Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Aug 16;78(Pt 9):905–911. doi: 10.1107/S2056989022008003

Effect of methyl­ene versus ethyl­ene linkers on structural properties of tert-butyl and mesityl bis­(imidazolium) bromide salts

Emily S Thompson a, Elisa M Olivas a, Adrian Torres a, Briana C Arreaga a, Hector L Alarcon a, Deandrea Dolberry a, Jacob P Brannon a, S Chantal E Stieber a,*
Editor: J T Magueb
PMCID: PMC9443804  PMID: 36072516

The crystal structures of ligand precursor bis­(imidaozolium) salts 1,1′-methyl­enebis(3-tert-butyl­imidazolium) dibromide monohydrate, C15H26N4 +·2Br·H2O or [ tBuNHC2Me][Br]2·H2O, 1,1′-(ethane-1,2-di­yl)bis­(3-tert-butyl­imidazolium) dibromide dihydrate, C16H28N4 +·2Br·2H2O or [ tBuNHC2Et][Br]2·2H2O, 1,1′-methyl­enebis[3-(2,4,6-tri­methyl­phen­yl)imidazolium] dibromide dihydrate, C25H30N4 2+·2Br·2H2O or [MesNHC2Me][Br]2·2H2O, and 1,1′-1,1′-(ethane-1,2-di­yl)bis­[3-(2,4,6-tri­methyl­phen­yl)imidazolium] dibromide tetra­hydrate, C26H32N4 2+·2Br·4H2O or [MesNHC2Et][Br]2·4H2O, are reported. At 293 K, [ tBuNHC2Me][Br]2·H2O crystallizes in the P21/c space group, while [ tBuNHC2Et][Br]2·2H2O crystallizes in the P21/n space group at 100 K. At 112 K, [MesNHC2Me][Br]2·2H2O crystallizes in the ortho­rhom­bic space group Pccn while [MesNHC2Et][Br]2·4H2O crystallizes in the P21/c space group at 100 K.

Keywords: crystal structure, bis­(imidazolium), bidentate NHC, N-heterocyclic carbene

Abstract

The crystal structures of ligand precursor bis­(imidazolium) salts 1,1′-methyl­enebis(3-tert-butyl­imidazolium) dibromide monohydrate, C15H26N4 +·2Br·H2O or [ tBuNHC2Me][Br]2·H2O, 1,1′-(ethane-1,2-di­yl)bis­(3-tert-butyl­imidazolium) dibromide dihydrate, C16H28N4 +·2Br·2H2O or [ tBuNHC2Et][Br]2·2H2O, 1,1′-methyl­enebis[3-(2,4,6-tri­methyl­phen­yl)imidazolium] dibromide dihydrate, C25H30N4 2+·2Br·2H2O or [MesNHC2Me][Br]2·2H2O, and 1,1′-(ethane-1,2-di­yl)bis­[3-(2,4,6-tri­methyl­phen­yl)imidazolium] dibromide tetra­hydrate, C26H32N4 2+·2Br·4H2O or [MesNHC2Et][Br]2·4H2O, are reported. At 293 K, [ tBuNHC2Me][Br]2·H2O crystallizes in the P21/c space group, while [ tBuNHC2Et][Br]2·2H2O crystallizes in the P21/n space group at 100 K. At 112 K, [MesNHC2Me][Br]2·2H2O crystallizes in the ortho­rhom­bic space group Pccn while [MesNHC2Et][Br]2·4H2O crystallizes in the P21/c space group at 100 K. Bond distances and angles within the imidazolium rings are generally comparable among the four structures. All four bis­(imidazolium) salts co-crystallize with one to four mol­ecules of water.

1. Chemical context

Bis(imidazolium) salts are common precursors for the synthesis of bidentate N-heterocyclic carbene (NHC2) ligands, which can be used to stabilize a variety of metal complexes and catalysts. Bis(imidazolium) salts, [ R NHC2 R 1][X]2 are relatively modular in that modifications can be relatively easily made to exterior groups attached to each NHC (R), the moiety linking the two NHC groups (R 1), and the counter-ion (X). One general synthetic approach for synthesizing bis(imidazolium) salts is where two equivalents of an alkyl or aryl imidazole are combined with one equivalent of an organic dihalide reagent and refluxed to afford the final product (Gardiner et al., 1999). A simplified procedure for a variety of ligand salts using pressure tubes resulting in yields that were generally over 80% was also reported (Scherg et al., 2006). Some reports have gone even further to minimize solvent in the synthesis of these ligand precursors, including a solvent-free synthesis (Cao et al., 2011, 2012). This implies that the exterior R groups can easily be modified by changing the alkyl or aryl group on the starting imidazole. The linking group R 1 and counter-ion X can be modified by changing the organic dihalide reagent. In this fashion, a library of bis­(imidazolium) salts can be relatively easily synthesized from alkyl or aryl imidazoles, and some are also commercially available.

Some of the most widely reported bis­(imidazolium) salts are those with tert-butyl ( t Bu) and mesityl (Mes) exterior R groups and methyl­ene (Me) or ethyl­ene (Et) linking R 1 groups. [MesNHC2Et][Br]2 was even reported to be a stand-alone catalyst for the conversion of aryl­aldehydes to carb­oxy­lic acids in combination with water and K2CO3 in DMSO (Yang et al., 2013). Methyl­ene linkers are quite commonly used for complexing to metals, and although examples with ethyl­ene linkers are fewer, comparative studies report that changing the linker affects catalysis. For example, shorter methyl­ene linkers (R 1) were reported to be more effective for hydro­silylation reactions with RhI complexes than ethyl­ene linkers (Riederer et al., 2010).

The bidentate NHC ligand system is highly versatile for stabilizing a range of metals, some of which result in catalytically active systems. For example, [ tBuNHC2Me][Br]2 and [ tBuNHC2Et][Br]2 were used as precursors for synthesis of rhodium complexes (Leung et al., 2006). [ tBuNHC2Et][Cl]2 was used for synthesis of aluminum, gallium, and indium complexes (Baker et al., 2002). [MesNHC2Et][Br]2 was reported for synthesizing rhenium complexes (Hock et al., 2014; Hiltner et al., 2010), palladium complexes via Pd(OAc)2-assisted deprotometalation (Wierenga et al., 2019), palladium complexes via silver transmetallation (Sluijter et al., 2013), and for palladium catalysts for Suzuki and Heck coupling reactions (Lee et al., 2004). Other reported palladium complexes were active for dehalogenation of aryl halides (Viciu et al., 2001).

Examples with first row transition metals are fewer, with nickel being the most commonly reported. Nickel carbonato complexes were synthesized with [MesNHC2Me][Cl]2 and [MesNHC2Et][Cl]2 ligand precursors (Guo et al., 2013). Iron complexes for use in aryl Grignard-alkyl halide cross-coupling reactions were synthesized using various bis­(imidazolium) salts including [ tBuNHC2Me][Cl]2, [ tBuNHC2Me][Br]2, [MesNHC2Me][Cl]2, [MesNHC2Me][Br]2, and [MesNHC2Et][Br]2 (Meyer et al., 2011).

When used for stabilizing bimetallic systems, [ tBuNHC2Et][Cl]2 and [MesNHC2Et][Cl]2 have been used as precursors for dipalladium complexes for Heck reactions (Li et al., 2013; Yang et al., 2012; Cao et al., 2010), while [ tBuNHC2Et][Br]2 was a precursor for dimetallic Rh complexes (Wells et al., 2008) and mixed-metal Rh/Pd (Zamora et al., 2009) and Ir/Rh (Frey et al., 2006). Similarly, [MesNHC2Me][Br]2 and [MesNHC2Et][Br]2 were used to synthesize bimetallic gold catalysts for cross-coupling and hydro­amination reactions (Baron et al., 2018). 1.

While bis­(imidazolium) salts are common ligand precursors, few have been structurally characterized (Rheingold, 2019). This work presents structural characterization and a comparison of supra­molecular features for methyl­ene- versus ethyl­ene-linked bis­(imidazolium) salts with tert-butyl and mesityl ancillary groups.

2. Structural commentary

All four bis­(imidazolium) salts were recrystallized from hot methanol and each compound co-crystallizes with one or more mol­ecules of water. Fig. 1 depicts [ tBuNHC2Me][Br]2·H2O while Fig. 2 depicts [ tBuNHC2Et][Br]2·2H2O.

Figure 1.

Figure 1

View of [ tBuNHC2Me][Br]2·H2O with 50% probability ellipsoids.

Figure 2.

Figure 2

View of [ tBuNHC2Et][Br]2·2H2O with 50% probability ellipsoids.

Bond distances in the imidazolium rings of [ tBuNHC2Me][Br]2·H2O and [ tBuNHC2Et][Br]2·2H2O are mostly the same within experimental error, with backbone C2—C3 distances of 1.348 (4) and 1.349 (3) Å, respectively. The N—C distances are also mostly comparable with [ tBuNHC2Me][Br]2·H2O having an N1—C2 and an N2—C3 distance of 1.389 (3) Å and N1—C1 and N2—C1 distances both being 1.337 (3) Å, while [ tBuNHC2Et][Br]2·2H2O has an N1—C2 distance of 1.388 (3) Å, an N2—C3 distance of 1.384 (3) Å, an N1—C1 distance of 1.327 (3) Å and an N2—C1 distance of 1.331 (3) Å. For the linker, the N2—C7 distance is 1.463 (3) Å for [ tBuNHC2Me][Br]2·H2O and 1.468 (3) Å for [ tBuNHC2Et][Br]2·2H2O.

Bond angles in the imidazolium rings are also quite similar in [ tBuNHC2Me][Br]2·H2O and [ tBuNHC2Et][Br]2·2H2O. For [ tBuNHC2Me][Br]2·H2O, bond angles include C1—N1—C2 at 108.2 (2)°, N1—C2—C3 at 107.6 (2)°, C2—C3—N2 at 106.9 (2)°, C3—N2—C1 at 108.6 (2)°, and N2—C1—N1 at 108.7 (2)°. For [ tBuNHC2Et][Br]2·H2O, bond angles include C1—N1—C2 at 108.21 (19)°, N1—C2—C3 at 107.3 (2)°, C2—C3—N2 at 106.9 (2)°, C3—N2—C1 at 108.54 (19)°, and N2—C1—N1 at 109.02 (19)°.

Fig. 3 depicts [MesNHC2Me][Br]2·2H2O while Fig. 4 depicts [MesNHC2Et][Br]2·4H2O. Notably, [MesNHC2Et][Br]2·4H2O is the only compound of the four for which the asymmetric unit contains only half of the mol­ecule.

Figure 3.

Figure 3

View of [MesNHC2Me][Br]2·2H2O with 50% probability ellipsoids.

Figure 4.

Figure 4

View of [MesNHC2Et][Br]2·4H2O with 50% probability ellipsoids.

Bond distances in the imidazolium rings of [MesNHC2Me][Br]2·2H2O and [MesNHC2Et][Br]2·4H2O are mostly the same within experimental error, with backbone C2—C3 distances of 1.344 (3) and 1.3506 (19) Å, respectively. N—C distances are also mostly the same with [MesNHC2Me][Br]2·2H2O having an N1—C2 distance of 1.387 (3) Å, an N2—C3 distance of 1.380 (3) Å, an N1—C1 distance of 1.326 (3) Å, and an N2—C1 distance of 1.341 (3) Å. Similarly, [MesNHC2Et][Br]2·4H2O has an N1—C2 distance of 1.3872 (16) Å, an N2—C3 distance of 1.3841 (16) Å, an N1—C1 distance of 1.3322 (16) Å and an N2—C1 distance of 1.3314 (16) Å. For the linker, the N2—C7 distance is 1.457 (3) Å for [MesNHC2Me][Br]2·2H2O and 1.4653 (16) Å for [MesNHC2Et][Br]2·4H2O.

Bond angles in the imidazolium rings are also mostly the same for [MesNHC2Me][Br]2·2H2O and [MesNHC2Et][Br]2·4H2O. For [MesNHC2Me][Br]2·2H2O, bond angles include C1—N1—C2 at 108.92 (17)°, N1—C2—C3 at 107.20 (19)°, C2—C3—N2 at 106.95 (19)°, C3—N2—C1 at 108.96 (17)°, and N2—C1—N1 at 107.96 (18)°. For [MesNHC2Et][Br]2·4H2O, bond angles include C1—N1—C2 at 108.51 (11)°, N1—C2—C3 at 107.19 (11)°, C2—C3—N2 at 106.87 (11)°, C3—N2—C1 at 108.89 (11)°, and N2—C1—N1 at 108.54 (11)°. Overall, these data support that changing the linker R 1 group from methyl­ene to ethyl­ene does not significantly affect the imidazolium ring structures.

3. Supra­molecular features

The supra­molecular structure of [ tBuNHC2Me][Br]2·H2O is stabilized by hydrogen bonding (Fig. 5, Table 1). Distances between centroids of neighboring imidazoles are greater than 5 Å, suggesting no π-stacking inter­actions (Janiak, 2000). Hydrogen bonding between one bromide atom and one water mol­ecule is found with Br1⋯H1D having a distance of 2.575 (4) Å. One tert-butyl group has positional disorder.

