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Abstract: Early diagnosis and treatment of patients with aggressive prostate cancer (PCa) remains a clinically unmet 
need. We aimed to determine the levels of small extracellular vesicle (sEV)-associated microRNAs (miRs); miR-4737, 
miR-6068, and miR-6076 in a large panel of PCa cells and delineate the biological significance of miR-6068 in 
promoting PCa cells. sEVs were isolated from the conditioned medium of PCa cells, followed by RNA extraction and 
quantitative Real-Time PCR analysis. Functional assays were performed, and the protein expression of hypermethyl-
ated in cancer 2 (HIC2), as a potential miR-6068 target gene, was evaluated in PCa tissues by immunohistochemis-
try. sEV-associated miR-6068, miR-4737, and miR-6076 levels displayed large and significant differences compared 
to normal cells. miR-6068 was explicitly upregulated in sEV of PC-3 and CWR-R1ca cells (P<0.010). Suppression of 
miR-6068 in CWR-R1ca cells decreased cell proliferation, colony formation, and cell migration. In contrast, upregu-
lation of miR-6068 in RC77T/E cells decreased HIC2 levels and increased cell aggressive phenotypes. The overex-
pression of HIC2 in PCa tissues was primarily observed in the cytoplasm compared to benign prostatic hyperplasia 
(BPH) and normal tissues (P<0.0001). This study confirms the differential packaging of miR-4737, miR-6068, and 
miR-6076 in sEVs of PCa cells. MiR-6068 promotes PCa cells to acquire aggressive phenotypes by inhibiting the 
HIC2/Sirtuin 1 (SIRT1) axis.
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Introduction 

Prostate cancer (PCa) is the second most com-
mon leading cause of cancer-related deaths 
among elderly men in the United States. 
According to a recent report by the American 
Cancer Society, it is estimated that about 
191,930 new cases and 33,330 deaths will be 
diagnosed with PCa [1]. African-American (AA) 
men are highly susceptible to and develop more 
aggressive PCa when compared to Caucasian-
American (CA) men, with 158.3 new cases diag-
nosed per 100,000 men [1]. Early diagnosis 

and treatment of aggressive PCa remains a cur-
rent clinical challenge. Although prostate-spe-
cific antigen (PSA) is the gold standard screen-
ing biomarker for diagnosis of PCa, it is not 
associated with the mortality rate of PCa 
patients [2]. In some cases, the negative con- 
sequences of using PSA in screening PCa 
patients can lead to overdiagnosis, overtreat-
ment, and other treatment complications [3, 4]. 
Nevertheless, most newly used PCa detection, 
and diagnosis tools have less sensitivity and 
specificity, making it more challenging to treat 
PCa patients successfully (5). PCa is an an- 
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drogen-driven disease where tumor cells at 
early stages of PCa are sensitive to androgen 
[5]. Under androgen depletion therapy (ADT), 
the standard goal of treatment is to achieve  
circulating testosterone level of less than 50 
ng/dL [6]. Although ADT is effective, treatment 
of metastatic PCa and molecular mechanisms 
underlying the development of androgen-sensi-
tive tumors to castration-resistant PCa (CRPC) 
is still an unmet medical need. To address this 
challenge, it is necessary to identify new mo- 
lecular biomarkers that can stratify patients 
according to their aggressive phenotypes. 

As mean of cell communication, small extracel-
lular vesicles (sEVs) are best described as  
small extracellular vesicles (30-150 nm in 
diameter) released by most cells as a result of 
the fusion of an intermediate endocytic com-
partment with the plasma membrane [7]. sEVs 
carry different biomolecules differentially load-
ed into their cargo, including proteins, mRNAs, 
microRNAs (miRs), DNAs, and lipids. The con-
tents of sEVs cargo often vary under various 
pathologic conditions that reflect the original 
host cell [8]. microRNAs are small noncoding 
RNAs that suppress gene expression at the 
posttranscriptional level [9]. Accordingly, a nu- 
mber of circulating sEV-associated miRs are 
associated with tumor progression and metas-
tasis [10]. Hypermethylated in cancer 2 (HIC2) 
is a transcriptional factor associated with HIC1 
[11]. However, its biological function in PCa 
aggressiveness has not been investigated.

