Skip to main content
. 2022 Aug 1;298(9):102331. doi: 10.1016/j.jbc.2022.102331

Table 1.

Docking benchmark using different 3D models of mOR256-3 and 52 compounds

Model MD snapshota MCC Hit rateb(precision) Recallc True positive True negative False positive False negative
In-house model 1 0.50 0.60 0.60 6 38 4 4
2 0.26 0.40 0.40 4 36 6 6
In-house model without ECL2 1 0.26 0.40 0.40 4 36 6 6
2 0.13 0.30 0.30 3 35 7 7
SWISS-MODEL 1 0.23 0.36 0.40 4 35 7 6
2 0.20 0.33 0.40 4 34 8 6
AlphaFold 2 1 0.38 0.50 0.50 5 37 5 5
2 0.26 0.40 0.40 4 36 6 6
a

Two snapshots that gave the best Matthew’s correlation coefficient (MCC) as a statistical measure of the model’s predictivity (64). MCC returns a value between −1 (total disagreement between prediction and observation) and +1 (perfect prediction).

b

Hit rate or precision, the fraction of true ligands among the model predicted ones.

c

Recall indicates the fraction of true ligands retrieved by the model out of all the true ligands in the benchmark compounds.