Figure 5.

Figure 5

View of four mol­ecules of [ tBuNHC2Me][Br]2·H2O with 50% probability ellipsoids, highlighting inter­molecular distances. Disordered tert-butyl groups are omitted for clarity.

Table 1. Inter­molecular distances (Å) in the unit cells of [ R NHC2 R 1][X]2·nH2O.

Standard deviations for distances including some H atoms are omitted where H atoms were positionally fixed.

Compound Atoms Distance
[ t BuNHC2Me][Br]2·H2O Br1⋯H1D 2.575 (4)
[ t BuNHC2Et][Br]2·2H2O Br1⋯H1A 2.398
  Br2⋯H1B 2.439
[MesNHC2Me][Br]2·2H2O Br1⋯H2A 2.413
  Br2⋯H1A 2.463
  O1A⋯H2B 2.125
[MesNHC2Et][Br]2·4H2O O1⋯H2B 1.994 (2)
  O2⋯H1E 2.001 (3)
  Br1⋯H1D 2.585 (2)

The supra­molecular structure of [ tBuNHC2Et][Br]2·2H2O is stabilized by extensive hydrogen bonding (Fig. 6, Table 1). Distances between centroids of neighboring imidazoles are greater than 5 Å, suggesting no π-stacking inter­actions (Janiak, 2000). Several hydrogen-bonding inter­actions are found between bromide ions and water mol­ecules, including Br2⋯H1B (2.439 Å) and Br1⋯H1A (2.398 Å).

Figure 6.

Figure 6

View of four mol­ecules of [ tBuNHC2Et][Br]2·2H2O with 50% probability ellipsoids, highlighting inter­molecular distances.

The supra­molecular structure of [MesNHC2Me][Br]2·2H2O is also stabilized by hydrogen bonding (Fig. 7, Table 1). No π-stacking inter­actions were found as distances between centroids of aromatic rings of neighboring mol­ecules are greater than 5 Å (Janiak, 2000). Several hydrogen-bonding inter­actions are observed between bromide ions and water mol­ecules as well as neighboring water mol­ecules, including Br1⋯H2A at 2.413 Å, Br2⋯H1A at 2.463 Å, and O1A⋯H2B at 2.125 Å.

Figure 7.

Figure 7

View of eight mol­ecules of [MesNHC2Me][Br]2·2H2O with 50% probability ellipsoids, highlighting inter­molecular distances.

The supra­molecular structure of [MesNHC2Et][Br]2·4H2O is also stabilized by hydrogen bonding (Fig. 8, Table 1). No π-stacking is observed between mesityl groups, similar to [MesNHC2Me][Br]2·2H2O as the distance between centroids of the mesityl groups of neighboring fragments is greater than 4.5 Å (Janiak, 2000). Hydrogen-bonding inter­actions include O1⋯H2B at 1.994 (2) Å, O2⋯H1E at 2.001 (3) Å, and Br1⋯H1D at 2.585 (2) Å.

Figure 8.

Figure 8

View of eight mol­ecules of [MesNHC2Et][Br]2·4H2O with 50% probability ellipsoids, highlighting inter­molecular distances.

4. Database survey

A survey of the Cambridge Structural Database (Web accessed March 24, 2022; Groom et al., 2016) and SciFinder (SciFinder, 2022) yielded no exact matches for the unit cells of [ tBuNHC2Me][Br]2·H2O, [ tBuNHC2Et][Br]2·2H2O, or [MesNHC2Et][Br]2·4H2O. A deposited dataset for [MesNHC2Me][Br]2·2H2O was found (Rheingold, 2019) with a slightly higher R1 of 3.94% and data collection at a higher temperature of 150 K, as compared to R1 of 3.18% and temperature of 112 K in the current report. As discussed in the introduction, the syntheses of all of the reported structures are reported based on the SciFinder search; however, no additional structural data were found.

5. Synthesis and crystallization

General considerations. All reagents were purchased from commercial suppliers and used without further purification. 1H NMR data were collected on a Varian 400 MHz spectrometer and referenced to residual CHCl3.

Synthesis of 1- tert -butyl-1 H -imidazole, ( t BuIm). The procedure was adapted from a literature procedure (Liu et al., 2003). A round-bottom flask was charged with 10.0 mL (95 mmol, 1 eq.) of tert-butyl­amine, 11.0 mL of 40% glyoxal (95 mmol, 1 eq.), approximately 100 mL of methanol, and approximately 25 mL of deionized water and a stir bar, then heated to 343 K under reflux. 7.81 mL of 37% formaldehyde (95 mmol, 1 eq.) were added, followed by 3.70 mL of ammonium hydroxide (95 mmol, 1 eq.) added dropwise over 5 minutes while stirring. The solution was refluxed at 343 K for 5 h, resulting in a light red–orange solution. Excess solvent was removed in vacuo, and the resulting product was diluted with approximately 150 mL of di­chloro­methane and washed twice with 50 mL of deionized H2O until the aqueous layers ran clear. The product was vacuum distilled at ∼373 K, yielding a clear liquid, which was weighed in a tared vial, resulting in 7.95 g (34% yield) of tBuIm, and characterized by 1H NMR spectroscopy in CDCl3.

Synthesis of 1-(2,4,6-tri­methyl­phen­yl)-1 H -imidazole, (MesIm). The procedure was adapted from a literature procedure (Liu et al., 2003; Gardiner et al., 1999). A 250 mL three-neck round-bottom flask was charged with 15.000 g (110.9 mmol, 1 eq.) of 2,4,6-tri­methyl­aniline, 16.090 g (110.9 mmol, 1 eq) of 40% glyoxal, and ∼75 mL of methanol and stirred for 24 h after which the solution turned orange with a yellow precipitate. 11.86 g (221.8 mmol, 2 eq.) of ammonium chloride, 18.00 g (221.8 mmol, 2 eq.) of 37% formaldehyde, and 300 mL of methanol were added, and the solution was refluxed for 24 h at 373 K, at which point the solution was deep brown. After being cooled to room temperature, 25.57 g (221.8 mmol, 2 eq.) of 85% phospho­ric acid were added dropwise over ten minutes and the solution was refluxed for 16 h at 368 K. Excess solvent was removed in vacuo at 313 K, and the viscous brown residue was poured over ∼300 g of ice and neutralized to pH 10 with a saturated solution of potassium hydroxide, resulting in a clear solution with a chunky brown precipitate. The product was taken into diethyl ether by washing the solution three times with ∼100 mL of diethyl ether. The diethyl ether solution was washed thrice with ∼100 mL of water, thrice with ∼100 mL of brine, and dried overnight over sodium sulfate. Sodium sulfate solids were gravity filtered from the solution and the solvent was removed in vacuo resulting in a brown solid. The product was recrystallized from hot ethyl acetate, resulting in 9.49 g (46% yield) of tan crystals, which were characterized by 1H NMR spectroscopy and identified as MesIm.

Synthesis of 1,1′-di( tert -but­yl)-3,3′-methyl­ene-diimidazolium dibromide, [ t BuNHC2Me][Br]2. 1.850 g (14.9 mmol, 2.5 eq.) of tbuIm and 0.4194 mL (5.9 mmol, 1 eq.) of di­bromo­methane, a stir bar, and ∼20 mL of toluene were stirred in a 50 mL round-bottomed flask. The solution was then heated to 423 K and refluxed for 46 h, resulting in the formation of a dark orange–brown solution. The solution was cooled in an ice bath, resulting in a fine white precipitate which was collected via vacuum filtration, washed twice with ∼5 mL of cold toluene, filtered and dried. 1.120 g (78.02% yield) of a fine white solid identified as [ tBuNHC2Me][Br]2 were isolated. Crystals suitable for X-ray diffraction were obtained by recrystallization from hot methanol. The product was characterized by 1H NMR spectroscopy. The 1H NMR data were consistent with those previously reported (Scherg et al., 2006).

Synthesis of 1,1′-di( tert- but­yl)-3,3′-ethyl­ene-diimidazolium dibromide [ t BuNHC2Et][Br]2. A 250 mL round-bottomed flask was charged with 2.017 g (16.2 mmol, 2.5 eq.) of tbuIm, 0.562 mL (6.45 mmol, 1 eq.) of di­bromo­ethane, a stir bar, and ∼20 mL of toluene. The mixture was refluxed at 423 K and stirred for 46 h, at which point the solution was a rusty brown color. The flask was then placed in an ice bath, and the resulting precipitate was collected via vacuum filtration and washed twice with ∼5 mL of cold toluene. The resulting solids were dried and weighed, yielding 1.727 g (61% yield) of [ tBuNHC2Et][Br]2 and single crystals suitable for X-ray diffraction were obtained via recrystallization from hot methanol. 1H NMR data were consistent with those previously reported (Scherg et al., 2006).

Synthesis of 1,1′-di(mesit­yl)-3,3′-methyl­ene-diimidazolium dibromide, [MesNHC2Me][Br]2. The procedure was adapted from a literature procedure (Gardiner et al., 1999). 5.00 g (26.8 mmol, 2.5 eq.) of MesIm we added to a 50 mL round-bottomed flask with a stir bar and ∼20 mL of toluene. 0.754 mL (10.72 mmol, 1 eq.) of di­bromo­methane were added and the solution was refluxed at 423 K for 20 h. The solution was cooled in an ice bath, resulting in a white precipitate. The white solid was recrystallized from ∼12 mL of hot methanol. The product was obtained in 17% yield (1.10 g) as tan crystals identified as [MesNHC2Me][Br]2 suitable for X-ray diffraction and characterized by 1H NMR.

Synthesis of 1,1′-di(mesit­yl)-3,3′-ethyl­ene-diimidazolium dibromide, [MesNHC2Et][Br]2. A 250 mL three-neck round-bottom flask was charged with 4.438 g (23.8 mmol, 2.5 eq.) of MesIm, 0.824 mL (9.52 mmol, 1 eq.) of 1,2-di­bromo­ethane, and ∼20 mL of toluene. The reaction mixture was heated to 423 K and refluxed for 19 h, resulting in a cloudy yellow solution. The solution was cooled in an ice bath and the precipitate was collected and recrystallized from ∼25 mL of hot methanol, resulting in 2.962 g (55% yield) of tan crystals which were analyzed via 1H NMR spectroscopy and identified as [MesNHC2Et][Br]2.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Most hydrogen atoms were placed in calculated positions using the AFIX commands of SHELXL and included as riding contributions with distances of 0.95 Å for C—H, 0.99 Å for CH2 and 0.98 Å for CH3. Methyl H atoms were allowed to rotate but not to tip to best fit the experimental electron density. U iso values of riding H atoms were set to 1.2 times U eq(C) for CH and CH2, and 1.5 times U eq(C) for CH3 and H2O. For [ tBuNHC2Me][Br]2, the SADI command of SHELX was used to model disorder in one of the tert-butyl moieties for N4—C0AA and N4—C12, C0AA—C00N and C14—C12, and C1AA—C0AA and C13—C12 to restrain distances within a sigma of 0.02 Å. The population parameters for the disordered tert-butyl groups are 0.54019 for C12–C14, and 0.45981 for C00N, C0AA, and C1AA. The highest peak and deepest hole are both near a heavy atom Br1 with a distance of 0.88 Å from the highest peak of 1.49 e Å−3 and a distance of 0.73 Å from the deepest hole of −1.10 e Å−3.

Table 2. Experimental details.