This study investigated the expression levels of 
three miRs in sEVs isolated from the condi-
tioned medium of a large panel of PCa cell 
lines. We also elucidated the mechanism by 
which the sEV-associated miR-6068 promoted 
the aggressive behavior of PCa cells and iden- 
tified HIC2 as a potential target of miR-6068. 
HIC2 protein expression was examined in eig- 
hty PCa and non-cancerous tissue specimens 
and was correlated to the available clinical out-
comes of PCa patients.

Materials and methods 

Cell culture 

Human PCa DU-145, C4-2B, LNCaP, CWR22-
RV1, PC-3 cells, and normal prostatic epithelial 
RWPE-1 cells were purchased from the Ame- 
rican Type Culture Collection (ATCC, Manassas, 
VA, USA). CWR-R1ca was purchased from 

Millipore Sigma (Burlington, MA, USA). CWR-
R1ca are aggressive castration-recurrent cells 
derived from CWR-R1 cells depleted from fib- 
roblasts [12]. RC77T/E and RC77N/E cell lines 
were kindly provided by Dr. J.S. Rhim (Uniform- 
ed Services University) and maintained as 
reported [12]. RC77T/E cells derived from 
63-year-old African American PCa patients at 
Gleason score 7 [13]. DU-145, C4-2B, LNCaP, 
CWR22-RV1, and PC-3 cells were cultured in 
Dulbecco’s Modification of Eagle’s Medium 
(DMEM) supplemented with 10% FBS (Corning, 
Manassas, VA) and 1% penicillin/streptomycin 
(Life Technologies Corp., Grand Island, NY). 
CWR-R1ca cell line was cultured in RPMI-1640 
media supplemented with 10% FBS and 1% 
antibiotic mixture. RWPE-1, RC77 N/E, and 
RC77 T/E cells were cultured in keratinocyte-
SFM media kit (Gibco Laboratories, Carlsbad, 
CA) supplemented with EGF (5 ng/mL) and 
bovine pituitary extract (0.05 mg/mL). Cells 
were maintained at 37°C in 5% CO2 and humi- 
dified incubator as previously described [14]. 
All cells tested negative for mycoplasma and 
kept in the culture for short time period while 
doing the experiments.

sEVs collection, isolation, and characterization 

PCa and normal prostate epithelial cells were 
grown up to 70% confluency [14]. Cells were 
washed with PBS and maintained in a com- 
plete medium that contained 10% sEVs-free 
FBS and 1% antibiotics. Utilization of sEVs-free 
FBS will reduce cell stress due to serum star- 
vation. sEVs were collected from conditioned 
medium after 36 hours of incubation using 
Capturem EV isolation kits (Takara Bio USA Inc., 
Mountain View, CA). Briefly, sEVs containing 
media were collected in 50 mL tubes, centri-
fuged at 3000xg for 10 min. Next, the superna-
tant was transferred into another 50 mL filtra-
tion unit and centrifuged at 1000xg for 3 min, 
followed by sEVs elution, aliquoted, and stored 
at -80°C for further use. After isolation, the size 
of sEVs was measured by ZetaPals zeta poten-
tial analyzer (Brookhaven Instruments Corp., 
Holtsville, NY) and qNano method (Izon Science 
Ltd, Cambridge, MA) and as we previously 
described [15]. 

Quantitative RT-PCR (qPCR) 

