al., 2017) and the first to do so in West Africa. The models 
incorporated a suite of geospatial predictor variables and leveraged 
noise measurements from a large-scale and long-term data collection 
campaign. Finally, the comparison of predicted noise levels with small 
area SES measures is the first study to our knowledge to characterize 
inequalities of noise in a SSA setting. These models and the predicted 
noise surfaces provide opportunities for major environmental epidemi
ologic studies that would provide locally sound and globally relevant 
data on noise health effects within this understudied region. The noise 
exposure surfaces can also be used to conduct environmental burden of 
disease assessments, which can feed into local noise policy and decision 
making. 

Our research has several limitations. While we did include a wide 
variety of spatial predictor variables in the study, we were not able to 
obtain spatially and/or temporally resolved information on traffic vol
ume and fleet composition. Inclusion of this information could have 
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improved model predictive accuracy, particularly from traffic-related 
sources. Further, we were not able to capture potential small-scale 
variations in noise propagation due to sound reflection or absorption 
in the built environment as we did not have data for building height and 
material and ground material (Kang, 2017a). We also made the 
assumption that the spatial predictors were stationary in time and 
representative of the period when the noise measurements were taken. 
This assumption may not be true for all spatial predictors as the census 
data which was used to estimate population counts was generated in 
2010 and the dataset used to estimate land cover dates to 2014. The 
temporal misalignment of some of the predictor variables may be 
especially relevant for a rapidly urbanizing context such as the GAMA, 
and particularly its peripheries outside of the city center. With respect to 
SES inequalities of noise, our analysis was at the enumeration area level, 
and we recognize that associations at the individual level may be 
different. There is also a temporal misalignment between the noise and 
SES data. We used SES metrics estimated from the 2012 GLSS and the 
2010 census as they were the most recent data of its kind, though the 
noise data were collected in 2019/2020. It is possible that the spatial 
distribution of SES in some parts of the GAMA in 2010 differ to present 
day realities (2019/2020). Though we expect this to be minimal in the 
city center (Accra Metropolis) where we conducted the SES analysis, as 
the major changes to within city migration, land use, and urban plan
ning, are taking place at the peripheries of the GAMA (Addae and 
Oppelt, 2019). Future work incorporating the 2020 census is warranted 
to verify if trends have remained the same or changed. The 2020 census 
was delayed due to the COVID-19 Pandemic but may be completed and 
data released in a few of years. 

5. Conclusion 

The measured and predicted noise levels exceeded international 
health-based guidelines almost everywhere in the Greater Accra 
Metropolitan Area. At these levels, it is likely that common adverse 
health impacts attributable to environmental noise exposures, such as 
annoyance, sleep disturbance, and cardiovascular diseases, are experi
enced within the city. Furthermore, noise levels varied unequally across 
the city and poorer neighborhoods were generally worse off in terms of 
noise levels than the wealthiest neighborhoods. The spatial and social 
inequalities in environmental noise in Accra further highlight the need 
for local government to consider the equity impacts of urban planning 
and policy decision making. This is particularly the case as inequalities 
in noise exposure, compounded with socioeconomic inequalities and 
other environments exposures (e.g., air pollution), could further 
entrench health inequalities in Accra. City-level actions are needed to 
tackle this environmental exposure in Accra though changes in infra
structure, services and regulations that could also have broader and 
equitable benefits for health and wellbeing. 
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