  [MesNHC2Me][Br]2·2H2O [ tBuNHC2Me][Br]2·H2O [ tBuNHC2Et][Br]2·2H2O [MesNHC2Et][Br]2·4H2O
Crystal data
Chemical formula C25H30N4 2+·2Br·2H2O C15H26N4 +·2Br·H2O C16H28N4 2+·2Br·2H2O C26H32N4 2+·2Br·4H2O
M r 582.38 440.23 472.27 632.42
Crystal system, space group Orthorhombic, P c c n Monoclinic, P21/c Monoclinic, P21/n Monoclinic, P21/c
Temperature (K) 112 293 100 100
a, b, c (Å) 21.5695 (6), 28.3385 (6), 8.9401 (2) 7.211 (5), 18.311 (17), 15.409 (5) 17.1577 (6), 7.3180 (2), 18.2712 (6) 12.4230 (3), 13.1447 (3), 9.2780 (2)
α, β, γ (°) 90, 90, 90 90, 101.35 (3), 90 90, 112.786 (1), 90 90, 108.379 (1), 90
V3) 5464.6 (2) 1995 (2) 2115.09 (12) 1437.78 (6)
Z 8 4 4 2
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 2.99 4.07 3.85 2.86
Crystal size (mm) 0.4 × 0.3 × 0.25 0.3 × 0.15 × 0.1 0.2 × 0.1 × 0.05 0.15 × 0.15 × 0.05
 
Data collection
Diffractometer Bruker Venture D8 Kappa Bruker APEXII CCD Bruker Venture D8 Kappa Bruker Venture D8 Kappa
Absorption correction Multi-scan (SADABS; Bruker, 2016) Multi-scan (SADABS; Bruker, 2016) Multi-scan (SADABS; Bruker, 2016) Multi-scan (SADABS; Bruker, 2016)
T min, T max 0.386, 0.748 0.544, 0.747 0.496, 0.748 0.544, 0.750
No. of measured, independent and observed [I > 2σ(I)] reflections 39085, 5954, 5530 33565, 4402, 3780 31474, 4664, 4168 28199, 3165, 3028
R int 0.035 0.043 0.059 0.025
(sin θ/λ)max−1) 0.641 0.641 0.641 0.641
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.032, 0.066, 1.19 0.035, 0.068, 1.08 0.031, 0.066, 1.11 0.018, 0.044, 1.10
No. of reflections 5954 4402 4664 3165
No. of parameters 338 259 253 194
No. of restraints 0 3 0 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.42, −0.54 1.49, −1.10 0.60, −0.61 0.33, −0.29

Computer programs: APEX3 and SAINT (Bruker, 2016), olex2.solve (Bourhis et al., 2015), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ), and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) sces01006_0m, est01043_0m, at01019_0ma, est01041d_0ma, global. DOI: 10.1107/S2056989022008003/mw2188sup1.cif

e-78-00905-sup1.cif (9.4MB, cif)

Structure factors: contains datablock(s) sces01006_0m. DOI: 10.1107/S2056989022008003/mw2188sces01006_0msup2.hkl

Structure factors: contains datablock(s) est01043_0m. DOI: 10.1107/S2056989022008003/mw2188est01043_0msup3.hkl

Structure factors: contains datablock(s) at01019_0ma. DOI: 10.1107/S2056989022008003/mw2188at01019_0masup4.hkl

Structure factors: contains datablock(s) est01041d_0ma. DOI: 10.1107/S2056989022008003/mw2188est01041d_0masup5.hkl

Supporting information file. DOI: 10.1107/S2056989022008003/mw2188sces01006_0msup6.cml

Supporting information file. DOI: 10.1107/S2056989022008003/mw2188est01043_0msup7.cml

Supporting information file. DOI: 10.1107/S2056989022008003/mw2188at01019_0masup8.cml

Supporting information file. DOI: 10.1107/S2056989022008003/mw2188est01041d_0masup9.cml

CCDC references: 2195736, 2195735, 2195734, 2195733

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

1,1'-Methylenebis(3-tert-butylimidazolium) dibromide monohydrate (sces01006_0m) . Crystal data

C15H26N4+·2Br·H2O F(000) = 896
Mr = 440.23 Dx = 1.466 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 7.211 (5) Å Cell parameters from 9889 reflections
b = 18.311 (17) Å θ = 2.6–30.2°
c = 15.409 (5) Å µ = 4.07 mm1
β = 101.35 (3)° T = 293 K
V = 1995 (2) Å3 Prism, clear colourless
Z = 4 0.3 × 0.15 × 0.1 mm

1,1'-Methylenebis(3-tert-butylimidazolium) dibromide monohydrate (sces01006_0m) . Data collection

Bruker APEXII CCD diffractometer 3780 reflections with I > 2σ(I)
φ and ω scans Rint = 0.043
Absorption correction: multi-scan (SADABS; Bruker, 2016) θmax = 27.1°, θmin = 2.7°
Tmin = 0.544, Tmax = 0.747 h = −9→8
33565 measured reflections k = −23→23
4402 independent reflections l = −19→19

1,1'-Methylenebis(3-tert-butylimidazolium) dibromide monohydrate (sces01006_0m) . Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0006P)2 + 4.1194P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.001
4402 reflections Δρmax = 1.49 e Å3
259 parameters Δρmin = −1.10 e Å3
3 restraints

1,1'-Methylenebis(3-tert-butylimidazolium) dibromide monohydrate (sces01006_0m) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

1,1'-Methylenebis(3-tert-butylimidazolium) dibromide monohydrate (sces01006_0m) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Br2 0.83773 (4) 0.86331 (2) 0.55378 (2) 0.03323 (9)
Br1 1.05299 (4) 0.61882 (2) 0.35706 (2) 0.03727 (10)
N3 0.4514 (3) 0.71177 (11) 0.18236 (13) 0.0175 (4)
N1 0.5823 (3) 0.48054 (11) 0.16964 (13) 0.0162 (4)
O1 0.8362 (4) 0.78047 (16) 0.35775 (17) 0.0419 (6)
N2 0.4742 (3) 0.58205 (11) 0.21324 (13) 0.0170 (4)
N4 0.5288 (3) 0.80162 (12) 0.10500 (14) 0.0225 (5)
C1 0.6311 (4) 0.54357 (13) 0.21172 (16) 0.0181 (5)
H5 0.753852 0.558228 0.235943 0.022*
C5 0.2905 (4) 0.73014 (14) 0.12095 (18) 0.0221 (5)
C4 0.5935 (4) 0.75572 (14) 0.17061 (16) 0.0211 (5)
H9 0.716674 0.754245 0.203041 0.025*
C7 0.4681 (4) 0.65531 (14) 0.25048 (16) 0.0212 (5)
H8A 0.361201 0.658686 0.279890 0.025*
H8B 0.582372 0.663573 0.294434 0.025*
C8 0.7152 (4) 0.42139 (14) 0.15085 (18) 0.0207 (5)
C6 0.3396 (4) 0.78602 (15) 0.07277 (19) 0.0251 (6)
C2 0.3869 (4) 0.47957 (15) 0.14242 (18) 0.0216 (5)
C3 0.3195 (4) 0.54263 (15) 0.16910 (19) 0.0239 (6)
C13 0.5981 (4) 0.86039 (16) −0.02694 (18) 0.0290 (6)
H15A 0.613085 0.812884 −0.050991 0.043* 0.54 (3)
H15B 0.674562 0.895007 −0.050884 0.043* 0.54 (3)
H15C 0.467761 0.874789 −0.042171 0.043* 0.54 (3)
H15D 0.641328 0.812747 −0.039773 0.043* 0.46 (3)
H15E 0.674290 0.896891 −0.047847 0.043* 0.46 (3)
H15F 0.468475 0.866370 −0.055952 0.043* 0.46 (3)
C12 0.6629 (17) 0.8579 (5) 0.0781 (8) 0.014 (2) 0.54 (3)
C11 0.6634 (5) 0.35011 (16) 0.1920 (2) 0.0402 (8)
H3A 0.676730 0.356294 0.254815 0.060*
H3B 0.746068 0.311841 0.180278 0.060*
H3C 0.534897 0.337462 0.166825 0.060*
C10 0.9155 (4) 0.44460 (17) 0.1903 (3) 0.0408 (8)
H1A 0.944282 0.489150 0.162880 0.061*
H1B 1.002017 0.407121 0.180300 0.061*
H1C 0.927348 0.452256 0.252799 0.061*
C9 0.6908 (5) 0.4157 (2) 0.0510 (2) 0.0399 (8)
H4A 0.564299 0.400122 0.026305 0.060*
H4B 0.779299 0.380851 0.036360 0.060*
H4C 0.713383 0.462547 0.027048 0.060*
C15 0.8712 (15) 0.8362 (6) 0.1050 (8) 0.0245 (19) 0.54 (3)
H13A 0.906281 0.834192 0.168381 0.037* 0.54 (3)
H13B 0.948184 0.871611 0.082775 0.037* 0.54 (3)
H13C 0.889802 0.789067 0.080737 0.037* 0.54 (3)
C14 0.6197 (18) 0.9291 (5) 0.1206 (7) 0.025 (2) 0.54 (3)
H14A 0.487306 0.939908 0.103235 0.038* 0.54 (3)
H14B 0.692055 0.967891 0.101603 0.038* 0.54 (3)
H14C 0.652454 0.924641 0.183859 0.038* 0.54 (3)
H1D 0.905 (6) 0.746 (2) 0.365 (3) 0.061 (15)*
C14A 0.530 (3) 0.9398 (5) 0.0928 (10) 0.034 (3) 0.46 (3)
H00A 0.398530 0.942603 0.064831 0.050* 0.46 (3)
H00B 0.596718 0.980230 0.074007 0.050* 0.46 (3)
H00C 0.540922 0.941501 0.155917 0.050* 0.46 (3)
C12A 0.614 (2) 0.8681 (6) 0.0668 (11) 0.021 (3) 0.46 (3)
C15A 0.823 (2) 0.8614 (11) 0.1096 (10) 0.038 (3) 0.46 (3)
H1AA 0.837624 0.866529 0.172622 0.057* 0.46 (3)
H1AB 0.893103 0.898947 0.087072 0.057* 0.46 (3)
H1AC 0.868755 0.814380 0.096076 0.057* 0.46 (3)
H1E 0.839 (5) 0.800 (2) 0.399 (3) 0.041 (12)*
H6 0.331 (4) 0.4388 (16) 0.1108 (19) 0.023 (7)*
H11 0.270 (5) 0.8115 (18) 0.027 (2) 0.035 (9)*
H10 0.175 (5) 0.7062 (18) 0.118 (2) 0.037 (9)*
H7 0.201 (5) 0.5612 (17) 0.164 (2) 0.034 (9)*

1,1'-Methylenebis(3-tert-butylimidazolium) dibromide monohydrate (sces01006_0m) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br2 0.02663 (15) 0.03928 (17) 0.02985 (16) 0.01469 (13) −0.00401 (11) −0.00144 (13)
Br1 0.02382 (15) 0.0520 (2) 0.03702 (18) −0.01154 (13) 0.00837 (12) −0.02086 (14)
N3 0.0203 (11) 0.0185 (10) 0.0146 (10) −0.0049 (8) 0.0058 (8) −0.0011 (8)
N1 0.0134 (10) 0.0203 (11) 0.0140 (10) −0.0024 (8) 0.0008 (8) 0.0046 (8)
O1 0.0559 (17) 0.0417 (15) 0.0233 (13) −0.0041 (13) −0.0040 (11) 0.0034 (11)
N2 0.0182 (11) 0.0207 (11) 0.0125 (10) −0.0039 (8) 0.0040 (8) 0.0026 (8)
N4 0.0315 (13) 0.0209 (11) 0.0153 (11) −0.0117 (9) 0.0053 (9) −0.0034 (8)
C1 0.0149 (12) 0.0223 (13) 0.0156 (12) −0.0039 (10) −0.0009 (9) 0.0041 (10)
C5 0.0210 (14) 0.0194 (13) 0.0241 (14) −0.0026 (10) 0.0002 (11) −0.0025 (10)
C4 0.0243 (14) 0.0283 (14) 0.0106 (12) −0.0092 (11) 0.0035 (10) −0.0022 (10)
C7 0.0285 (14) 0.0233 (13) 0.0135 (12) −0.0036 (11) 0.0083 (10) 0.0014 (10)
C8 0.0176 (13) 0.0180 (12) 0.0271 (14) −0.0015 (10) 0.0060 (11) 0.0024 (10)
C6 0.0304 (15) 0.0196 (13) 0.0227 (14) −0.0033 (11) −0.0010 (12) −0.0013 (11)
C2 0.0126 (12) 0.0246 (14) 0.0266 (14) −0.0068 (10) 0.0016 (10) 0.0013 (11)
C3 0.0136 (13) 0.0256 (14) 0.0328 (16) −0.0051 (11) 0.0053 (11) 0.0022 (11)
C13 0.0353 (16) 0.0344 (16) 0.0195 (14) −0.0012 (13) 0.0109 (12) 0.0030 (12)
C12 0.023 (5) 0.011 (3) 0.008 (4) −0.003 (3) 0.002 (4) 0.000 (3)
C11 0.0429 (19) 0.0235 (15) 0.060 (2) 0.0033 (13) 0.0254 (17) 0.0115 (14)
C10 0.0166 (15) 0.0285 (16) 0.072 (2) 0.0027 (12) −0.0039 (15) −0.0055 (16)
C9 0.0406 (19) 0.050 (2) 0.0316 (17) 0.0052 (15) 0.0133 (14) −0.0072 (15)
C15 0.014 (4) 0.028 (5) 0.031 (3) −0.009 (3) 0.003 (3) 0.000 (3)
C14 0.032 (5) 0.020 (3) 0.028 (4) −0.006 (3) 0.014 (3) −0.002 (3)
C14A 0.066 (9) 0.011 (3) 0.030 (5) −0.003 (4) 0.026 (6) 0.000 (3)
C12A 0.025 (6) 0.022 (5) 0.014 (4) −0.005 (4) −0.004 (4) 0.008 (3)
C15A 0.028 (6) 0.047 (8) 0.032 (5) −0.018 (5) −0.010 (5) 0.022 (5)

1,1'-Methylenebis(3-tert-butylimidazolium) dibromide monohydrate (sces01006_0m) . Geometric parameters (Å, º)