The dysregulated sEV-associated miRs isolated 
and PCa cells were evaluated by qPCR analysis 
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using Bio-Rad CFX69 Touch thermal cycler  
(Bio-Rad, Hercules, CA). Total RNA was then 
extracted from the sEVs and their correspond-
ing cells using TRIzol reagent following the  
standard protocol (ThermoFisher Scientific, 
Waltham, MA). Finally, cDNA specific to microR-
NA was synthesized using microRNA cDNA Poly 
(A) polymerase tailing kit (Applied Biological 
Materials Inc., Richmond, BC, Canada). Bright 
green-No dye SYBR mixture and hsa-miR- 
4737, hsa-miR-6068, has-miR-6076, U6, and 
5S rRNA primers (Applied Biological Materials 
Inc., Richmond, BC, Canada) were used in the 
study. The fold change of miRs expression was 
calculated compared to the reference genes 
U6 and 5S rRNA by comparative Ct method as 
described [16]. The expression of hic2 in miR-
6068-transfected and non-transfected cells 
was evaluated by qPCR using the following  
set of primers (forward: 5’-CATTGATGCACCCC- 
CAGGAA-3’; backward: 5’-ATGACGTCACACAGG- 
AAGCC-3’) and β-actin as an internal control 
(forward: 5’-TGAGACCTTCAACACCCCAGCCATG- 
3’; backward: GTAGATGGGCACAGTGTGGGTG). 

Transfection of PCa cells with miR-6068 mimic 
and inhibitor 

About 70% confluent CWR-R1ca cells were 
transfected with miR-6068 inhibitor and highly 
validated non-silencing siRNA allStars as a  
negative control using HiPerFect transfection 
reagent (Qiagen, Germantown, MD). The con-
centration of miR inhibitor was optimized to 50 
nM in optimum medium (Gibco Laboratories, 
Carlsbad, CA). On the other hand, RC-77 T/E 
and PC-3 cell lines were transfected with 25 
nM miR-6068 mimic. This process was fol-
lowed by total RNA and protein extractions 
after 24 h and 72 h of transfection, respective-
ly. Micro-cDNA and cDNA were synthesized, 
and qPCR was performed to examine the trans-
fection efficiency and evaluate the miR and its  
target genes. The fold change of miR-6068 
expression was calculated relative to negative 
control using U6 and 5S rRNA as internal con-
trols, as we previously reported [14]. 

Cell proliferation assay 

About 2 × 103 transfected and control cells 
were seeded in a 96-well plate and maintained 
at 37°C in 5% CO2 atmosphere for 72 h as pre- 
viously described [17]. Cell proliferation was 
assessed using cell counting kit-8 (Dojindo 

Molecular Tech. Inc., Rockville, MD) following 
the standard protocol. After 4 h of incubation, 
the developed color was measured by micro-
plate reader (AccuSkan FC plate reader, The- 
rmoFisher Scientific, Waltham, MA) at 450 nm. 

Clonogenic assay 

Four hundred PCa cells transfected with either 
miR inhibitor or mimic or all-star negative con-
trol were seeded in 6-well plate. Cell culture 
media were changed every other day, and cells 
were maintained for 2-3 weeks until the colo-
nies developed as described [17]. Next, the 
developed colonies were washed with PBS, 
fixed with 4% paraformaldehyde for 5 min, and 
stained with 0.5% crystal-violet (Hardy Dia- 
gnostics, Santa Maria, CA) for 30 min. The 
plates were then rinsed with tap water and left 
overnight to dry out before imaging and 
counting. 

Migration assay 

According to our prior study, transwell migration 
assay was conducted in 24-well chambers [17]. 
Briefly, transfected cells were resuspended in 
serum-free media and added to the upper 
chamber, whereas the lower chamber included 
10% FBS complete medium. Cells were incu-
bated for 24 h, and the migrated cells were  
then fixed and stained by crystal-violet dye 
(Hardy Diagnostics, Santa Maria, CA, USA). 
Finally, stained migrated cells are counted 
under light microscope (Leica Microsystem 
Inc., Buffalo Grove, IL).

miRNA target prediction 

TargetScan, Diana-tools, and miRWalk bioinfor-
matic programs searched for miR-6068 target 
genes. The three bioinformatic tools identified 
the predicted and reproduced target genes 
selected and then validated in transfected  
cells with either miR mimic or inhibitor.