N3—C5 1.387 (3) C13—H15D 0.9600
N3—C4 1.343 (3) C13—H15E 0.9600
N3—C7 1.461 (3) C13—H15F 0.9600
N1—C1 1.337 (3) C13—C12 1.595 (13)
N1—C8 1.512 (3) C13—C12A 1.434 (16)
N1—C2 1.389 (3) C12—C15 1.530 (10)
O1—H1D 0.80 (4) C12—C14 1.519 (10)
O1—H1E 0.73 (4) C11—H3A 0.9600
N2—C1 1.337 (3) C11—H3B 0.9600
N2—C7 1.463 (3) C11—H3C 0.9600
N2—C3 1.389 (3) C10—H1A 0.9600
N4—C4 1.327 (3) C10—H1B 0.9600
N4—C6 1.387 (4) C10—H1C 0.9600
N4—C12 1.525 (9) C9—H4A 0.9600
N4—C12A 1.531 (11) C9—H4B 0.9600
C1—H5 0.9300 C9—H4C 0.9600
C5—C6 1.352 (4) C15—H13A 0.9600
C5—H10 0.94 (3) C15—H13B 0.9600
C4—H9 0.9300 C15—H13C 0.9600
C7—H8A 0.9700 C14—H14A 0.9600
C7—H8B 0.9700 C14—H14B 0.9600
C8—C11 1.529 (4) C14—H14C 0.9600
C8—C10 1.514 (4) C14A—H00A 0.9600
C8—C9 1.518 (4) C14A—H00B 0.9600
C6—H11 0.91 (3) C14A—H00C 0.9600
C2—C3 1.348 (4) C14A—C12A 1.531 (12)
C2—H6 0.94 (3) C12A—C15A 1.527 (11)
C3—H7 0.91 (3) C15A—H1AA 0.9600
C13—H15A 0.9600 C15A—H1AB 0.9600
C13—H15B 0.9600 C15A—H1AC 0.9600
C13—H15C 0.9600
C5—N3—C7 127.0 (2) C12A—C13—H15F 109.5
C4—N3—C5 108.7 (2) N4—C12—C13 102.7 (7)
C4—N3—C7 124.3 (2) N4—C12—C15 113.1 (8)
C1—N1—C8 126.5 (2) C15—C12—C13 111.0 (8)
C1—N1—C2 108.2 (2) C14—C12—N4 105.6 (7)
C2—N1—C8 125.2 (2) C14—C12—C13 111.6 (6)
H1D—O1—H1E 112 (4) C14—C12—C15 112.4 (7)
C1—N2—C7 125.5 (2) C8—C11—H3A 109.5
C1—N2—C3 108.6 (2) C8—C11—H3B 109.5
C3—N2—C7 125.8 (2) C8—C11—H3C 109.5
C4—N4—C6 108.4 (2) H3A—C11—H3B 109.5
C4—N4—C12 119.2 (6) H3A—C11—H3C 109.5
C4—N4—C12A 133.6 (7) H3B—C11—H3C 109.5
C6—N4—C12 132.4 (6) C8—C10—H1A 109.5
C6—N4—C12A 117.7 (7) C8—C10—H1B 109.5
N1—C1—N2 108.7 (2) C8—C10—H1C 109.5
N1—C1—H5 125.6 H1A—C10—H1B 109.5
N2—C1—H5 125.6 H1A—C10—H1C 109.5
N3—C5—H10 123 (2) H1B—C10—H1C 109.5
C6—C5—N3 106.5 (2) C8—C9—H4A 109.5
C6—C5—H10 131 (2) C8—C9—H4B 109.5
N3—C4—H9 125.7 C8—C9—H4C 109.5
N4—C4—N3 108.6 (2) H4A—C9—H4B 109.5
N4—C4—H9 125.7 H4A—C9—H4C 109.5
N3—C7—N2 111.8 (2) H4B—C9—H4C 109.5
N3—C7—H8A 109.3 C12—C15—H13A 109.5
N3—C7—H8B 109.3 C12—C15—H13B 109.5
N2—C7—H8A 109.3 C12—C15—H13C 109.5
N2—C7—H8B 109.3 H13A—C15—H13B 109.5
H8A—C7—H8B 107.9 H13A—C15—H13C 109.5
N1—C8—C11 108.4 (2) H13B—C15—H13C 109.5
N1—C8—C10 108.2 (2) C12—C14—H14A 109.5
N1—C8—C9 107.0 (2) C12—C14—H14B 109.5
C10—C8—C11 111.4 (3) C12—C14—H14C 109.5
C10—C8—C9 109.7 (3) H14A—C14—H14B 109.5
C9—C8—C11 111.9 (3) H14A—C14—H14C 109.5
N4—C6—H11 122 (2) H14B—C14—H14C 109.5
C5—C6—N4 107.7 (2) H00A—C14A—H00B 109.5
C5—C6—H11 131 (2) H00A—C14A—H00C 109.5
N1—C2—H6 118.1 (18) H00B—C14A—H00C 109.5
C3—C2—N1 107.6 (2) C12A—C14A—H00A 109.5
C3—C2—H6 134.3 (18) C12A—C14A—H00B 109.5
N2—C3—H7 120 (2) C12A—C14A—H00C 109.5
C2—C3—N2 106.9 (2) N4—C12A—C14A 111.9 (9)
C2—C3—H7 133 (2) C13—C12A—N4 110.5 (9)
H15A—C13—H15B 109.5 C13—C12A—C14A 113.1 (8)
H15A—C13—H15C 109.5 C13—C12A—C15A 107.5 (10)
H15B—C13—H15C 109.5 C15A—C12A—N4 101.8 (9)
H15D—C13—H15E 109.5 C15A—C12A—C14A 111.4 (10)
H15D—C13—H15F 109.5 C12A—C15A—H1AA 109.5
H15E—C13—H15F 109.5 C12A—C15A—H1AB 109.5
C12—C13—H15A 109.5 C12A—C15A—H1AC 109.5
C12—C13—H15B 109.5 H1AA—C15A—H1AB 109.5
C12—C13—H15C 109.5 H1AA—C15A—H1AC 109.5
C12A—C13—H15D 109.5 H1AB—C15A—H1AC 109.5
C12A—C13—H15E 109.5
N3—C5—C6—N4 −0.3 (3) C7—N2—C1—N1 −177.6 (2)
N1—C2—C3—N2 −0.4 (3) C7—N2—C3—C2 177.5 (2)
C1—N1—C8—C11 122.5 (3) C8—N1—C1—N2 178.4 (2)
C1—N1—C8—C10 1.6 (3) C8—N1—C2—C3 −177.9 (2)
C1—N1—C8—C9 −116.6 (3) C6—N4—C4—N3 −0.8 (3)
C1—N1—C2—C3 −0.3 (3) C6—N4—C12—C13 −36.8 (9)
C1—N2—C7—N3 97.2 (3) C6—N4—C12—C15 −156.5 (6)
C1—N2—C3—C2 0.9 (3) C6—N4—C12—C14 80.3 (8)
C5—N3—C4—N4 0.6 (3) C6—N4—C12A—C13 −59.5 (11)
C5—N3—C7—N2 75.7 (3) C6—N4—C12A—C14A 67.4 (12)
C4—N3—C5—C6 −0.2 (3) C6—N4—C12A—C15A −173.5 (9)
C4—N3—C7—N2 −105.5 (3) C2—N1—C1—N2 0.8 (3)
C4—N4—C6—C5 0.7 (3) C2—N1—C8—C11 −60.3 (3)
C4—N4—C12—C13 142.2 (5) C2—N1—C8—C10 178.8 (3)
C4—N4—C12—C15 22.6 (10) C2—N1—C8—C9 60.6 (3)
C4—N4—C12—C14 −100.7 (6) C3—N2—C1—N1 −1.0 (3)
C4—N4—C12A—C13 127.1 (8) C3—N2—C7—N3 −78.8 (3)
C4—N4—C12A—C14A −105.9 (8) C12—N4—C4—N3 179.9 (5)
C4—N4—C12A—C15A 13.1 (14) C12—N4—C6—C5 179.8 (6)
C7—N3—C5—C6 178.7 (2) C12A—N4—C4—N3 173.0 (8)
C7—N3—C4—N4 −178.3 (2) C12A—N4—C6—C5 −174.3 (7)

1,1'-(Ethane-1,2-diyl)bis(3-tert-butylimidazolium) dibromide dihydrate (est01043_0m) . Crystal data

C16H28N42+·2Br·2H2O F(000) = 968
Mr = 472.27 Dx = 1.483 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 17.1577 (6) Å Cell parameters from 9074 reflections
b = 7.3180 (2) Å θ = 2.4–38.4°
c = 18.2712 (6) Å µ = 3.85 mm1
β = 112.786 (1)° T = 100 K
V = 2115.09 (12) Å3 Prism, clear colourless
Z = 4 0.2 × 0.1 × 0.05 mm

1,1'-(Ethane-1,2-diyl)bis(3-tert-butylimidazolium) dibromide dihydrate (est01043_0m) . Data collection

Bruker Venture D8 Kappa diffractometer 4168 reflections with I > 2σ(I)
φ and ω scans Rint = 0.059
Absorption correction: multi-scan (SADABS; Bruker, 2016) θmax = 27.1°, θmin = 2.6°
Tmin = 0.496, Tmax = 0.748 h = −21→21
31474 measured reflections k = −9→9
4664 independent reflections l = −23→23

1,1'-(Ethane-1,2-diyl)bis(3-tert-butylimidazolium) dibromide dihydrate (est01043_0m) . Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.031 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.013P)2 + 2.745P] where P = (Fo2 + 2Fc2)/3
S = 1.11 (Δ/σ)max = 0.001
4664 reflections Δρmax = 0.60 e Å3
253 parameters Δρmin = −0.61 e Å3
0 restraints

1,1'-(Ethane-1,2-diyl)bis(3-tert-butylimidazolium) dibromide dihydrate (est01043_0m) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

1,1'-(Ethane-1,2-diyl)bis(3-tert-butylimidazolium) dibromide dihydrate (est01043_0m) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br2 0.42021 (2) 1.06846 (3) 0.17436 (2) 0.01794 (7)
Br1 0.64204 (2) 1.22356 (3) 0.46410 (2) 0.01716 (7)
O2 0.60635 (11) 0.9669 (3) 0.30798 (12) 0.0253 (4)
H2C 0.612198 1.048204 0.344458 0.038*
H2D 0.556728 0.988924 0.271398 0.038*
O1 0.84726 (12) 1.2201 (3) 0.50226 (12) 0.0273 (4)
H1C 0.874519 1.260282 0.550269 0.041*
H1D 0.793229 1.222132 0.491369 0.041*
N1 0.63968 (11) 0.5405 (3) 0.63652 (11) 0.0097 (4)
N2 0.70265 (12) 0.7072 (3) 0.57816 (11) 0.0111 (4)
N3 0.79306 (12) 0.7383 (3) 0.42286 (12) 0.0113 (4)
N4 0.86030 (11) 0.8912 (2) 0.36416 (11) 0.0103 (4)
C1 0.70549 (14) 0.5497 (3) 0.61555 (13) 0.0100 (4)
C9 0.61678 (14) 0.3834 (3) 0.67751 (14) 0.0119 (5)
C7 0.76212 (14) 0.7620 (3) 0.54214 (14) 0.0123 (5)
H1A 0.818644 0.709890 0.572987 0.015*
H1B 0.767285 0.896775 0.543092 0.015*
C4 0.79441 (14) 0.8939 (3) 0.38544 (13) 0.0108 (4)
C3 0.63152 (15) 0.8025 (3) 0.57441 (15) 0.0152 (5)
C10 0.68416 (16) 0.2364 (3) 0.69468 (15) 0.0165 (5)
H9A 0.688285 0.198067 0.644913 0.025*
H9B 0.668875 0.131113 0.719524 0.025*
H9C 0.738750 0.285198 0.730682 0.025*
C2 0.59238 (15) 0.6988 (3) 0.61096 (15) 0.0154 (5)
C8 0.73079 (14) 0.6942 (3) 0.45708 (14) 0.0133 (5)
H2A 0.721968 0.560336 0.455808 0.016*
H2B 0.676038 0.752701 0.425349 0.016*
C11 0.61411 (16) 0.4549 (3) 0.75498 (15) 0.0176 (5)
H7A 0.670172 0.500229 0.789205 0.026*
H7B 0.597527 0.355834 0.782054 0.026*
H7C 0.572921 0.554573 0.743410 0.026*
C5 0.86096 (15) 0.6322 (3) 0.42626 (15) 0.0155 (5)
C12 0.53083 (15) 0.3119 (4) 0.62096 (16) 0.0196 (5)
H8A 0.488167 0.407825 0.611530 0.029*
H8B 0.515078 0.205199 0.644608 0.029*
H8C 0.534144 0.276943 0.570466 0.029*
C16 0.81928 (16) 1.1913 (3) 0.30107 (15) 0.0170 (5)
H16A 0.764854 1.140422 0.265770 0.025*
H16B 0.835344 1.291111 0.273954 0.025*
H16C 0.814374 1.238204 0.349352 0.025*
C13 0.88640 (14) 1.0428 (3) 0.32301 (14) 0.0126 (5)
C15 0.89362 (16) 0.9645 (3) 0.24873 (15) 0.0186 (5)
H15A 0.935772 0.866340 0.263706 0.028*
H15B 0.911020 1.061099 0.221125 0.028*
H15C 0.838699 0.915498 0.213542 0.028*
C6 0.90270 (15) 0.7277 (3) 0.38943 (15) 0.0157 (5)
C14 0.97108 (15) 1.1159 (4) 0.38186 (16) 0.0195 (5)
H14A 0.964657 1.157067 0.430264 0.029*
H14B 0.989184 1.218801 0.357887 0.029*
H14C 1.013621 1.018734 0.395112 0.029*
H5 0.7461 (15) 0.464 (3) 0.6249 (15) 0.006 (6)*
H4 0.5430 (18) 0.717 (4) 0.6210 (17) 0.023 (8)*
H12 0.7552 (15) 0.985 (3) 0.3754 (14) 0.003 (6)*
H11 0.9505 (17) 0.698 (4) 0.3796 (16) 0.018 (7)*
H3 0.6180 (17) 0.910 (4) 0.5485 (17) 0.018 (7)*
H10 0.8680 (18) 0.521 (4) 0.4505 (18) 0.028 (8)*

1,1'-(Ethane-1,2-diyl)bis(3-tert-butylimidazolium) dibromide dihydrate (est01043_0m) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br2 0.01224 (11) 0.01866 (13) 0.02260 (14) −0.00149 (9) 0.00642 (10) 0.00053 (10)
Br1 0.02064 (13) 0.01617 (12) 0.01448 (13) −0.00222 (9) 0.00658 (10) 0.00156 (9)
O2 0.0199 (9) 0.0299 (11) 0.0227 (11) 0.0067 (8) 0.0046 (8) −0.0070 (8)
O1 0.0261 (10) 0.0346 (11) 0.0234 (11) 0.0008 (9) 0.0120 (8) −0.0035 (9)
N1 0.0115 (9) 0.0117 (9) 0.0082 (9) −0.0001 (7) 0.0063 (7) 0.0017 (7)
N2 0.0120 (9) 0.0141 (9) 0.0088 (10) −0.0008 (7) 0.0059 (8) 0.0006 (8)
N3 0.0135 (9) 0.0113 (9) 0.0118 (10) −0.0022 (7) 0.0078 (8) 0.0015 (7)
N4 0.0129 (9) 0.0103 (9) 0.0098 (10) −0.0010 (7) 0.0068 (8) 0.0018 (7)
C1 0.0114 (10) 0.0116 (11) 0.0084 (11) 0.0009 (9) 0.0054 (9) 0.0002 (8)
C9 0.0148 (11) 0.0132 (11) 0.0103 (11) −0.0025 (9) 0.0078 (9) 0.0027 (9)
C7 0.0146 (11) 0.0155 (11) 0.0094 (11) −0.0034 (9) 0.0075 (9) 0.0031 (9)
C4 0.0125 (10) 0.0127 (11) 0.0087 (11) −0.0010 (9) 0.0056 (9) 0.0005 (9)
C3 0.0170 (12) 0.0142 (12) 0.0157 (13) 0.0041 (9) 0.0079 (10) 0.0038 (10)
C10 0.0214 (12) 0.0145 (11) 0.0168 (13) 0.0004 (9) 0.0110 (10) 0.0029 (10)
C2 0.0150 (11) 0.0157 (12) 0.0182 (13) 0.0048 (9) 0.0094 (10) 0.0032 (10)
C8 0.0135 (11) 0.0177 (12) 0.0121 (12) −0.0047 (9) 0.0085 (9) 0.0008 (9)
C11 0.0228 (12) 0.0200 (12) 0.0166 (13) 0.0004 (10) 0.0149 (10) 0.0027 (10)
C5 0.0192 (12) 0.0108 (11) 0.0182 (13) 0.0020 (9) 0.0092 (10) 0.0024 (9)
C12 0.0157 (12) 0.0218 (13) 0.0207 (14) −0.0074 (10) 0.0065 (10) 0.0012 (10)
C16 0.0217 (12) 0.0160 (12) 0.0179 (13) 0.0024 (10) 0.0127 (10) 0.0053 (10)
C13 0.0143 (11) 0.0132 (11) 0.0133 (12) −0.0032 (9) 0.0085 (9) 0.0034 (9)
C15 0.0240 (13) 0.0212 (13) 0.0166 (13) −0.0010 (10) 0.0144 (11) 0.0019 (10)
C6 0.0173 (12) 0.0140 (11) 0.0200 (13) 0.0027 (9) 0.0120 (10) 0.0014 (10)
C14 0.0164 (12) 0.0215 (13) 0.0199 (13) −0.0055 (10) 0.0063 (10) 0.0031 (10)

1,1'-(Ethane-1,2-diyl)bis(3-tert-butylimidazolium) dibromide dihydrate (est01043_0m) . Geometric parameters (Å, º)

O2—H2C 0.8695 C10—H9B 0.9800
O2—H2D 0.8698 C10—H9C 0.9800
O1—H1C 0.8699 C2—H4 0.94 (3)
O1—H1D 0.8697 C8—H2A 0.9900
N1—C1 1.327 (3) C8—H2B 0.9900
N1—C9 1.505 (3) C11—H7A 0.9800
N1—C2 1.388 (3) C11—H7B 0.9800
N2—C1 1.331 (3) C11—H7C 0.9800
N2—C7 1.468 (3) C5—C6 1.352 (3)
N2—C3 1.384 (3) C5—H10 0.91 (3)
N3—C4 1.333 (3) C12—H8A 0.9800
N3—C8 1.468 (3) C12—H8B 0.9800
N3—C5 1.381 (3) C12—H8C 0.9800
N4—C4 1.330 (3) C16—H16A 0.9800
N4—C13 1.503 (3) C16—H16B 0.9800
N4—C6 1.384 (3) C16—H16C 0.9800
C1—H5 0.91 (2) C16—C13 1.520 (3)
C9—C10 1.520 (3) C13—C15 1.522 (3)
C9—C11 1.526 (3) C13—C14 1.531 (3)
C9—C12 1.528 (3) C15—H15A 0.9800
C7—H1A 0.9900 C15—H15B 0.9800
C7—H1B 0.9900 C15—H15C 0.9800
C7—C8 1.518 (3) C6—H11 0.93 (3)
C4—H12 0.91 (2) C14—H14A 0.9800
C3—C2 1.349 (3) C14—H14B 0.9800
C3—H3 0.90 (3) C14—H14C 0.9800
C10—H9A 0.9800
H2C—O2—H2D 104.5 N3—C8—H2B 109.7
H1C—O1—H1D 109.5 C7—C8—H2A 109.7
C1—N1—C9 126.71 (19) C7—C8—H2B 109.7
C1—N1—C2 108.21 (19) H2A—C8—H2B 108.2
C2—N1—C9 125.02 (18) C9—C11—H7A 109.5
C1—N2—C7 124.95 (19) C9—C11—H7B 109.5
C1—N2—C3 108.54 (19) C9—C11—H7C 109.5
C3—N2—C7 126.4 (2) H7A—C11—H7B 109.5
C4—N3—C8 124.51 (19) H7A—C11—H7C 109.5
C4—N3—C5 108.75 (19) H7B—C11—H7C 109.5
C5—N3—C8 126.7 (2) N3—C5—H10 118.4 (19)
C4—N4—C13 125.94 (19) C6—C5—N3 106.7 (2)
C4—N4—C6 108.16 (19) C6—C5—H10 134.9 (19)
C6—N4—C13 125.85 (19) C9—C12—H8A 109.5
N1—C1—N2 109.02 (19) C9—C12—H8B 109.5
N1—C1—H5 126.1 (16) C9—C12—H8C 109.5
N2—C1—H5 124.9 (16) H8A—C12—H8B 109.5
N1—C9—C10 108.60 (18) H8A—C12—H8C 109.5
N1—C9—C11 107.87 (18) H8B—C12—H8C 109.5
N1—C9—C12 107.13 (18) H16A—C16—H16B 109.5
C10—C9—C11 110.2 (2) H16A—C16—H16C 109.5
C10—C9—C12 110.8 (2) H16B—C16—H16C 109.5
C11—C9—C12 112.13 (19) C13—C16—H16A 109.5
N2—C7—H1A 109.7 C13—C16—H16B 109.5
N2—C7—H1B 109.7 C13—C16—H16C 109.5
N2—C7—C8 109.74 (18) N4—C13—C16 108.52 (18)
H1A—C7—H1B 108.2 N4—C13—C15 108.11 (19)
C8—C7—H1A 109.7 N4—C13—C14 107.00 (19)
C8—C7—H1B 109.7 C16—C13—C15 110.4 (2)
N3—C4—H12 124.6 (15) C16—C13—C14 110.6 (2)
N4—C4—N3 108.8 (2) C15—C13—C14 112.0 (2)
N4—C4—H12 126.5 (15) C13—C15—H15A 109.5
N2—C3—H3 120.5 (17) C13—C15—H15B 109.5
C2—C3—N2 106.9 (2) C13—C15—H15C 109.5
C2—C3—H3 132.5 (17) H15A—C15—H15B 109.5
C9—C10—H9A 109.5 H15A—C15—H15C 109.5
C9—C10—H9B 109.5 H15B—C15—H15C 109.5
C9—C10—H9C 109.5 N4—C6—H11 121.8 (17)
H9A—C10—H9B 109.5 C5—C6—N4 107.6 (2)
H9A—C10—H9C 109.5 C5—C6—H11 130.7 (17)
H9B—C10—H9C 109.5 C13—C14—H14A 109.5
N1—C2—H4 120.4 (18) C13—C14—H14B 109.5
C3—C2—N1 107.3 (2) C13—C14—H14C 109.5
C3—C2—H4 132.3 (17) H14A—C14—H14B 109.5
N3—C8—C7 109.68 (18) H14A—C14—H14C 109.5
N3—C8—H2A 109.7 H14B—C14—H14C 109.5
N2—C7—C8—N3 −176.23 (18) C4—N4—C6—C5 0.0 (3)
N2—C3—C2—N1 −0.2 (3) C3—N2—C1—N1 −0.5 (3)
N3—C5—C6—N4 0.2 (3) C3—N2—C7—C8 −86.8 (3)
C1—N1—C9—C10 2.3 (3) C2—N1—C1—N2 0.4 (3)
C1—N1—C9—C11 121.7 (2) C2—N1—C9—C10 179.3 (2)
C1—N1—C9—C12 −117.4 (2) C2—N1—C9—C11 −61.3 (3)
C1—N1—C2—C3 −0.1 (3) C2—N1—C9—C12 59.6 (3)
C1—N2—C7—C8 88.3 (3) C8—N3—C4—N4 178.2 (2)
C1—N2—C3—C2 0.5 (3) C8—N3—C5—C6 −178.1 (2)
C9—N1—C1—N2 177.7 (2) C5—N3—C4—N4 0.4 (3)
C9—N1—C2—C3 −177.5 (2) C5—N3—C8—C7 88.4 (3)
C7—N2—C1—N1 −176.37 (19) C13—N4—C4—N3 −177.8 (2)
C7—N2—C3—C2 176.3 (2) C13—N4—C6—C5 177.6 (2)
C4—N3—C8—C7 −88.9 (3) C6—N4—C4—N3 −0.3 (3)
C4—N3—C5—C6 −0.4 (3) C6—N4—C13—C16 176.4 (2)
C4—N4—C13—C16 −6.5 (3) C6—N4—C13—C15 56.6 (3)
C4—N4—C13—C15 −126.3 (2) C6—N4—C13—C14 −64.3 (3)
C4—N4—C13—C14 112.8 (2)

1,1'-Methylenebis[3-(2,4,6-trimethylphenyl)imidazolium] dibromide dihydrate (at01019_0ma). Crystal data

C25H30N42+·2Br·2H2O Dx = 1.416 Mg m3
Mr = 582.38 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pccn Cell parameters from 9959 reflections
a = 21.5695 (6) Å θ = 2.6–39.4°
b = 28.3385 (6) Å µ = 2.99 mm1
c = 8.9401 (2) Å T = 112 K
V = 5464.6 (2) Å3 Prism, clear colourless
Z = 8 0.4 × 0.3 × 0.25 mm
F(000) = 2384

1,1'-Methylenebis[3-(2,4,6-trimethylphenyl)imidazolium] dibromide dihydrate (at01019_0ma). Data collection

Bruker Venture Kappa D diffractometer 5530 reflections with I > 2σ(I)
φ and ω scans Rint = 0.035
Absorption correction: multi-scan (SADABS; Bruker, 2016) θmax = 27.1°, θmin = 2.6°
Tmin = 0.386, Tmax = 0.748 h = −24→27
39085 measured reflections k = −31→36
5954 independent reflections l = −11→11

1,1'-Methylenebis[3-(2,4,6-trimethylphenyl)imidazolium] dibromide dihydrate (at01019_0ma). Refinement

Refinement on F2 Primary atom site location: iterative
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0149P)2 + 6.9269P] where P = (Fo2 + 2Fc2)/3
S = 1.19 (Δ/σ)max = 0.002
5954 reflections Δρmax = 0.42 e Å3
338 parameters Δρmin = −0.54 e Å3
0 restraints

1,1'-Methylenebis[3-(2,4,6-trimethylphenyl)imidazolium] dibromide dihydrate (at01019_0ma). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