Western blot analysis 

Western blot analysis was performed as pre- 
viously described [17]. Briefly, protein lysates 
were collected, and their concentrations were 
measured using Bradford method (Thermo- 
Fisher Scientific, Waltham, MA). About 30 µg 
protein lysate was uploaded onto a precast 
4-20% SDS-PAGE gel, and the resolved pro- 
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teins were then transferred onto a nitrocellu-
lose membrane (Bio-Rad, Hercules, CA, USA). 
This process was followed by incubating the 
membranes in a blocking buffer containing  
5% BSA for 1 h at room temperature. The 
blocked membranes were incubated overnight 
at 4°C with anti-HIC2 (Cat.#22788-1-AP, diluti- 
on 1:1000), anti-SIRT1 (Cat.#13161-1-AP, dilu-
tion 1:1000) from Proteintech (Rosemont, IL, 
USA), and anti-GAPDH (Cat.#sc-365604; Santa 
Cruz Biotechnology, Dallas, TX, USA) primary 
antibodies. After extensive washing, the mem-
branes were incubated with the appropriate 
secondary antibodies for 1 h at room tempera-
ture. The signal was then developed by Clarity 
Western ECL substrate (Bio-Rad, Hercules, CA) 
using C-Digit scanner (Li-COR Biosciences, 
Lincoln, NE).

Immunohistochemical (IHC) analysis 

The protocol of this study was approved by  
the Institutional Review Board (IRB) of Edward 
Via College of Osteopathic Medicine (VCOM), 
Virginia (IRB#2020-036). Prior to initiating this 
study, written informed consents were obtain- 
ed from all patients. Tissue microarray (TMA) 

a Nikon light microscope (Eclipse 80i Nikon 
Ins., Melville, NY). The histochemical score was 
calculated as previously described [18]. 

Statistical analysis

Data are presented as mean ± standard error 
of the mean (SEM). Relative fold change is  
calculated using the comparative ct method 
(2^ΔΔCT) using reference genes as internal 
controls [15]. For comparisons between experi-
mental and control group, we used an unpaired 
student t-test and one-way analysis of variance 
(ANOVA) followed by post-hoc Tukey’s test for 
multiple groups. Graphs were generated by 
GraphPad Prism Version 9.0 (GraphPad Soft- 
ware, Inc., La Jolla, CA). Data were considered 
significant at p-value less than 0.05. 

Results

Characterization of small extracellular vesicles 
(sEVs) isolated from PCa cells

The study design and characterization of PCa-
associated sEVs are summarized in Figure 1A. 
After isolating sEVs from the conditioned me- 

Figure 1. Study design and characterization of PCa-associated small extra-
cellular vesicles. (A) Flowchart shows the study design. (B, C) Particle size 
of sEVs in triplicates (sEV-1 to 3) was measured by qNano method (B) and 
ZataPals Zeta potential analyzer (C).

slide comprised 80 human 
cases comprising 50 PCa tis-
sue specimens, and 30 nor-
mal and hyperplastic prostate 
tissues were purchased (US 
Biomax, Inc., Derwood, MD). 
IHC analysis was performed 
as we previously described 
[17]. Briefly, PCa tissue sec-
tions were de-waxed in xylene 
and rehydrated in a descend-
ing series of ethyl alcohol. The 
tissue slides were then heat- 
ed in EDTA buffer at pH 8.0 for 
20 min. The tissue sections 
were then incubated in 3% 
H2O2 to block the action of tis-
sue endogenous peroxidases. 
The TMA slide was incubated 
with anti-HIC2 antibody over-
night at 4°C. The developed 
antigen-antibody complex was 
detected by VECTASTAIN Elite 
ABC HRP Kit (Vector Labo- 
ratories, Burlingame, CA). The 
tissue slides were counter-
stained with hematoxylin, and 
images were acquired using  
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dia of PCa and normal cells, the characteriza-
tion of sEVs was performed by measuring the 
sEVs particle size using qNano method and 
ZetaPals zeta potential analyzer. In addition, 
surface protein markers of sEVs were previous-
ly validated by Western blot analysis according 
to our published studies [15, 17]. As shown in 
Figure 1B, 1C, the size of identified sEVs 
derived from blood and conditioned medium  
of PCa cells ranged between 30-165 nm in 
diameter, which follows the guideline of the 
International Society for Extracellular Vesicles 
[19]. 

Differential expression of sEV-associated miRs 
in PCa cells

Our previous study conducted miR profiling for 
sEVs derived from the blood of PCa patients 
and normal volunteers [15]. To examine their 
functional significance, we selected three dys-
regulated miRs (miR-4737, miR-6068, and miR-
6076) to be validated in PCa cells and their 
respected sEVs isolated from culture media 
using qPCR analysis. Selection criteria based 
on the differential enrichment of these miRs in 
the tumor as compared to normal subjects 
(miR-6068), race as a risk factor of PCa patients 
(miR-6076), and Gleason score (miR-4737). 
The panel includes nine cell lines; two of them 
were normal epithelial prostate cells; RC77 
N/E, which was established from African 
American (AA) patient, and RWPE-1 from 
Caucasian American (CA) man; one AA PCa 
cells (RC77T/E), and 6 CA PCa cells (CWR22-
RV1, LNCaP, C4-2B, DU-145, PC-3, and CWR-
R1ca). As illustrated in Figure 2, there was a 
differential loading of miRs in sEVs isolated 
from different PCa cells compared to the en- 
dogenous cellular expression of miRs. For 
example, miR-6068 was significantly upregu-
lated (P<0.001) on the cellular level of CWR-
R1ca but downregulated (P<0.01) in C4-2B  
and PC-3 cells when compared to normal 
RWPE1 and RC77 N/E cells. On the sEVs level, 
this miR was upregulated (P<0.001) in PC-3 
and CWR-R1ca compared to sEVs derived from 
other PCa and normal cells. It is evident that 
miR-4737 was upregulated (P<0.01) in 22RV1 
and PC-3 cells and downregulated (P<0.001) in 
C4-2B and RC77 T/E cells. The sEV-associated 
miR-4737 was upregulated (P<0.01) in PC-3 
cells, whereas downregulated (P<0.001) in 
sEVs derived from CWR-R1ca and RC77 T/E 
cells. Concerning miR-6076 level, it was upreg-
ulated in DU145 cells (P<0.001) and downre- 
gulated (P<0.05) in LNCaP, C4-2B, PC-3, and 
RC77 T/E cells. sEV-associated miR-6076 was 
downregulated (P<0.05) in most of PCa cells 
except in CWR-R1ca cells, where it was upregu-
lated (P<0.01).

Suppression of endogenous miR-6068 expres-
sion decreases cell proliferation, colony forma-
tion, and migration in CWR-R1ca cells

We selected CWR-R1ca cells to be transfected 
with miR-6068 inhibitor and RC77 T/E and 
PC-3 cells as a model for mimic transfection 
based on qPCR results. After transfection, we 

Figure 2. Expression of sEV-associated miR-6068, 
miR-6076 and miR-4737 in PCa cells. Total RNA was 
extracted from PCa and normal prostate cells and 
their respected sEVs. Micro-cDNA was synthesized, 
and qPCR was performed for miR-6068 (A), miR-
6076 (B) and miR-4737 (C). U6 and 5srRNA were 
used as internal controls. Expression level was cal-
culated as fold change relative to normal cell lines. 
Experiments were conducted in triplicates. Data 
were considered significant at P<0.05 compared to 
normal cells (*) or their respected sEVs (#).
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Figure 3. Suppression of endogenous expression of miR-6068 decreases cell viability, colony formation, and migra-
tion. CWR-R1a cells were transfected with miR-6068 inhibitor and non-specific miR as a negative control. After 24 h 
of transfection, the cells bearing miR-6068 were trypsinized and seeded for performing cell proliferation (A), colony 
formation (B), and migration (C) assays. Representative inserts showing cell colonies and migration of results gener-
ated from three independent experiments. *Depicts significance at P<0.05.

determined the functional significance of sEV-
associated miR-6068 in these cells. After 24 h 
of transfection, cell proliferation, clonogenic, 
and migration assays were performed to de- 
termine the potential role of this miR in PCa 
aggressiveness. As expected, suppression of 
endogenous miR-6068 inhibited cell prolifera-
tion (P<0.001), colony formation (P=0.015), 
and migration (P=0.008) of CWR-R1ca cells 
(Figure 3). These results suggest the onco- 
genic properties of sEV-associated miR-6068.

Ectopic expression of miR-6068 increases cell 
proliferation, colony formation, and migration 
in PC-3 and RC77 T/E cells

Selection of PC-3 and RC77 T/E cells was 
based on relatively lower endogenous expres-
sion of miR-6068 in these cells. PC-3 cells rep-
resent metastatic castration-resistant PCa 
(mCRPC), and RC77 T/E cells represent immor-
talized primary African American PCa at Gle- 
ason score 7. As shown in Figure 4, transfec-
tion of these two cells with miR-6068 mimic 
increased cell proliferation (P<0.05) and mi- 
gration (P<0.01). There was a trend of incre- 
ased colony formation, but it did not reach the 
significance level in PC-3 and RC77 T/E cells 
(P=0.056 and P=0.080, respectively).

miR-6068 as a possible target for HIC2

To determine whether miR-6068 has an onco-
genic role in PCa cells, we first identified the 11 

common target genes of miR-6068 based on 
three bioinformatics tools; TargetScan, Diana-
Tools, and miRWalk (Figure 5A). We selected 
the most relevant genes, and according to the 
results of qPCR and immunoblotting, we iden- 
tified that miR-6068 inhibits HIC2 expression 
on RNA and protein levels. Transfection of PC- 
3 and RC77 T/E cells with miR-6068 mimic 
downregulates HIC2 gene (P=0.026 and P= 
0.008, respectively) on RNA level and its pro-
tein level (P<0.05) in the two cells (Figure 5B- 
D) suggesting that miR-6068 may regulate the 
expression of HIC2. The original immunoblots 
of HIC2 and Sirtuin 1 (SIRT1) were provided in 
Supplementary Figure 1. A further step was 
taken to identify the downstream gene of HIC2. 
Interestingly, targeting the HIC2 expression by 
miR-6068 mimic leads to inhibition of SIRT1 
expression in RC77T/E and PC-3 cells. 

HIC2 expression in human PCa tissue speci-
mens

To validate the in vitro data of HIC2 as a poten-
tial target of miR-6068 in human tissues, eighty 
tissues cores comprising fifty PCa and thirty 
normal and hyperplastic tissues were stained 
with anti-HIC2 antibodies. The available clinical 
information of PCa patients and their age-
matched healthy individuals is provided in 
Supplementary Table 1. As shown in Figure 6, 
immunohistochemical staining of HIC2 reveals 
unequivocal cytoplasmic and nuclear protein 
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overexpression in PCa tissue (P<0.0001) com-
pared to BPH and normal tissues. Of note, BPH 
had more expression of HIC2 (P=0.004) than 
normal prostatic tissues. When PCa tissues 
were considered, there were no significant dif-
ferences between HIC protein expression and 
age at diagnosis (P=0.776), Gleason score 
(P=0.119), tumor stages (P=0.922), tumor 
grades (P=0.197) and lymph node involvement 
(P=0.328). 

Discussion

This study evaluated the expression level of 
sEV-associated miR-4737, miR-6068, and miR-
6076 in a large panel of PCa and normal cells. 
It was reported that these miRs are differen-
tially expressed in different malignancies. For 

example, miR-4737 was identified as a new 
classifier in breast cancer tissue [20]. The high 
expression level of miR-6068 was found to be 
associated with the overall survival of patients 
with colorectal cancer [21]. It was also upregu-
lated in tissues and plasma of lung squamous 
cell carcinoma patients [22]. Additionally, miR-
6076 was used in combination with other miRs 
to screen patients with ovarian cancer [23] and 
discriminate PCa from other types of cancers 
[24]. Accumulated evidence shows that current 
sEV-associated miR-4737, miR-6068, and miR-
6076 as promising novel biomarkers for diag-
nosis and/or prognosis of PCa patients. First, 
miR-4737 and miR-6068 are upregulated in 
several PCa cells and their respected sEVs. 
However, miR-6076 was downregulated in most 

Figure 4. Ectopic expression of sEV-associated miR-6068 increases cell viability, colony formation, and migration. 
PC-3 and RC77T/E cells were transfected with miR-6068 mimic and non-specific miR as a negative control. After 
24h of transfection, transfected cells were trypsinized and seeded for conducting cell proliferation (A, D), colony 
formation (B, E), and migration (C, F) assays. Representative inserts showing cell colonies and migration of results 
generated from three independent experiments. *Significance was calculated at P<0.05.
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PCa cell lines and associated sEVs. The pres-
ent study reports that miR-6068 was upregu-
lated in sEVs derived from conditioned media 
collected from PC-3 and CWR-R1ca cells com-
pared to RC77T/E and normal cells. We also 
determined the biological significance of miR-
6068 by suppressing its endogenous level in 
CWR-R1ca cells using a miR-6068 inhibitor. 
Suppression of miR-6068 resulted in a signifi-
cant decrease in cell proliferation and migra-
tion. Irrefutable evidence shows that ectopic 
upregulation of miR-6068 in RC77 T/E and 
PC-3 cells promoted cell proliferation and 
migration. Consistent with our findings, miR-
6068 was listed among five miRs associated 
with positive lymph node status in endometrial 
cancer [25]. 

A growing body of evidence shows that sEV-
associated cargo bioactive molecules are asso-
ciated with tumor progression, angiogenesis, 
drug resistance, and metastasis [8, 26, 27]. In 
this context, a number of studies have utilized 
sEVs-associated miRs in the stratification of 

PCa patients according to the clinical out-
comes. For example, Huang et al. reported high 
expression of sEV-associated miR-1290 and 
miR-375 as prognostic markers associated 
with poor survival in plasma of CRPC patients 
[28]. In addition, miRs isolated from serum-
derived sEVs of PCa patients showed a direct 
association of miR-141 and miR-375 with tumor 
metastasis [29]. HIC1 is involved in many cel-
lular processes such as cell survival, growth, 
and motility. It is epigenetically silenced in solid 
cancers, including PCa [30, 31]. Remarkably, 
hypermethylation of HIC1 promoter is not only 
found in solid tumors but also in normal tis-
sues, including breast ductal [32], prostate epi-
thelial [33], and brain tissues [34]. These find-
ings suggest another uncharacterized regula-
tory mechanism than hypermethylation invo- 
lved in HIC1 repression. In PCa cells, HIC1 
silencing increases cell migration by promoting 
epithelial-mesenchymal transition (EMT) [35]. 
Several studies reported a number of HIC1 
downstream target genes, including CXCR7, 
LCN2, SIRT1, ATOH1, CCND1, and P57KIP2, 

Figure 5. Hic2 is a possible gene target of miR-6068 in miR-mimic-transfected PCa cells. A: Selected top listed target 
genes of miR-6068 using three different prediction bioinformatic algorithms explaining the binding site of miR-6068 
on the 3’-UTR of hic2 gene. B: Transient transfection of PCa cells with miR-6068 downregulates the hic2 gene. C: 
Western blot analysis (Left) shows a decrease in HIC2 and SIRT1 after transfection of PCa cells with miR-6068. D: 
The quantification of HIC2 and SIRT1 protein expression was performed. *Significance was calculated at P<0.05. 
The experiments were repeated at least twice. 
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which are involved in the regulation of cell  
cycle, angiogenesis, and metastasis [30, 31, 
36-38]. However, the potential role of HIC2 in 
regulating PCa progression and metastasis is 
still largely unknown. We report HIC2 as a tar-
get gene of miR-6068 and its downstream 
gene SIRT1, which adds another line of evi-
dence to the role of miR-6068 in PCa. Sirtuins 
are differentially expressed in cancer types by 
exerting either oncogenic or tumor-suppressive 
activities based on the cellular context and 

experimental conditions [39]. For example, 
pharmacological inhibition of SIRT1 induces 
cell apoptosis and reduces tumor growth and 
chemoresistance in PCa cells [39]. On the con-
trary, knockout of SIRT1 in mouse-model in- 
creased tumor survival [40]. The link between 
HIC2 and SIRT1 was reported by Song et al., 
where HIC2 acts as a transcriptional activator 
of SIRT1 [41], and this finding may explain the 
expression pattern of HIC2/SIRT1-axis in PCa 
cells. By examining the protein expression of 

Figure 6. Protein expression of HIC2 in PCa tissue specimens. HIC2 expression was evaluated by immunohisto-
chemistry in tissue microarray slide comprising 50 tissue cores of PCa, 20 BPH, and ten normal prostate tissues. 
A: Immunohistochemical staining of HIC2 in tissues collected from normal individuals (a) and PCa tissue cores at 
different Gleason scores (GSs): b (GS<7), c (GS=7) and d (GS>7). B: Quantification of HIC2 expression in PCa tissues 
considering age, Gleason score, pathological stage, tumor grades, and lymph node involvement. Significance of the 
data was calculated at P<0.05. Magnification is 400X.
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HIC2 in PCa tissue specimens, the protein was 
overexpressed in tumors compared to normal 
tissues. However, there was no difference in 
the protein expression at different stages of  
the disease, suggesting that HIC2 is involved in 
PCa initiation but not at late stages of the dis-
ease. The biological interaction between miRs 
and protein-coding gene(s) is a complex pro-
cess where a single miR can control multiple 
target genes [42, 43]. Some miRs are enriched 
in sEVs by RNA-binding proteins of tumor cells 
which is a tissue- and disease-specific process 
[44, 45]. These enriched miRs in sEVs regulate 
tumor progression and metastasis and can be 
used as diagnostic/prognostic classifiers and 
as therapeutic targets [46, 47]. It has been 
reported that tumor suppressor proteins such 
as p53 are overexpressed in tumor tissues and 
their mutational forms were corelated with poor 
clinical outcomes [48]. RB transcriptional core-
pressor 1 (RB1) loss of function was reported  
in PCa aggressive phenotypes. Approximately, 
20% of 156 PCa tissues expressed RB1 and 
this expression was correlated with the copy 
number of the gene locus [49]. This could 
explain the expression pattern of HIC2 in PCa 
tissues used in our study. However, further 
studies are needed to assess the level of miR-
6068 in a large number of tissue specimens 
and circulating blood collected from primary 
and metastatic PCa patients in addition to 
benign prostatic hyperplasia. Although we used 
a large panel of cell lines representing a wide 
variety of PCa heterogeneity, human cell lines 
still have limitations [50]. However, the goal of 
this study was to elucidate the molecular func-
tions of these miRs. Therefore, we first exam-
ined their expression in different PCa cells to 
identify their endogenous expression. We used 
miR mimic and inhibitor to determine their role 
in PCa cell proliferation and migration based on 
the expression pattern. Finally, we examined 
the most relevant miR-target gene expression 
using IHC analysis in real PCa tissue speci-
mens. Taken together, we report a differential 
packaging of sEV-associated miR-4737, miR-
6068, and miR-6076 in PCa and normal cells. 
In PCa cells, two miRs are upregulated (miR-
4737 and miR-6068) and one is downregula- 
ted (miR-6076). Knockdown of miR-6068 in 
CWR-R1ca cells suppresses cell proliferation, 
colony formation and migration, while ectopic 
expression of the miR in RC77 T/E cells pro-
motes PCa aggressive phenotype. Thus, we 
anticipate that miR-6068 promotes the aggre- 

ssive phenotypes of PCa cells by targeting 
HIC2/SIRT1 axis. 
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Supplementary materials

The following supplementary materials are available online at the American Journal of Cancer Research.

Supplementary Figure 1. HIC2 protein expression in miR-6068 mimic-transfected PCa cells. Western blot analysis 
shows a decrease in HIC2 and SIRT1 after transfection of PCa cells with miR-6068 mimic.
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Supplementary Table 1. Clinical information of PCa samples and healthy individuals
Variable Normal PCa
Total number 30 50
Age (Mean ± SD) 67.5±16.2 69.3±7.2
Gleason score (n)
    GS<7 13
    GS=7 6
    GS>7 31
T-stage (n)
    I 1
    II 29
    III 13
    IV 7
Lymph node involvement (n)
    Yes 6
    No 44