1,1'-Methylenebis[3-(2,4,6-trimethylphenyl)imidazolium] dibromide dihydrate (at01019_0ma). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Br1 0.32147 (2) 0.59206 (2) 0.51936 (2) 0.01792 (6)
Br2 0.33241 (2) 0.42996 (2) 0.77256 (2) 0.01874 (6)
N2 0.14868 (8) 0.40218 (6) 0.76624 (19) 0.0134 (3)
N3 0.17753 (8) 0.54615 (6) 0.5774 (2) 0.0167 (4)
N1 0.17956 (8) 0.47256 (6) 0.7130 (2) 0.0158 (4)
N4 0.14048 (8) 0.61532 (6) 0.53485 (19) 0.0151 (3)
C4 0.17963 (9) 0.42757 (7) 0.6667 (2) 0.0165 (4)
H4 0.198554 0.415943 0.578146 0.020*
C16 0.17313 (9) 0.59006 (7) 0.6302 (2) 0.0154 (4)
H16 0.190588 0.601214 0.721117 0.018*
C17 0.12153 (9) 0.66386 (7) 0.5581 (2) 0.0146 (4)
C5 0.13900 (9) 0.35172 (7) 0.7556 (2) 0.0141 (4)
O2A 0.4650 (10) 0.5643 (7) 0.601 (3) 0.037 (3) 0.47 (9)
H2AA 0.482702 0.563311 0.513609 0.055* 0.47 (9)
H2AB 0.427586 0.574062 0.582766 0.055* 0.47 (9)
C12 0.22444 (10) 0.34048 (8) 0.9479 (2) 0.0201 (4)
H12A 0.256440 0.357156 0.890780 0.030*
H12B 0.243324 0.314106 1.002226 0.030*
H12C 0.205240 0.362270 1.019314 0.030*
C14 0.14765 (13) 0.54398 (8) 0.4406 (3) 0.0275 (5)
C18 0.07474 (9) 0.67224 (7) 0.6624 (2) 0.0150 (4)
C22 0.15021 (10) 0.69938 (7) 0.4754 (2) 0.0179 (4)
C6 0.17572 (9) 0.32189 (7) 0.8424 (2) 0.0153 (4)
C24 0.04581 (10) 0.63259 (7) 0.7507 (2) 0.0190 (4)
H24A 0.037277 0.605939 0.683916 0.028*
H24B 0.006967 0.643518 0.795745 0.028*
H24C 0.074401 0.622543 0.829693 0.028*
C3 0.12848 (12) 0.43164 (8) 0.8801 (3) 0.0244 (5)
C10 0.09279 (10) 0.33558 (7) 0.6589 (2) 0.0163 (4)
C15 0.12434 (13) 0.58713 (8) 0.4143 (3) 0.0272 (5)
C1 0.21637 (10) 0.50965 (7) 0.6432 (3) 0.0231 (5)
H1A 0.243891 0.524043 0.719194 0.028*
H1B 0.242843 0.495638 0.564401 0.028*
C19 0.05623 (10) 0.71864 (7) 0.6822 (2) 0.0174 (4)
H19 0.024420 0.725449 0.752452 0.021*
C11 0.05222 (11) 0.36931 (8) 0.5741 (3) 0.0242 (5)
H11A 0.036347 0.393487 0.642452 0.036*
H11B 0.017393 0.352060 0.529724 0.036*
H11C 0.076445 0.384406 0.494617 0.036*
O1A 0.47220 (10) 0.47135 (8) 0.6838 (4) 0.0715 (9)
H1AA 0.487824 0.450597 0.622561 0.107*
H1AB 0.436751 0.459386 0.710574 0.107*
C7 0.16563 (9) 0.27361 (7) 0.8269 (2) 0.0175 (4)
H7 0.189642 0.252345 0.885177 0.021*
C2 0.14808 (12) 0.47542 (8) 0.8472 (3) 0.0245 (5)
C20 0.08292 (10) 0.75565 (7) 0.6021 (2) 0.0182 (4)
C23 0.20108 (11) 0.68858 (8) 0.3644 (3) 0.0263 (5)
H23A 0.236552 0.674719 0.416963 0.040*
H23B 0.214017 0.717788 0.314740 0.040*
H23C 0.185662 0.666212 0.289523 0.040*
C8 0.12146 (10) 0.25546 (7) 0.7288 (2) 0.0184 (4)
C9 0.08556 (10) 0.28686 (7) 0.6465 (2) 0.0179 (4)
H9 0.055181 0.274754 0.579845 0.021*
C13 0.11192 (11) 0.20288 (7) 0.7166 (3) 0.0243 (5)
H13A 0.152068 0.186833 0.723425 0.036*
H13B 0.092477 0.195470 0.620360 0.036*
H13C 0.085012 0.192160 0.798149 0.036*
C21 0.12978 (10) 0.74543 (7) 0.5009 (2) 0.0197 (4)
H21 0.148577 0.770574 0.447203 0.024*
C25 0.06032 (11) 0.80563 (7) 0.6251 (3) 0.0256 (5)
H25A 0.020408 0.809802 0.574412 0.038*
H25B 0.090640 0.827784 0.583474 0.038*
H25C 0.055261 0.811696 0.732324 0.038*
H2 0.1460 (13) 0.5020 (10) 0.892 (3) 0.031*
H15 0.1018 (13) 0.5989 (9) 0.332 (3) 0.031*
H3 0.1080 (13) 0.4191 (10) 0.963 (3) 0.031*
H14 0.1479 (13) 0.5182 (10) 0.388 (3) 0.031*
O2 0.4729 (8) 0.5614 (8) 0.556 (4) 0.043 (5) 0.53 (9)
H2A 0.438 (4) 0.569 (4) 0.542 (11) 0.064* 0.53 (9)
H2B 0.465 (4) 0.542 (3) 0.606 (11) 0.064* 0.53 (9)

1,1'-Methylenebis[3-(2,4,6-trimethylphenyl)imidazolium] dibromide dihydrate (at01019_0ma). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.01793 (11) 0.01900 (10) 0.01682 (11) −0.00262 (8) 0.00203 (8) −0.00139 (8)
Br2 0.02215 (11) 0.01532 (10) 0.01876 (11) −0.00184 (8) 0.00044 (8) −0.00160 (8)
N2 0.0173 (8) 0.0108 (8) 0.0120 (8) −0.0006 (6) 0.0010 (6) −0.0006 (6)
N3 0.0177 (9) 0.0101 (8) 0.0222 (9) 0.0009 (6) 0.0016 (7) 0.0035 (7)
N1 0.0145 (8) 0.0116 (8) 0.0213 (9) 0.0005 (6) 0.0008 (7) 0.0025 (7)
N4 0.0207 (9) 0.0114 (8) 0.0133 (8) 0.0006 (6) −0.0008 (7) 0.0006 (7)
C4 0.0157 (10) 0.0147 (9) 0.0190 (10) 0.0021 (8) 0.0023 (8) 0.0000 (8)
C16 0.0150 (10) 0.0125 (9) 0.0186 (10) −0.0017 (7) −0.0002 (8) 0.0012 (8)
C17 0.0179 (10) 0.0113 (9) 0.0147 (10) 0.0014 (7) −0.0043 (8) −0.0008 (8)
C5 0.0186 (10) 0.0101 (9) 0.0135 (10) −0.0020 (7) 0.0038 (8) 0.0000 (7)
O2A 0.026 (5) 0.040 (4) 0.045 (6) 0.008 (4) 0.005 (4) 0.005 (5)
C12 0.0208 (11) 0.0196 (10) 0.0200 (11) −0.0019 (8) −0.0023 (9) 0.0016 (9)
C14 0.0443 (15) 0.0135 (10) 0.0248 (12) 0.0035 (10) −0.0058 (11) −0.0070 (9)
C18 0.0174 (10) 0.0128 (9) 0.0148 (10) −0.0008 (7) −0.0047 (8) 0.0020 (8)
C22 0.0198 (11) 0.0149 (10) 0.0192 (10) −0.0008 (8) −0.0009 (8) 0.0011 (8)
C6 0.0135 (10) 0.0168 (9) 0.0157 (10) −0.0010 (7) 0.0034 (8) 0.0016 (8)
C24 0.0206 (11) 0.0157 (10) 0.0205 (11) 0.0016 (8) 0.0014 (9) 0.0045 (8)
C3 0.0376 (14) 0.0183 (11) 0.0174 (11) 0.0000 (9) 0.0088 (10) −0.0005 (9)
C10 0.0177 (10) 0.0163 (10) 0.0150 (10) −0.0026 (8) 0.0008 (8) 0.0027 (8)
C15 0.0446 (15) 0.0182 (11) 0.0188 (11) 0.0055 (10) −0.0107 (11) −0.0043 (9)
C1 0.0170 (11) 0.0122 (10) 0.0402 (14) 0.0011 (8) 0.0022 (10) 0.0103 (9)
C19 0.0182 (10) 0.0151 (10) 0.0188 (10) 0.0023 (8) −0.0018 (8) −0.0007 (8)
C11 0.0257 (12) 0.0202 (11) 0.0266 (12) −0.0037 (9) −0.0083 (10) 0.0042 (9)
O1A 0.0296 (12) 0.0545 (14) 0.130 (3) 0.0055 (10) 0.0180 (14) 0.0468 (16)
C7 0.0168 (10) 0.0147 (9) 0.0208 (10) 0.0018 (8) 0.0026 (8) 0.0041 (8)
C2 0.0364 (14) 0.0154 (10) 0.0216 (12) 0.0015 (9) 0.0050 (10) −0.0040 (9)
C20 0.0212 (11) 0.0107 (9) 0.0227 (11) 0.0007 (8) −0.0062 (9) −0.0007 (8)
C23 0.0283 (13) 0.0216 (11) 0.0291 (13) 0.0004 (9) 0.0091 (10) 0.0042 (10)
C8 0.0202 (10) 0.0147 (10) 0.0201 (10) −0.0028 (8) 0.0083 (8) −0.0002 (8)
C9 0.0203 (11) 0.0170 (10) 0.0164 (10) −0.0057 (8) 0.0002 (8) −0.0013 (8)
C13 0.0267 (12) 0.0148 (10) 0.0313 (13) −0.0033 (8) 0.0054 (10) −0.0026 (9)
C21 0.0225 (11) 0.0125 (9) 0.0242 (11) −0.0027 (8) −0.0021 (9) 0.0036 (9)
C25 0.0283 (12) 0.0120 (10) 0.0366 (14) 0.0028 (9) 0.0002 (10) −0.0008 (10)
O2 0.023 (4) 0.045 (5) 0.060 (13) 0.013 (3) 0.006 (5) 0.026 (7)

1,1'-Methylenebis[3-(2,4,6-trimethylphenyl)imidazolium] dibromide dihydrate (at01019_0ma). Geometric parameters (Å, º)

N2—C4 1.325 (3) C3—C2 1.343 (3)
N2—C5 1.448 (2) C3—H3 0.93 (3)
N2—C3 1.387 (3) C10—C11 1.502 (3)
N3—C16 1.334 (3) C10—C9 1.394 (3)
N3—C14 1.384 (3) C15—H15 0.94 (3)
N3—C1 1.455 (3) C1—H1A 0.9900
N1—C4 1.340 (3) C1—H1B 0.9900
N1—C1 1.458 (3) C19—H19 0.9500
N1—C2 1.380 (3) C19—C20 1.394 (3)
N4—C16 1.317 (3) C11—H11A 0.9800
N4—C17 1.450 (2) C11—H11B 0.9800
N4—C15 1.386 (3) C11—H11C 0.9800
C4—H4 0.9500 O1A—H1AA 0.8712
C16—H16 0.9500 O1A—H1AB 0.8701
C17—C18 1.394 (3) C7—H7 0.9500
C17—C22 1.394 (3) C7—C8 1.394 (3)
C5—C6 1.394 (3) C2—H2 0.86 (3)
C5—C10 1.396 (3) C20—C21 1.387 (3)
O2A—H2AA 0.8694 C20—C25 1.512 (3)
O2A—H2AB 0.8679 C23—H23A 0.9800
C12—H12A 0.9800 C23—H23B 0.9800
C12—H12B 0.9800 C23—H23C 0.9800
C12—H12C 0.9800 C8—C9 1.390 (3)
C12—C6 1.507 (3) C8—C13 1.508 (3)
C14—C15 1.343 (3) C9—H9 0.9500
C14—H14 0.87 (3) C13—H13A 0.9800
C18—C24 1.508 (3) C13—H13B 0.9800
C18—C19 1.386 (3) C13—H13C 0.9800
C22—C23 1.511 (3) C21—H21 0.9500
C22—C21 1.396 (3) C25—H25A 0.9800
C6—C7 1.392 (3) C25—H25B 0.9800
C24—H24A 0.9800 C25—H25C 0.9800
C24—H24B 0.9800 O2—H2A 0.79 (9)
C24—H24C 0.9800 O2—H2B 0.74 (11)
C4—N2—C5 124.39 (17) C14—C15—N4 107.1 (2)
C4—N2—C3 108.93 (17) C14—C15—H15 130.8 (17)
C3—N2—C5 126.68 (17) N3—C1—N1 111.83 (17)
C16—N3—C14 108.72 (18) N3—C1—H1A 109.3
C16—N3—C1 124.13 (19) N3—C1—H1B 109.3
C14—N3—C1 126.41 (19) N1—C1—H1A 109.3
C4—N1—C1 123.56 (19) N1—C1—H1B 109.3
C4—N1—C2 108.94 (18) H1A—C1—H1B 107.9
C2—N1—C1 126.71 (19) C18—C19—H19 119.0
C16—N4—C17 124.98 (17) C18—C19—C20 122.0 (2)
C16—N4—C15 108.91 (17) C20—C19—H19 119.0
C15—N4—C17 126.00 (18) C10—C11—H11A 109.5
N2—C4—N1 107.98 (18) C10—C11—H11B 109.5
N2—C4—H4 126.0 C10—C11—H11C 109.5
N1—C4—H4 126.0 H11A—C11—H11B 109.5
N3—C16—H16 125.8 H11A—C11—H11C 109.5
N4—C16—N3 108.43 (19) H11B—C11—H11C 109.5
N4—C16—H16 125.8 H1AA—O1A—H1AB 104.5
C18—C17—N4 117.50 (17) C6—C7—H7 118.9
C22—C17—N4 118.93 (18) C6—C7—C8 122.13 (19)
C22—C17—C18 123.56 (18) C8—C7—H7 118.9
C6—C5—N2 118.71 (18) N1—C2—H2 119.2 (19)
C6—C5—C10 123.44 (18) C3—C2—N1 106.9 (2)
C10—C5—N2 117.85 (18) C3—C2—H2 133.8 (19)
H2AA—O2A—H2AB 104.6 C19—C20—C25 120.1 (2)
H12A—C12—H12B 109.5 C21—C20—C19 118.61 (19)
H12A—C12—H12C 109.5 C21—C20—C25 121.3 (2)
H12B—C12—H12C 109.5 C22—C23—H23A 109.5
C6—C12—H12A 109.5 C22—C23—H23B 109.5
C6—C12—H12B 109.5 C22—C23—H23C 109.5
C6—C12—H12C 109.5 H23A—C23—H23B 109.5
N3—C14—H14 121.0 (18) H23A—C23—H23C 109.5
C15—C14—N3 106.8 (2) H23B—C23—H23C 109.5
C15—C14—H14 132.2 (19) C7—C8—C13 120.2 (2)
C17—C18—C24 121.48 (18) C9—C8—C7 118.53 (19)
C19—C18—C17 117.11 (19) C9—C8—C13 121.2 (2)
C19—C18—C24 121.41 (19) C10—C9—H9 119.0
C17—C22—C23 121.64 (19) C8—C9—C10 122.0 (2)
C17—C22—C21 116.6 (2) C8—C9—H9 119.0
C21—C22—C23 121.72 (19) C8—C13—H13A 109.5
C5—C6—C12 122.16 (18) C8—C13—H13B 109.5
C7—C6—C5 116.87 (19) C8—C13—H13C 109.5
C7—C6—C12 120.96 (19) H13A—C13—H13B 109.5
C18—C24—H24A 109.5 H13A—C13—H13C 109.5
C18—C24—H24B 109.5 H13B—C13—H13C 109.5
C18—C24—H24C 109.5 C22—C21—H21 118.9
H24A—C24—H24B 109.5 C20—C21—C22 122.1 (2)
H24A—C24—H24C 109.5 C20—C21—H21 118.9
H24B—C24—H24C 109.5 C20—C25—H25A 109.5
N2—C3—H3 120.2 (17) C20—C25—H25B 109.5
C2—C3—N2 107.2 (2) C20—C25—H25C 109.5
C2—C3—H3 132.4 (17) H25A—C25—H25B 109.5
C5—C10—C11 121.33 (18) H25A—C25—H25C 109.5
C9—C10—C5 116.98 (19) H25B—C25—H25C 109.5
C9—C10—C11 121.68 (19) H2A—O2—H2B 94 (10)
N4—C15—H15 122.0 (17)
N2—C5—C6—C12 0.8 (3) C18—C17—C22—C23 179.6 (2)
N2—C5—C6—C7 −178.95 (18) C18—C17—C22—C21 −0.1 (3)
N2—C5—C10—C11 −2.9 (3) C18—C19—C20—C21 −0.7 (3)
N2—C5—C10—C9 177.94 (18) C18—C19—C20—C25 178.7 (2)
N2—C3—C2—N1 0.5 (3) C22—C17—C18—C24 −179.1 (2)
N3—C14—C15—N4 0.3 (3) C22—C17—C18—C19 0.4 (3)
N4—C17—C18—C24 1.4 (3) C6—C5—C10—C11 176.7 (2)
N4—C17—C18—C19 −178.99 (18) C6—C5—C10—C9 −2.5 (3)
N4—C17—C22—C23 −1.0 (3) C6—C7—C8—C9 −1.5 (3)
N4—C17—C22—C21 179.30 (18) C6—C7—C8—C13 −179.6 (2)
C4—N2—C5—C6 101.6 (2) C24—C18—C19—C20 179.5 (2)
C4—N2—C5—C10 −78.8 (3) C3—N2—C4—N1 −0.4 (2)
C4—N2—C3—C2 −0.1 (3) C3—N2—C5—C6 −77.5 (3)
C4—N1—C1—N3 116.6 (2) C3—N2—C5—C10 102.1 (3)
C4—N1—C2—C3 −0.8 (3) C10—C5—C6—C12 −178.8 (2)
C16—N3—C14—C15 −1.2 (3) C10—C5—C6—C7 1.5 (3)
C16—N3—C1—N1 110.9 (2) C15—N4—C16—N3 −1.4 (2)
C16—N4—C17—C18 −72.6 (3) C15—N4—C17—C18 103.3 (3)
C16—N4—C17—C22 108.0 (2) C15—N4—C17—C22 −76.2 (3)
C16—N4—C15—C14 0.7 (3) C1—N3—C16—N4 172.30 (18)
C17—N4—C16—N3 175.03 (18) C1—N3—C14—C15 −171.6 (2)
C17—N4—C15—C14 −175.7 (2) C1—N1—C4—N2 171.14 (19)
C17—C18—C19—C20 0.0 (3) C1—N1—C2—C3 −170.8 (2)
C17—C22—C21—C20 −0.6 (3) C19—C20—C21—C22 1.0 (3)
C5—N2—C4—N1 −179.63 (18) C11—C10—C9—C8 −177.7 (2)
C5—N2—C3—C2 179.1 (2) C7—C8—C9—C10 0.4 (3)
C5—C6—C7—C8 0.6 (3) C2—N1—C4—N2 0.7 (2)
C5—C10—C9—C8 1.5 (3) C2—N1—C1—N3 −74.7 (3)
C12—C6—C7—C8 −179.16 (19) C23—C22—C21—C20 179.7 (2)
C14—N3—C16—N4 1.6 (2) C13—C8—C9—C10 178.5 (2)
C14—N3—C1—N1 −80.1 (3) C25—C20—C21—C22 −178.4 (2)

1,1'-(Ethane-1,2-diyl)bis[3-(2,4,6-trimethylphenyl)imidazolium] dibromide tetrahydrate (est01041d_0ma). Crystal data

C26H32N42+·2Br·4H2O F(000) = 652
Mr = 632.42 Dx = 1.461 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 12.4230 (3) Å Cell parameters from 9565 reflections
b = 13.1447 (3) Å θ = 2.3–44.6°
c = 9.2780 (2) Å µ = 2.86 mm1
β = 108.379 (1)° T = 100 K
V = 1437.78 (6) Å3 Prism, clear colourless
Z = 2 0.15 × 0.15 × 0.05 mm

1,1'-(Ethane-1,2-diyl)bis[3-(2,4,6-trimethylphenyl)imidazolium] dibromide tetrahydrate (est01041d_0ma). Data collection

Bruker Venture D8 Kappa diffractometer 3028 reflections with I > 2σ(I)
φ and ω scans Rint = 0.025
Absorption correction: multi-scan (SADABS; Bruker, 2016) θmax = 27.1°, θmin = 2.8°
Tmin = 0.544, Tmax = 0.750 h = −15→15
28199 measured reflections k = −16→16
3165 independent reflections l = −11→11

1,1'-(Ethane-1,2-diyl)bis[3-(2,4,6-trimethylphenyl)imidazolium] dibromide tetrahydrate (est01041d_0ma). Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.018 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.044 w = 1/[σ2(Fo2) + (0.0151P)2 + 0.8539P] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max < 0.001
3165 reflections Δρmax = 0.33 e Å3
194 parameters Δρmin = −0.29 e Å3
0 restraints

1,1'-(Ethane-1,2-diyl)bis[3-(2,4,6-trimethylphenyl)imidazolium] dibromide tetrahydrate (est01041d_0ma). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

1,1'-(Ethane-1,2-diyl)bis[3-(2,4,6-trimethylphenyl)imidazolium] dibromide tetrahydrate (est01041d_0ma). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br01 −0.19328 (2) 0.01828 (2) 0.22033 (2) 0.01558 (5)
O1 −0.07000 (10) 0.23627 (9) 0.37843 (13) 0.0268 (2)
H1D −0.1073 (18) 0.1876 (18) 0.340 (2) 0.036 (5)*
H1E −0.0360 (18) 0.2528 (17) 0.326 (3) 0.039 (6)*
N1 0.28176 (8) 0.55577 (8) 0.81318 (11) 0.0117 (2)
N2 0.12491 (9) 0.48768 (8) 0.67428 (12) 0.0123 (2)
O2 0.04964 (10) 0.29104 (10) 0.18398 (14) 0.0276 (2)
H2A 0.0823 (18) 0.3420 (18) 0.200 (2) 0.036 (6)*
H2B 0.016 (2) 0.2902 (19) 0.096 (3) 0.051 (7)*
C12 0.71245 (12) 0.75891 (11) 0.97675 (18) 0.0250 (3)
H1A 0.736386 0.766617 0.886291 0.037*
H1B 0.768542 0.718094 1.052694 0.037*
H1C 0.706272 0.826152 1.019087 0.037*
C6 0.59853 (11) 0.70628 (10) 0.93381 (15) 0.0166 (3)
C10 0.51141 (11) 0.74146 (10) 0.98445 (14) 0.0166 (3)
H3 0.523920 0.800361 1.046905 0.020*
C8 0.40605 (11) 0.69326 (10) 0.94673 (14) 0.0148 (2)
C9 0.39084 (10) 0.60639 (9) 0.85679 (13) 0.0117 (2)
C1 0.21894 (10) 0.53490 (9) 0.67103 (14) 0.0126 (2)
H6 0.2362 (13) 0.5503 (13) 0.5832 (19) 0.015 (4)*
C7 0.03385 (10) 0.45390 (10) 0.53959 (14) 0.0132 (2)
H7A −0.016689 0.406014 0.569818 0.016*
H7B 0.066579 0.418089 0.469255 0.016*
C4 0.47678 (10) 0.56704 (10) 0.80436 (13) 0.0128 (2)
C5 0.57920 (10) 0.61949 (10) 0.84337 (14) 0.0147 (2)
H9 0.637928 0.595239 0.807044 0.018*
C13 0.46334 (11) 0.47141 (10) 0.71025 (16) 0.0183 (3)
H10A 0.418593 0.486447 0.604922 0.027*
H10B 0.424390 0.419506 0.751255 0.027*
H10C 0.538291 0.446186 0.713460 0.027*
C11 0.31461 (12) 0.73712 (11) 1.00412 (16) 0.0225 (3)
H11A 0.240263 0.726481 0.927945 0.034*
H11B 0.327739 0.810168 1.022662 0.034*
H11C 0.316568 0.703141 1.098930 0.034*
C3 0.12649 (11) 0.47941 (11) 0.82365 (15) 0.0166 (3)
H12 0.0660 (15) 0.4502 (14) 0.8469 (19) 0.023 (4)*
C2 0.22470 (11) 0.52150 (11) 0.91051 (15) 0.0162 (3)
H13 0.2517 (15) 0.5293 (13) 1.016 (2) 0.022 (4)*

1,1'-(Ethane-1,2-diyl)bis[3-(2,4,6-trimethylphenyl)imidazolium] dibromide tetrahydrate (est01041d_0ma). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br01 0.01802 (7) 0.01898 (8) 0.01231 (7) −0.00240 (5) 0.00847 (5) −0.00121 (5)
O1 0.0320 (6) 0.0288 (6) 0.0207 (5) −0.0124 (5) 0.0100 (5) −0.0066 (5)
N1 0.0124 (5) 0.0137 (5) 0.0093 (5) 0.0009 (4) 0.0037 (4) 0.0012 (4)
N2 0.0122 (5) 0.0141 (5) 0.0108 (5) −0.0002 (4) 0.0039 (4) 0.0020 (4)
O2 0.0332 (6) 0.0284 (6) 0.0201 (6) −0.0086 (5) 0.0068 (5) 0.0010 (5)
C12 0.0165 (6) 0.0195 (7) 0.0338 (8) −0.0033 (5) 0.0007 (6) −0.0009 (6)
C6 0.0159 (6) 0.0141 (6) 0.0158 (6) −0.0007 (5) −0.0005 (5) 0.0031 (5)
C10 0.0206 (6) 0.0125 (6) 0.0133 (6) 0.0006 (5) 0.0003 (5) −0.0027 (5)
C8 0.0168 (6) 0.0150 (6) 0.0112 (5) 0.0045 (5) 0.0024 (4) 0.0008 (5)
C9 0.0116 (5) 0.0134 (6) 0.0087 (5) −0.0002 (4) 0.0012 (4) 0.0018 (4)
C1 0.0141 (6) 0.0132 (6) 0.0109 (6) −0.0006 (4) 0.0046 (5) 0.0007 (4)
C7 0.0125 (5) 0.0136 (6) 0.0120 (5) −0.0024 (5) 0.0021 (4) −0.0005 (5)
C4 0.0153 (6) 0.0127 (6) 0.0094 (5) 0.0015 (5) 0.0027 (4) 0.0008 (5)
C5 0.0136 (5) 0.0161 (6) 0.0140 (6) 0.0018 (5) 0.0036 (4) 0.0020 (5)
C13 0.0178 (6) 0.0179 (7) 0.0200 (6) −0.0004 (5) 0.0070 (5) −0.0070 (5)
C11 0.0222 (7) 0.0238 (7) 0.0219 (7) 0.0057 (5) 0.0076 (5) −0.0074 (6)
C3 0.0155 (6) 0.0228 (7) 0.0127 (6) 0.0005 (5) 0.0064 (5) 0.0050 (5)
C2 0.0164 (6) 0.0224 (7) 0.0109 (6) 0.0025 (5) 0.0059 (5) 0.0036 (5)

1,1'-(Ethane-1,2-diyl)bis[3-(2,4,6-trimethylphenyl)imidazolium] dibromide tetrahydrate (est01041d_0ma). Geometric parameters (Å, º)

O1—H1D 0.80 (2) C8—C11 1.5126 (17)
O1—H1E 0.77 (2) C9—C4 1.4042 (17)
N1—C9 1.4481 (15) C1—H6 0.928 (17)
N1—C1 1.3322 (16) C7—C7i 1.525 (2)
N1—C2 1.3872 (16) C7—H7A 0.9900
N2—C1 1.3314 (16) C7—H7B 0.9900
N2—C7 1.4653 (16) C4—C5 1.3909 (17)
N2—C3 1.3841 (16) C4—C13 1.5095 (17)
O2—H2A 0.77 (2) C5—H9 0.9500
O2—H2B 0.79 (3) C13—H10A 0.9800
C12—H1A 0.9800 C13—H10B 0.9800
C12—H1B 0.9800 C13—H10C 0.9800
C12—H1C 0.9800 C11—H11A 0.9800
C12—C6 1.5114 (18) C11—H11B 0.9800
C6—C10 1.3880 (19) C11—H11C 0.9800
C6—C5 1.3915 (18) C3—H12 0.928 (18)
C10—H3 0.9500 C3—C2 1.3506 (19)
C10—C8 1.3959 (18) C2—H13 0.932 (19)
C8—C9 1.3915 (18)
H1D—O1—H1E 107 (2) N2—C7—H7A 109.8
C1—N1—C9 125.15 (10) N2—C7—H7B 109.8
C1—N1—C2 108.51 (11) C7i—C7—H7A 109.8
C2—N1—C9 126.34 (10) C7i—C7—H7B 109.8
C1—N2—C7 124.67 (11) H7A—C7—H7B 108.3
C1—N2—C3 108.89 (11) C9—C4—C13 123.34 (11)
C3—N2—C7 126.41 (11) C5—C4—C9 117.41 (11)
H2A—O2—H2B 106 (2) C5—C4—C13 119.25 (11)
H1A—C12—H1B 109.5 C6—C5—H9 118.9
H1A—C12—H1C 109.5 C4—C5—C6 122.21 (12)
H1B—C12—H1C 109.5 C4—C5—H9 118.9
C6—C12—H1A 109.5 C4—C13—H10A 109.5
C6—C12—H1B 109.5 C4—C13—H10B 109.5
C6—C12—H1C 109.5 C4—C13—H10C 109.5
C10—C6—C12 121.57 (12) H10A—C13—H10B 109.5
C10—C6—C5 118.20 (12) H10A—C13—H10C 109.5
C5—C6—C12 120.23 (12) H10B—C13—H10C 109.5
C6—C10—H3 118.9 C8—C11—H11A 109.5
C6—C10—C8 122.24 (12) C8—C11—H11B 109.5
C8—C10—H3 118.9 C8—C11—H11C 109.5
C10—C8—C11 119.19 (12) H11A—C11—H11B 109.5
C9—C8—C10 117.53 (12) H11A—C11—H11C 109.5
C9—C8—C11 123.28 (12) H11B—C11—H11C 109.5
C8—C9—N1 118.87 (11) N2—C3—H12 120.6 (11)
C8—C9—C4 122.39 (11) C2—C3—N2 106.87 (11)
C4—C9—N1 118.73 (11) C2—C3—H12 132.6 (11)
N1—C1—H6 126.8 (10) N1—C2—H13 123.8 (11)
N2—C1—N1 108.54 (11) C3—C2—N1 107.19 (11)
N2—C1—H6 124.6 (10) C3—C2—H13 129.0 (11)
N2—C7—C7i 109.28 (13)
N1—C9—C4—C5 177.64 (10) C1—N1—C9—C4 −53.80 (17)
N1—C9—C4—C13 −2.91 (18) C1—N1—C2—C3 0.17 (15)
N2—C3—C2—N1 0.44 (15) C1—N2—C7—C7i −73.94 (17)
C12—C6—C10—C8 −179.51 (12) C1—N2—C3—C2 −0.90 (15)
C12—C6—C5—C4 178.27 (12) C7—N2—C1—N1 179.04 (11)
C6—C10—C8—C9 0.85 (19) C7—N2—C3—C2 −178.88 (12)
C6—C10—C8—C11 −179.00 (12) C5—C6—C10—C8 −0.48 (19)
C10—C6—C5—C4 −0.78 (19) C13—C4—C5—C6 −177.92 (12)
C10—C8—C9—N1 −178.79 (11) C11—C8—C9—N1 1.04 (18)
C10—C8—C9—C4 0.00 (18) C11—C8—C9—C4 179.84 (12)
C8—C9—C4—C5 −1.16 (18) C3—N2—C1—N1 1.01 (14)
C8—C9—C4—C13 178.30 (12) C3—N2—C7—C7i 103.73 (16)
C9—N1—C1—N2 179.64 (11) C2—N1—C9—C8 −54.53 (17)
C9—N1—C2—C3 179.79 (12) C2—N1—C9—C4 126.64 (13)
C9—C4—C5—C6 1.56 (18) C2—N1—C1—N2 −0.73 (14)
C1—N1—C9—C8 125.04 (13)

Symmetry code: (i) −x, −y+1, −z+1.

Funding Statement

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (award No. 1847926 to S. Chantal E. Stieber); National Science Foundation, Directorate for Education and Human Resources (scholarship No. 1834186 to Elisa M. Olivas; scholarship No. 1826490 to Emily S. Thompson, Adrian Torres, Briana C. Arreaga, Hector L. Alarcon); U.S. Department of Defense, U.S. Army (award No. W911NF-17-1-0537 to S. Chantal E. Stieber); National Institutes of Health, National Institute of General Medical Sciences (scholarship No. 5R25GM113748-03 to Briana C. Arreaga).

References

  1. Baker, R. J., Cole, M. L., Jones, C. & Mahon, M. F. (2002). J. Chem. Soc. Dalton Trans. pp. 1992–1996.
  2. Baron, M., Battistel, E., Tubaro, C., Biffis, A., Armelao, L., Rancan, M. & Graiff, C. (2018). Organometallics, 37, 4213–4223.
  3. Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. [DOI] [PMC free article] [PubMed]
  4. Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cao, C., Zhuang, Y., Zhao, J., Liu, H., Geng, P., Pang, G. & Shi, Y. (2012). Synth. Commun. 42, 380–387.
  6. Cao, C., Zhuang, Y., Zhao, J., Pang, G. & Shi, Y. (2011). J. Chem. Res. 35, 320–322.
  7. Cao, C., Zhuang, Y., Zhao, J., Peng, Y., Li, X., Shi, Z., Pang, G. & Shi, Y. (2010). Inorg. Chim. Acta, 363, 3914–3918.
  8. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  9. Frey, G. D., Rentzsch, C. F., von Preysing, D., Scherg, T., Mühlhofer, M., Herdtweck, E. & Herrmann, W. A. (2006). J. Organomet. Chem. 691, 5725–5738.
  10. Gardiner, M. G., Herrmann, W. A., Reisinger, C.-P., Schwarz, J. & Spiegler, M. (1999). J. Organomet. Chem. 572, 239–247.
  11. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  12. Guo, J., Lv, L., Wang, X., Cao, C., Pang, G. & Shi, Y. (2013). Inorg. Chem. Commun. 31, 74–78.
  13. Hiltner, O., Boch, F. J., Brewitz, L., Härter, P., Drees, M., Herdtweck, E., Herrmann, W. A. & Kühn, F. E. (2010). Eur. J. Inorg. Chem. pp. 5284–5293.
  14. Hock, S. J., Schaper, L.-A., Pöthig, A., Drees, M., Herdtweck, E., Hiltner, O., Herrmann, W. A. & Kühn, F. E. (2014). Dalton Trans. 43, 2259–2271. [DOI] [PubMed]
  15. Janiak, D. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.
  16. Lee, H. M., Lu, C. Y., Chen, C. Y. C. W. L., Chen, W. L., Lin, H. C., Chiu, P. L. & Cheng, P. Y. (2004). Tetrahedron, 60, 5807–5825.
  17. Leung, C. H., Incarvito, C. D. & Crabtree, R. H. (2006). Organometallics, 25, 6099–6107.
  18. Li, Y., Liu, G., Cao, C., Wang, S., Li, Y., Pang, G. & Shi, Y. (2013). Tetrahedron, 69, 6241–6250.
  19. Liu, J., Chen, J., Zhao, J., Zhao, Y., Li, L. & Zhang, H. (2003). Synthesis, pp. 2661–2666.
  20. Meyer, S., Orben, C. M., Demeshko, S., Dechert, S. & Meyer, F. (2011). Organometallics, 30, 6692–6702.
  21. Rheingold, A. L. (2019). CSD Communication (CCDC 1953445). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc23kqcs
  22. Riederer, S. K. U., Gigler, P., Högerl, M. P., Herdtweck, E., Bechlars, B., Herrmann, W. A. & Kühn, F. E. (2010). Organometallics, 29, 5681–5692.
  23. Scherg, T., Schneider, S. K., Frey, G. D., Schwarz, J., Herdtweck, E. & Herrmann, W. A. (2006). Synlett, pp. 2894–2907.
  24. SciFinder (2022). Chemical Abstracts Service: Colombus, OH, 2010; RN 58-08-2 (accessed March 24, 2022). https://www.cas.org/products/scifinder
  25. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  26. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  27. Sluijter, S. N., Warsink, S., Lutz, M. & Elsevier, C. J. (2013). Dalton Trans. 42, 7365–7372. [DOI] [PubMed]
  28. Viciu, M. S., Grasa, G. A. & Nolan, S. P. (2001). Organometallics, 20, 3607–3612.
  29. Wells, K. D., Ferguson, M. J., McDonald, R. & Cowie, M. (2008). Organometallics, 27, 691–703.
  30. Wierenga, T. S., Vanston, C. R., Ariafard, A., Gardiner, M. G. & Ho, C. C. (2019). Organometallics, 38, 3032–3038.
  31. Yang, L., Zhao, J., Li, Y., Ge, K., Zhuang, Y., Cao, C. & Shi, Y. (2012). Inorg. Chem. Commun. 22, 33–36.
  32. Yang, W., Gou, G.-Z., Wang, Y. & Fu, W.-F. (2013). RSC Adv. 3, 6334–6338.
  33. Zamora, M. T., Ferguson, M. J., McDonald, R. & Cowie, M. (2009). Dalton Trans. pp. 7269–7287 [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) sces01006_0m, est01043_0m, at01019_0ma, est01041d_0ma, global. DOI: 10.1107/S2056989022008003/mw2188sup1.cif

e-78-00905-sup1.cif (9.4MB, cif)

Structure factors: contains datablock(s) sces01006_0m. DOI: 10.1107/S2056989022008003/mw2188sces01006_0msup2.hkl

Structure factors: contains datablock(s) est01043_0m. DOI: 10.1107/S2056989022008003/mw2188est01043_0msup3.hkl

Structure factors: contains datablock(s) at01019_0ma. DOI: 10.1107/S2056989022008003/mw2188at01019_0masup4.hkl

Structure factors: contains datablock(s) est01041d_0ma. DOI: 10.1107/S2056989022008003/mw2188est01041d_0masup5.hkl

Supporting information file. DOI: 10.1107/S2056989022008003/mw2188sces01006_0msup6.cml

Supporting information file. DOI: 10.1107/S2056989022008003/mw2188est01043_0msup7.cml

Supporting information file. DOI: 10.1107/S2056989022008003/mw2188at01019_0masup8.cml

Supporting information file. DOI: 10.1107/S2056989022008003/mw2188est01041d_0masup9.cml

CCDC references: 2195736, 2195735, 2195734, 2195733

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES