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a b s t r a c t 

The COVID-19 pandemic - as a massive disruption - has significantly increased the need for medical ser- 

vices putting an unprecedented strain on health systems. This study presents a robust location-allocation 

model under uncertainty to increase the resiliency of health systems by applying alternative resources, 

such as backup and field hospitals and student nurses. A multi-objective optimization model is developed 

to minimize the system’s costs and maximize the satisfaction rate among medical staff and COVID-19 pa- 

tients. A robust approach is provided to face the data uncertainty, and a new mathematical model is 

extended to linearize a nonlinear constraint. The ICU beds, ward beds, ventilators, and nurses are consid- 

ered the four main capacity limitations of hospitals for admitting different types of COVID-19 patients. 

The sensitivity analysis is performed on a real-world case study to investigate the applicability of the 

proposed model. The results demonstrate the contribution of student nurses and backup and field hos- 

pitals in treating COVID-19 patients and provide more flexible decisions with lower risks in the system 

by managing the fluctuations in both the number of patients and available nurses. The results showed 

that a reduction in the number of available nurses incurs higher costs for the system and lower satisfac- 

tion among patients and nurses. Moreover, the backup and field hospitals and the medical staff elevated 

the system’s resiliency. By allocating backup hospitals to COVID-19 patients, only 37% of severe patients 

were lost, and this rate fell to less than 5% after establishing field hospitals. Moreover, medical students 

and field hospitals curbed the costs and increased the satisfaction rate of nurses by 75%. Finally, the sys- 

tem was protected from failure by increasing the conservatism level. With a 2% growth in the price of 

robustness, the system saved 13%. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Infectious disease outbreak is a major global challenge lead- 

ng to unpredictable disruptions in societies’ economics, health, 

nd wellbeing [1–3] . A vivid example of a disastrous disease out- 

reak is COVID-19 that as of August 2022 has incurred 6.4 mil- 

ion fatalities worldwide [4] . This infectious disease was reported 

or the first time in China (December 2019) and declared a global 

andemic by World Health Organization (WHO) on March 11, 

020 [5] . COVID-19 has also led to other illnesses and fatalities 

ue to postponed or canceled treatments for other diseases. In a 
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erman study, around a 20% reduction in hospital beds and oper- 

ting room capacity was reported due to increased allocation of re- 

ources to COVID-19 patients [6] . The study also noted a significant 

rop in the number of elective surgical procedures in the emer- 

ency rooms as well as outpatient treatments in oncology clin- 

cs. Interrupted treatment delivery is expected to spawn treatment 

ailure and elevated tumor relapse rates [7] . Due to high disease 

revalence, the number of people needing hospital services has 

onsiderably overrun health service capacity, leading to collapses 

n both healthcare and economic systems in many nations such as 

ndia, Tunisia, and Brazil [8–10] . 

Healthcare systems are not fully prepared to cope with 

assive-scale disasters such as COVID-19 [ 11 , 12 ]. A primary rea- 

on is that their available resources are limited both in quantity 

nd specialty to cope with the disease. Moreover, during the cri- 

is, there is always a significant risk of decreased human resources 

https://doi.org/10.1016/j.omega.2022.102750
http://www.ScienceDirect.com
http://www.elsevier.com/locate/omega
http://crossmark.crossref.org/dialog/?doi=10.1016/j.omega.2022.102750&domain=pdf
mailto:niloofargilanilarimi@uvic.ca
https://doi.org/10.1016/j.omega.2022.102750


E. Shaker Ardakani, N. Gilani Larimi, M. Oveysi Nejad et al. Omega 114 (2023) 102750 

(

t  

t

1

p

h

a

o

“

n

l

s

p

a

N

D

h

a

d

h

c

t

p

I

t

d

c

t

m

t

p

o

d

o

l

m

i

p

m

r

u

I

l

p

l

c

c

w

(

t

a

f

1

o

e

e

t

c

t

P

b

c

o

C

i

e

t

T

w

c

c

p

s

t  

e

T

a

T

w

m

t

u

r

t

g

a

u

s

d

c

s

c

o

t

o

p

o

S

t

2

m

c

p

H

i

s

o

l

s

t

s

d

2

d

i

n

e

p

G

t

t

i

mainly nurses) caused by their infections, deaths, or even quitting 

heir jobs due to the disease risk [ 13 , 14 ]. The WHO has warned

hat the severe global nursing shortage risks the lives of COVID- 

9 patients [15] . WHO has also warned of shortages in personal 

rotective equipment (PPE) caused by rising demand, panic-buying, 

oarding, and misuse [16] . Due to a significant mismatch between 

vailable resources and COVID-19 treatment under the infeasibility 

f expanding available capacity, healthcare systems have exploited 

alternative” resources to augment their current capacities. Alter- 

ative hospitals, such as backup and field hospitals, have been en- 

isted to address the capacity challenge during the COVID-19 cri- 

is in many countries. For example, during the first wave of the 

andemic in Canada, the Jewish General Hospital in Montreal was 

ssigned as a backup hospital, and the Windsor Regional Health 

etwork opened a field hospital to treat COVID-19 patients [17] . In 

enmark, medical students and retired doctors were summoned to 

elp treat COVID-19 patients [18] . One strategy to offset the short- 

ge of nurses is to increase their allocated patients, leading to their 

issatisfaction and reduced quality of care provision [19] . There 

as also been a notable increase in demand for ventilators, espe- 

ially for severe COVID-19 patients, and some countries, such as 

he United States, have reported shortages of ventilators for severe 

atients [20] . The mayor of New York and the Deputy Minister of 

ndonesia’s State-Owned Enterprises have asked the billionaire en- 

repreneur, Elon Musk, to use Tesla manufacturing facilities to pro- 

uce ventilators for COVID-19 patients [ 21 , 22 ]. Finally, quality of 

are is of critical importance toward patient satisfaction and, thus, 

he effectiveness of patient outcomes [23] , and there is a need for 

echanisms to ensure that hospital services are readily accessible 

o COVID-19 patients [24] . 

Unfortunately, alternative resources offer a limited surge in ca- 

acity and incur tremendous costs to healthcare systems. More- 

ver, uncertainties associated with various aspects of the pan- 

emic – especially its generated demand – make augmentation 

f alternative resources to the current system a nontrivial prob- 

em. These challenges require optimal allocation and utilization of 

erged resources that must perform in a resilient and robust fash- 

on to tackle demand fluctuations. Healthcare systems aim to de- 

loy these limited resources with minimal cost while meeting de- 

and in the best possible ways. To fill this gap, this study proposes 

esilient, robust mixed-integer linear programming to optimize the 

sage of both available and alternative resources during COVID-19. 

n particular, our multi-objective model minimizes the cost of uti- 

izing resources while maximizing satisfaction among nurses and 

atients. 

Inspired by real practice, the proposed model makes the fol- 

owing considerations. First, to cope with the emergency situation 

aused by the pandemic, we designate three types of healthcare 

enters (HCs), namely, available, backup, and field hospitals, each 

ith a certain level of resources (i.e., ward bed, Intensive care unit 

ICU) bed, ventilator, and nurse), which are limited. Second, two 

ypes of nurses are considered based on skill level (i.e., expert 

nd student), which can fluctuate (because they may become in- 

ected by COVID-19 or quit the job). Third, in our study, COVID- 

9 patients are divided into three groups based on the severity 

f their illness (i.e., severe, moderate, and outpatients). Patients in 

ach group require certain resources for treatment. Forth, a cov- 

rage distance is also considered for allocating COVID-19 patients 

o medical centers based on patient type. Fifth, the role of un- 

ertainty in the number of patients (demand) and its impact on 

he system is thoroughly analyzed. Furthermore, different types of 

PE are considered in the model. Finally, the pandemic’s impact on 

oth the price and number of ventilators that a hospital can pur- 

hase is addressed. This model enables us to investigate the trade- 

ff between system cost versus the satisfaction levels of nurses and 

OVID-19 patients. Resilience, robustness, and alternative resourc- 
2

ng all mitigate failure risk in a healthcare system. Therefore, we 

xtensively analyze the resilience and robustness of optimal solu- 

ions, as well as their dependency on alternative resources. 

We apply our proposed model to a case study in the city of 

ehran, the capital of Iran – one of the world’s most afflicted cities 

ith COVID-19 [25] . Here, both officials and hospitals had reported 

ritical shortages of medical personnel, ward beds, and intensive 

are beds during the pandemic. The COVID-19 crisis led to re- 

orts indicating that nurses have been experiencing posttraumatic 

tress disorder due to extended overtime shifts and the constant 

hreat of virus exposure [ 25 , 26 ]. Our proposed model is general

nough to be applied to any geographical region across the globe. 

o this end, we focus on the general results that offer direct and 

ctionable insights regarding the role of alternative care resources. 

o further improve the generalizability of the provided insights, 

e conducted an extensive sensitivity analysis regarding the key 

odel parameters. The study makes the following four contribu- 

ions. First, it proposes a general analytical framework that can be 

tilized by healthcare decision-makers (DMs) in any geographical 

egion to jointly optimize the utilization of resources as well as 

he satisfaction levels of patients and nurses. Second, it investi- 

ates the effect of uncertainty regarding both the number of nurses 

nd the number of patients in a healthcare system. This enables 

s to investigate the tradeoff between the cost of the system ver- 

us the satisfaction rates of nurses and COVID-19 patients. Third, it 

emonstrates the importance of alternative resources in a health- 

are system during challenging periods in a pandemic, specifically 

crutinizing the impact of ventilator supply restrictions on health- 

are system performance. Fourth, it provides an extensive analysis 

f both the resilience and robustness of the optimal solutions and 

heir dependency on alternative resources. 

The paper is structured as follows. Section 2 provides a review 

f related literature. In Section 3 , we describe the modeling ap- 

roach and assumptions. Section 4 details the solution method- 

logy. In Section 5 , we apply the model to a real-life case study. 

ection 6 discusses managerial insights, and Section 7 concludes 

he paper and outlines future research. 

. Literature review 

Epidemiological modeling, ICU capacity and ventilator inventory 

anagement, high-quality masking, the situation in global supply 

hains (SCs) during COVID-19, and plasma donations during the 

andemic are all identified as different aspects of COVID-19 [26] . 

owever, the rise in the number of COVID-19 patients, the surge 

n the percentage of patients with severe illness in hospitals, the 

hortage of nurses, and limited budgets are the main problems 

f COVID-19 that need to be managed precisely. For a better il- 

ustration of the current research gap and the importance of this 

tudy, the literature review is divided into the following subsec- 

ions: Section 2.1 examines studies that have highlighted the re- 

ources required for treating COVID-19 patients, and Section 2.2 is 

edicated to resilience in the healthcare system. 

.1. Resources required for treating COVID-19 patients 

One of the most important strategies for dealing with pan- 

emic outbreaks is to manage and control medical centers’ capac- 

ty under high demand fluctuations [27] . When demand (e.g., the 

eed for care) exceeds supply (e.g., human resources, materials, 

quipment, etc.), hospital wait times often mount under a lack of 

lanning, coordination, and communication in delivering care [28] . 

ovindan et al. [29] developed a practical decision-support sys- 

em with demand management in the healthcare SC to segment 

he COVID-19 propagation chain, reduce stress in society, and mit- 

gate healthcare SC disruptions. In [30] , the satisfaction of all po- 
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ential demand for each clinic during the pandemic was computed 

sing an estimated population served by a particular clinic. Bur- 

ett et al. [31] considered mixed-integer linear programming by 

esignating different patient types to analyze resource and hospi- 

al capacity needs for maximizing the number of cured patients. 

urnweit and Stylianos [32] studied the need for establishing field 

ospitals, their capacities and access during the crisis for urgent 

atient treatment, as well as the dismantling or reuse of field hos- 

itals post-crisis. In California, Caunhye and Nie [33] proposed a 

ocation-allocation model for medical centers to plan disaster re- 

ponses based on a real case study. Liu et al. [34] presented a 

odel for optimizing the location of medical centers and the al- 

ocation of medical services to reduce costs and maximize the 

umber of patients rescued in emergencies. Results show that es- 

ablishing temporary medical centers near crisis areas yields im- 

rovements in the productivity of medical services during the cri- 

is. Acar and Kaya [35] studied a network design for location- 

elocation decisions of mobile hospitals using a two-stage random 

rogramming model under different scenarios. Oksuz and Satoglu 

36] analyzed the location of existing hospitals versus the number 

nd capacities of temporary medical centers during a crisis, com- 

uting the required number of temporary medical centers, their 

ocations, and their added hospital capacities. 

Direct contact among nurses and patients may result in high 

ates of infection among nurses, leading to reductions in the num- 

er of nurses treating COVID-19 patients. Abas et al. [37] applied 

 dynamic system simulation to predict the number of required 

urses and medical staff. He et al. [38] developed an integrated 

urse staffing-scheduling model under patient-demand uncertainty 

sing two-stage stochastic programming that targets understaffing- 

isk control. In [39] , the authors proposed a model that mixes lin- 

ar optimization with simulation to estimate the number of re- 

uired nurses, medical staff, and emergency beds. Naderi et al. 

40] developed a model for the Toronto General Hospital (TGH) 

hat captures the scheduling of all critical operating room re- 

ources and their dynamics. Their model helps the TGH man- 

gers to determine the right number and selection of resources 

n a daily basis, as well as the day’s optimal overtime. Moosavi 

t al. [41] examined a staff scheduling problem for residential care 

uring a pandemic, advising that residential care facilities raise 

taffing capacity for future pandemics. 

About 15% of COVID-19 patients develop severe pneumonia, 

early 6% needing a ventilator [42] . Ventilator pricing has soared 

rom $25,0 0 0 to $45,0 0 0 due to the significant increase in demand

uring the COVID-19 outbreak [43] . Most European health systems 

ncountered ventilator shortages; e.g., Italy had access to less than 

5% of the ventilators needed [44] . Wells et al. [45] projected the 

umber of ventilators required in the USA at the COVID-19 peak. 

yengar et al. [46] explained the role of ventilators in treating 

OVID-19 patients, the main reasons for their shortage, and pro- 

osed several solutions such as enlisting 3D printers. In a study 

n Texas, USA, Huang et al. [47] proposed a method for optimiz- 

ng stockpiles of mechanical ventilators vital for sustaining hospi- 

alized influenza patients facing respiratory failure. The researchers 

onsidered mild, moderate, and severe patients in their case study. 

ehrotra et al. [48] presented a model for allocation and possi- 

le reallocation of the available national ventilator stockpile with 

omputational results estimating each state’s shortfall of ventila- 

ors under various future demand scenarios. 

.2. Healthcare systems resilience 

During COVID-19, many components of SCs became slow or 

ven dysfunctional for uncertain durations. Therefore, various stud- 

es investigated SC challenges during COVID-19 under topics such 

s modeling viable SCs, ripple effects of SCs, and reconfigurable 
3 
Cs [49] . Motivated by the COVID-19 outbreak, Ivanov [50] defined 

 viable SC as one that can maintain itself in a changing envi- 

onment by redesigning its structures and replanning performance 

ith long-term impacts. Studying the viability of SCs (especially 

ulti-echelon SCs) is becoming an important topic, mainly be- 

ause of their complicated structures, making them vulnerable to 

xtraordinary disruptions at local nodes under ripple effects [51] . 

ozhkov et al. [52] demonstrated the impact of the COVID-19 pan- 

emic by studying adaptive operational decisions in different net- 

ork design structures before and during the pandemic. They also 

nvestigated the role of preparedness and recovery decisions in SC 

perations. Sawik [53] proposed scenario-based stochastic models 

or optimizing SC operations under ripple effects that incur simul- 

aneous disruptions in supply, demand, and logistics across the en- 

ire SC. He compared the resilient solutions for the resilient sup- 

ly portfolios versus non-resilient solutions having no recovery re- 

ources available. 

A mathematical model was developed to identify the interac- 

ive influence of SC disruptions and infectious disease dynamics 

ia coupled production and disease networks [54] . Shang et al. 

55] analyzed a supply network configuration problem and pro- 

osed a new robust model for coping with uncertain demand and 

elivery time. In [56] , a novel perspective on SC resilience was in- 

roduced for considering resistance to extraordinary disruptions at 

he scale of viability. In this study, viability formation through dy- 

amic game-theoretic modeling of a biological system was demon- 

trated that resembles an intertwined supply network. 

The poor SC management during COVID-19 waves has resulted 

n a demand-supply mismatch. Specifically, an increase in the 

umber of patients (i.e., demand) along with the reduction and 

hortage of active nurses can trigger massive disruptions in the 

ealthcare systems. In this study, such disruptions include short- 

ges of nurses, ward beds, ICU beds, ventilators, and qualified PPEs. 

e also define disruption as an increased ratio of patients per 

urse and the rate of non-admitted COVID-19 patients. 

To deal with sudden disruptions and lack of knowledge dur- 

ng a pandemic with disastrous scales such as COVID-19, we need 

 resilient healthcare system that can: (1) ensure a comprehen- 

ive response considering health, social, and economic consid- 

rations simultaneously, (2) adjust capacity to meet patient de- 

ands, (3) preserve functions and resources to maintain routine 

nd acute care, and (4) curb vulnerability to catastrophic losses 

n a community’s economy and wellbeing [57] . To this end, Hane- 

eld et al. [58] examined important aspects of health system re- 

ilience during the 2017 Ebola outbreak in Africa. They introduced 

ealth information systems, funding, and the health workforce as 

he three main resilience aspects of hospitals. Yu et al. [59] stud- 

ed the factors impacting nurse resilience, indicating that nurse 

atisfaction correlates with resilience. This is because improving 

esilience among nurses would decrease their burnout and im- 

rove their function. Fallah-Aliabadi et al. [60] evaluated the indi- 

ators for determining the levels of hospital resilience. They iden- 

ified a hospital’s facility as constructive resilience, lifelines as in- 

rastructure resilience, and services as administrative resilience, 

ll playing a significant role in hospital performance during dis- 

sters. The impact of the COVID-19 pandemic on SC resilience 

as investigated in [61] . Results demonstrate agility, collaboration, 

igital preparedness, flexible redundancy, human resource man- 

gement, contingency planning, and transparency as seven fac- 

ors for building resilience in intertwined SCs during a pandemic 

utbreak. 

Table 1 compares this research with the most relevant litera- 

ure regarding location-allocation resilient healthcare network de- 

ign for the COVID-19 pandemic. Poor management during a surge 

n the number of patients and a reduction in the number of active 

urses can massively disrupt any healthcare system. We consider 
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Table 1 

An overview of related studies. 

Refs. Problem 

type 

Hierarchical 

level 

Location Planning 

horizon 

Objective 

function 

Time 

period 

Solution 

approach 

Real 

case 

Uncertainty Demand 

differentiation 

Coverage 

distance 

PPE Disaster/ 

Disruption 

Medical 

Staff

Field 

hospital 

Bed differ- 

entiation 

Resilience Other 

feature 

[40] Operations 

research 

Decomposition 

design 

Yes Operational Min fixed and 

over time cost 

Multi- 

period 

Benders de- 

composition 

Yes Yes Yes No No No No No Yes No Healthcare 

operations 

[39] Operations 

research 

Integrated 

SC 

Yes Strategic Min cost & Max 

the number of 

discharged 

patients 

Multi- 

period 

simulation Yes Demand Yes No No No Yes Yes Yes No - 

[36] Operations 

research 

Integrated 

SC 

Yes operational Min cost Multi- 

period 

Stochastic Yes Supply Yes Yes No Yes No Yes Yes No Mass 

casualty 

events 

[60] Public 

health 

- No - - - - No No No No No Yes No No No Yes Structural 

and non- 

structural 

systems 

[48] Operations 

research 

SC Yes operational Min Cost Multi- 

period 

Stochastic Yes No Yes No No No No No No No COVID-19- 

ventilator 

[59] Review 

methods 

- - - aims to identify 

personal and 

work-related 

factors of nurse 

resilience. 

- - - - - - - - - - - Yes 

[58] Data 

collection 

- No - - No No Yes No No No No No No No No Yes financial 

crisis 

[37] Health 

System 

System 

dynamics 

approach 

No - providing 

adequate 

nursing patient 

care 

Multi- 

period 

Statistical 

analysis 

Yes No No No No No No No No No Nurse 

Workforce 

[33] Operations 

research 

Integrated 

SC 

Yes operational Min total 

weighted time 

to transport (1) 

casualties for 

treatment and 

(2) patients for 

treatment 

continuation. 

Single Stochastic Yes Demand Yes No No No No No No No - 

[31] Operations 

research 

Integrated 

SC 

No Operational Max the patients 

treated 

Multi- 

period 

Data- 

collection 

Yes No Yes No No No Yes No No No Book 

Keeping 

[32] Not 

mentioned 

Not 

mentioned 

Not 

mentioned 

Not 

mentioned 

Not mentioned Not 

men- 

tioned 

Data 

collection 

Yes No Yes No No Yes Yes Yes Yes - 

This re- 

search 

Operations 

research 

Network 

design 

Yes Tactical Min cost, Max 

satisfaction of 

medical staff, 

and COVID-19 

patients 

Multi 

Period 

Robust Yes Demand Yes Yes Yes Yes Yes Yes Yes Yes For 

COVID-19 

4
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Fig. 1. The configuration of the proposed network. 
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isruption in terms of shortages of the key treatment resources 

uch as ward beds, ICU beds, ventilators, and qualified PPEs, an in- 

reased ratio of patients per nurse, or the lost (i.e., non-admitted) 

OVID-19 patients. This study is the first to boost health system 

esilience and reliability by enlisting backup or field hospitals, stu- 

ent nurses, and new ventilators and assesses the system’s ro- 

ustness under demand fluctuations. Moreover, the impact of a 

educed number of active nurses on the system cost and patient 

atisfaction is investigated. The influence of both field and backup 

ospitals, as well as the number of nurses on a health system cost, 

ork overload, hospital occupancy, and satisfaction rates of COVID- 

9 patients and nurses, are thoroughly scrutinized here. Until now, 

he role of variation in PPEs, bed differentiation, distance limitation 

or COVID-19 patients, and some key aspects of a healthcare sys- 

em, such as demand differentiation, disruption, and uncertainty, 

ave eluded simultaneous treatment. 

. Problem description 

Consider a network of HCs treating COVID-19 patients located 

n different geographical regions i ∈ { 1 , 2 , . . . , I } in each period t ∈ 

 1 , 2 , . . . , T } during the pandemic. HCs are equipped with vital re- 

ources such as regular or special PPE, and regular or student 

urses. Fig. 1 illustrates the proposed network. 
5 
Patient types : Inspired by [62] that has designated five different 

OVID-19 patient types (asymptomatic and mild patients were 

onsidered outpatients, patients requiring hospitalization and 

upplemental oxygen were considered moderate, and severe and 

ritical patients required ICU beds), the patients in our study 

re categorized into three classes: severe ( p 1 ), moderate ( p 2 ), 

nd outpatients ( p 3 ). Since the disease among severe patients 

an be fatal, they require more advanced treatment, including 

CU and ventilator support. Moderate patients may be treated in 

he general ward and may require supplemental oxygen. Finally, 

utpatients with mild clinical symptoms are examined, prescribed 

imple treatments, and sent back home. The patient type also in- 

olves a distance limit between the patient area and HCs. The idea 

s to prevent patient transfer to distant HCs. Therefore, patients 

ith higher illness severity can be prioritized to access treatment 

hrough nearby HCs. 

HC capacity types : To handle demand uncertainty, we consider 

hree different HCs. The first type includes hospitals that only ad- 

it COVID-19 patients that we call available hospitals . The standard 

ate of hospital occupancy in available hospitals has been found 

o run at 85% [39] . Accordingly, we assume that a new HC should 

e considered for COVID-19 patients when at least 85% of beds, 

urses, or ventilators in any available hospitals are occupied. The 

econd type includes backup hospitals , which are clean hospitals, 

nd are not allocated to COVID-19 at the onset of the planning 
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Table 2 

List of notations and decision variables. 

Sets 

i Set of patient areas, i = 1 , 2 , . . . , I

j Set of HCs, j = 1 , 2 , . . . , J

p Type (severity) of patient; p ∈ { p 1 , p 2 , p 3 } 
n Type of nurse; n ∈ { n 1 , n 2 } 
u Type of PPE; u ∈ { u 1 , u 2 } 
t Set of periods, t = { 1 , 2 , . . . , T } 
Parameters 

B j Number of general ward beds in HC j 
BICU j Number of ICU beds in HC j 
V j Number of ventilators in HC j 
N jn Number of nurse type n in HC j 
cost j Set up cost for HC j 
H pnu Cost of admitting patient type p serviced by nurse type n using PPE type u 

LC Cost of refusing a patient 

SalA nu Cost of overload working for nurse type n working with PPE type u 

CostV Cost of adding a new ventilator to an HC

d i j Distance from patient area i to HC j 
dp i Distance from patient area i to the closest HC 

Dis p Distance limit for patient type p arrive at an HC 

Dem ipt Number of newly infected patient type p in area i and in period t

Cap Occupancy rate of an HC 

θ Maximum number of patients that each nurse can serve in a regular shift 

ϑ Maximum number of patients that each nurse can serve as overload 

ϕ A very large number 

αu Functionality score of the u -type PPE 

βn Satisfaction rate of patients serviced by nurse type n 

σn Dissatisfaction rate of nurse type n for overload working 

ω q The weight of each objective function 

q The indicator of each objective function 

	 Level of conservatism 

Decision variables 

Q i jpnut Number of p-type patients from area i assigned to HC j served by nurse type n with PPE type u in period t

In v jpnt Number of p-type patients admitted to HC j to be served by nurse type n in period t

Los pt Number of p-type patients who are not admitted by HC j in period t 

Re jpt Number of p-type patients discharged from HC j in period t

NP jnut Number of patients that nurse n at HC j should serve applying PPE u in period t

ANP jnut Number of extra patients that nurse n should serve in HC j applying PPE u in period t

AV j Number of additional ventilators that can be added to HC j 
y j ∈ { 0 , 1 } 1, if HC j is open, and 0, otherwise 

X i jpt ∈ { 0 , 1 } 1, if p-type patient in area i is assigned to HC j , in period t

h
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a

t

n
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3

t

orizon. Instead, they can be utilized for COVID-19 treatment only 

hen there is a shortage of facilities in the available hospitals. Fi- 

ally, the third type includes field hospitals not yet established but 

an be built for COVID-19 patients in case of capacity shortage in 

he other HC types. 

Hospital beds, workforce, and PPE : All HCs are equipped with two 

ypes of beds. The first is available in the general ward, assignable 

o moderate patients, while the second is available in the ICU for 

evere patients. Moreover, our study assumes that when the num- 

er of severe patients exceeds that of available ventilators, a new 

entilator can be added to the HC. However, the total number of 

entilators cannot exceed that of ICU beds in the HC. 

One of the challenges faced by HCs during the COVID-19 out- 

reak was maintaining a balance between the capacity of frontline 

ealth workers and demand. When the ratio of patients per nurse 

xceeds a standard ratio [39] , nurses may suffer work overload. 

oreover, a proportion of nurses may not be able to serve, either 

ecause of being infected through patient contact or because they 

ecide to quit the job fearing threats in the COVID-19 work envi- 

onment. To tackle the reduced number of active nurses [ 13 , 14 , 18 ],

e consider the possibility of employing nursing students in our 

odel. Finally, we assume that nurses can be equipped with two 

ypes of PPEs that differ mainly in protection rates and costs. Spe- 

ial PPE reduces the likelihood of infection; thus, nurse satisfaction 

ates would increase. An ideal scenario equips all nurses with the 

pecial PPE, yet this may not be feasible under high demand for 

PE. 
6 
.1. Decision variables and modeling assumptions 

Table 2 summarizes the list of all notations and decision vari- 

bles used in our model. We develop a multi-objective optimiza- 

ion model to jointly: (i) minimize the total cost of the healthcare 

etwork, (ii) maximize the satisfaction rate of patients, and (iii) 

aximize the satisfaction rate of nurses. 

The following assumptions are considered in our model: 

• A list of potential locations to establish a new HC is given. 
• HCs are allowed to not admit a patient in case of a shortage of 

beds, ventilators, or nurses. 
• Hospitalization duration depends on illness severity. 
• For model tractability, seven discharge periods are considered 

as the planning horizon, each period marking four days. 
• Based on expert opinion, severe and moderate patients must 

be hospitalized for three periods (i.e., 12 days) and two periods 

(i.e., 8 days), respectively. 
• A distance limitation applies between a patient’s area and 

HCs. 

.2. Model formulation 

The first objective function, indicated by G 1 , minimizes the to- 

al network cost. This objective function can be formulated as the 
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∀

X

∑
∑

ollowing mixed-integer linear program: 

in G 1 = 

∑ 

j 

cost j y j ︸ ︷︷ ︸ 
Fixed cost 

+ 

∑ 

j 

∑ 

p 

∑ 

n 

∑ 

u 

∑ 

t 

H pnu Q i jpnut ︸ ︷︷ ︸ 
Service cost for COVID −19 patients 

+ 

∑ 

p 

∑ 

t 

LCLos pt ︸ ︷︷ ︸ 
Cost of not admitting patients 

+ 

 

j 

∑ 

n 

∑ 

u 

∑ 

t 

SalA nu ANP jnut 

 ︷︷ ︸ 
Cost of overload 

+ 

∑ 

j 

CostVAV j ︸ ︷︷ ︸ 
Cost of adding new ventilator 

(1) 

Accordingly, the total cost of the network in Eq. (1) includes the 

xed cost for establishing field hospitals, the cost of admitting and 

erving COVID-19 patients in the HCs, the cost of not admitting 

OVID-19 patients (shortage cost), the cost of patient overload on 

urses, and the cost of adding new ventilators to an HC. The first 

ost term is zero for available and backup hospitals since they are 

lready established and equipped at the beginning of the planning 

orizon. 

The second objective function, denoted by G 2 , maximizes the 

atisfaction rate among patients: 

ax G 2 = 

1 

2 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

∑ 

i 

∑ 

j 

∑ 

p 

∑ 

n 

∑ 

u 

∑ 

t 

βn Q i jpnut ︸ ︷︷ ︸ 
Satisfaction due to service 

+ 

∑ 

i 

∑ 

j 

∑ 

p 

∑ 

n 

∑ 

u 

∑ 

t 

(
dp i /d i j 

)
Q i jpnut ︸ ︷︷ ︸ 

Satisfaction due to distance 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

(2) 

Note that the first term in Eq. (2) reflects the satisfaction of 

atients serviced by different types of nurses, while the second 

erm is the patient satisfaction in visiting a closer HC. We define 
dp i 
d i j 

≤ 1 , where the numerator is the distance to the nearest HC, 

nd the denominator is that to one having available capacity. Ide- 

lly, d i j = dp i , where the nearest HC has available capacity to admit 

he patient. 

Finally, the third objective function maximizes the satisfaction 

f nurses indicated by G 3 : 

ax G 3 = 

∑ 

j 

∑ 

n 

∑ 

u 

∑ 

t 

N jn NP jnut αu ︸ ︷︷ ︸ 
Satisfaction due to PPE usage 

−
∑ 

j 

∑ 

n 

∑ 

u 

∑ 

t 

N jn ANP jnut σn ︸ ︷︷ ︸ 
Dissatisfaction due to overload workin g 

(3) 

here the first term refers to the functionality score associated 

ith using PPE during work, while the second term tracks the dis- 

atisfaction rate of nurses because of work overload. 

The number of severe patients admitted to an HC cannot exceed 

he total number of available ventilators: 
 

i 

∑ 

n 

∑ 

u 

Q i j ( p=1 ) nut ≤ V j + AV j ∀ j, p = 1 , t (4) 

The total number of severe and moderate patients admitted to 

n HC cannot exceed that of available beds: 
 

i 

∑ 

p\ p3 

∑ 

n 

∑ 

u 

Q i jpnut ≤ B j ∀ j, t (5) 

Regardless of severity type, the total number of admitted pa- 

ients in each period cannot exceed the maximum number of pa- 

ients that a nurse can serve during a regular shift and overload: 

 

i 

∑ 

p 

Q i jpnut ≤ N jn 

(
N P jnut + AN P jnut 

) ∀ j, n, u, t (6) 

Given an open HC j , the maximum number of patients that each 

urse can serve in a regular (resp. overload) shift is capped by θ

 j ≤
(

Cap − max 

{ ∑ 

j 

∑ 

p\ p3 

∑ 

n In v jpnt ∑ 

j B j 
, 

∑ 

j 

∑ 

p\ p3 

∑ 

n 

∑ 

u In v jpnt + 
∑ 

i 

∑ 

j 

∑ 

p=3 

∑ 

n 

∑∑ 

j 

∑ 

n N jn θ

 ( j > 2) 
7 
resp. ϑ): 

P jnut ≤ θy j ∀ j, n, u, t (7) 

NP jnut ≤ ϑy j ∀ j, n, u, t (8) 

A p-type patient is never assigned to an HC farther away than 

he p-type patient distance limit Dis p : 

 i jpt d i j ≤ Dis p ∀ i, j, p, t (9) 

The number of patients in each period equals that of remain- 

ng COVID-19 patients from the prior period, plus newly admitted 

atients minus those discharged: 
 

n 

I n v jpnt = 

∑ 

n 

I n v jpn ( t−1 ) + 

∑ 

i 

∑ 

n 

∑ 

u 

Q i jpnut − Re jpt ∀ j, p, t (10)

As discussed previously, hospitalization duration depends on 

he illness severity. Treatment takes three periods for severe pa- 

ients ( p 1 ) and two periods for moderate patients ( p 2 ). Outpatients

 p 3 ) are never hospitalized: 

e jpt| p=1 = 

∑ 

i 

∑ 

n 

∑ 

u 

Q i jpnu ( t−3 ) | p=1 ∀ j, t (11) 

e jpt| p=2 = 

∑ 

i 

∑ 

n 

∑ 

u 

Q i jpnu ( t−2 ) | p=2 ∀ j, t (12) 

e jpt| p=3 = 

∑ 

i 

∑ 

n 

∑ 

u 

Q i jpnut| p=3 ∀ j, t (13) 

The number of severe patients in an HC cannot exceed the total 

umber of available ventilators in each period: 
 

n 

In v j ( p=1 ) nt ≤ V j + AV j ∀ j, ( p = 1 ) , t (14) 

The total number of severe and moderate patients cannot ex- 

eed that of beds in an HC in any period t: 
 

n 

In v jp\ p3 nt ≤ B j ∀ j, ( p = 1 , 2 ) , t (15) 

The number of patients in a period cannot exceed that of pa- 

ients served by available nurses in a period: 
 

n 

In v jpnt ≤
∑ 

n 

∑ 

u 

N jn (N P jnut + AN P jnut ) ∀ j, p, t (16)

The shortage equation calculates the number of patients who 

annot be admitted to HCs in period t . This equals the total num- 

er of patients admitted to an HC subtracted from the total de- 

and: 

os pt = 

∑ 

i 

Dem ipt −
∑ 

i 

∑ 

j 

∑ 

n 

∑ 

u 

Q i jpnut ∀ p, t (17) 

A new HC can be allocated to newly infected patients when an 

xisting HC is full. This occurs when an existing HC is occupied 

eyond its determined occupancy rate of beds ( B j ), ventilators ( V j ),

r nurses ( N jn θ ): 

p=3 ) nut 
, 

∑ 

j 

∑ 

p 

∑ 

n In v j ( p=1 ) nt ∑ 

j V j 

} )
(18) 

New COVID-19 patients can be allocated only to an open HC: 

 i jpt ≤ y j , ∀ i, j, p, t (19) 

 

i 

∑ 

n 

∑ 

u 

Q i jpnut ≤
∑ 

i 

X i jpt ϕ, ∀ j, p, t (20) 

 

i 

X i jpt ≤ 1 , ∀ j, p, t (21) 
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The total number of ventilators per HC cannot exceed the num- 

er of ICU beds: 

V j ≤
(
BICU j − V j 

)
y j , ∀ j (22) 

Finally, the available hospitals (i.e., HC j : j = 1 , 2 ) are allocated

o COVID-19 patients at the onset of the planning horizon. This re- 

uires the binding constraints y 1 = y 2 = 1 . Moreover, to have feasi-

le solutions, we define binary and integer variables in constraint 

23) as follows: 

y j X i jpt ∈ { 0 , 1 } and y j = 1 ∀ ( j = 1 , 2 ) Q i jpnut , In v jpnt , Los jpt , 

Re jpt , NP jnut , ANP jnut ≥ 0 ∀ i, j, p, n, u, t (23) 

. Solution methodology 

This section discusses the methodology for solving the multi- 

bjective optimization model described in Section 3.2 . Note that 

onstraint (18) is nonlinear; therefore, its transformation to a lin- 

ar form will be discussed in Section 4.1 . We then elaborate on 

onverting the three-objective model into a single-objective opti- 

ization counterpart in Section 4.2 . Finally, in Section 4.3 , we de- 

elop a robust optimization approach to cope with the uncertainty 

n system parameters. 

.1. Linearization 

To linearize constraint (18) , we use an approach proposed by 

63] , with details in Appendix A . For the linearization, we define: 

 j ≤ 1 − ( Cap − R s ) (24) 

here y j is a binary variable giving permission to establish or as- 

ign a new hospital, R s is a continuous variable, and Cap is the 

aximum occupation rate of hospitals in pre-emergency condi- 

ions. 

Eqs. (25) –(27) reflect the average occupancy rates of available 

ospitals in terms of beds, nurses, and ventilators as follows: 

 = 

∑ 

j 

∑ 

p\ p3 

∑ 

n In v jpnt ∑ 

j B j 

(25) 

 

′ = 

∑ 

j 

∑ 

p\ p3 

∑ 

n 

∑ 

u In v jpnt + 

∑ 

i 

∑ 

j 

∑ 

p=3 

∑ 

n 

∑ 

u Q i j ( p=3 ) nut ∑ 

j 

∑ 

n N jn θ

(26) 

 

′′ = 

∑ 

j 

∑ 

p 

∑ 

n In v j ( p=1 ) nt ∑ 

j V j 

(27) 

The linearization of Eq. (18) focuses on delaying establishment 

f a new hospital until the average occupancy rate of at least one 

esource reaches the determined Cap. Accordingly, if each of the 

qs. (25) –(27) equals or exceeds Cap, the model is allowed to al- 

ocate a new hospital to the COVID-19 patients. To do so, consider 

he following equations: 

 s = K + K 

′ + K 

′′ (28) 

 ≤ R (29) 

 ≤ ϕL (30) 

 ≥ R − ϕ ( 1 − L ) (31) 

 

′ ≤ R 

′ (32) 

 

′ ≤ ϕL ′ (33) 
8 
 

′ ≥ R 

′ − ϕ 

(
1 − L ′ 

)
(34) 

 

′′ ≤ R 

′′ (35) 

 

′′ ≤ ϕL ′′ (36) 

 

′′ ≥ R 

′′ − ϕ 

(
1 − L ′′ 

)
(37) 

 + L ′ + L ′′ ≤ 1 (38) 

As the whole system tries to reduce the shortage, R s mir- 

ors the value of the resource having more capacity occupation, 

hus permitting the assignment or establishment of new hospi- 

als. For instance, when the value R s = 0 . 9 , then Cap − R s < 0 , and

 − ( Cap − R s ) > 1 . Thanks to the linear version of constraint (18) ,

he optimization problem becomes a mixed-integer linear program 

MILP) solvable using CPLEX software. 

.2. Converting multi-objective to single-objective model 

Many approaches, such as goal-programming, LP-metric, and ε- 

onstraint methods, exist for converting a multi-objective model 

nto a single-objective one [64–66] . All such methods are based 

n assigning a weight for the importance of each objective before 

unning an optimization algorithm. The Weighted Sum Method is 

 classic scalarizing technique that converts multi-objective prob- 

ems into scalar problems by summing all the objective weights. 

he simplicity of this approach has made it popular. However, one 

itfall is its failure to find certain Pareto optimal solutions for a 

onconvex objective space [67] . Using this approach, the optimum 

alue of each objective function is evaluated separately as demon- 

trated by G 

∗
1 
, G 

∗
2 
, and G 

∗
3 
, respectively for the first, second, and

hird objective function. We next change the model structure to a 

ormalized formulation. In doing so, since the first objective func- 

ion is minimization while the second and third objective functions 

re maximization, the terms in the numerator of the second and 

hird objective functions should be converged. The weight of each 

bjective function is shown by ω q ( 0 ≤ ω q ≤ 1 ) where q is the indi-

ator of each objective function. At last, the single-objective model 

an be formulated as follows: 

in G 4 = 

[ 

ω 1 

(
G 1 − G 

∗
1 

)
G 

∗
1 

+ ω 2 

(
G 

∗
2 − G 2 

)
G 

∗
2 

+ ω 3 

(
G 

∗
3 − G 3 

)
G 

∗
3 

] 

(39) 

uch that 

 1 + ω 2 + ω 3 = 1 (40) 

.3. Robust optimal solutions 

There are uncertainties as to COVID-19 data while predictions 

f total confirmed cases remain sensitive to underlying parame- 

ers. Among possible approaches (i.e., Fuzzy, stochastic, etc.), the 

obust optimization approach is enlisted since it can manage the 

ncertainty in our problem per the availability of historical data 

nternal [68] . Moreover, when data are uncertain, robustness intro- 

uced by Bertsimas and Sim [69] may control the level of conser- 

atism in finding optimal solutions. For more details, please refer 

o Appendix B . 

In our model, we assume that the number of newly infected pa- 

ients of each type per period, denoted by ˜ Dem ipt , is an uncertain 

arameter such that ˜ Dem ipt = [ Dem ipt − ̂ Dem ipt , Dem ipt + 

̂ Dem ipt ] 

here Dem ipt and 

̂ Dem ipt serve as the nominal value and maxi- 

um deviation, respectively. Thus, we can rewrite constraint (17) 

s follows: 

os pt = 

∑ 

i 

(
Dem ipt + 	′ 

1 
̂ Dem ipt 

)
−

∑ 

i 

∑ 

j 

∑ 

n 

∑ 

u 

Q i jpnut ∀ p, t 

(41) 
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Table 3 

The cost of treating patients in HCs (IRR 10,0 0 0/ unit). 

PPE type Patient type 

Nurse type 

n 1 n 2 

u 1 Severe 3800 4100 

Moderate 2000 2300 

Outpatient 500 800 

u 2 Severe 4000 4300 

Moderate 2200 2500 

Outpatient 700 1000 
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m

n
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here 	
′ 
1 

∈ [ 0 , 1 ] is the uncertainty budget. Finally, we define in- 

ex ρ , the perturbation level, to investigate the maximum devia- 

ion for each demand zone (i.e., ̂ Dem ipt ). Since 0 ≤ ρ ≤ 1 , ̂ Dem ipt 

an be calculated as ρ × Dem ipt . 

. Illustration of results using a case study 

In this study, we are mainly interested in general results, es- 

ecially with critical insights into real practice. To this end, we 

pplied our model to a case study in Tehran – Iran’s capital city, 

hich experienced one of the highest rates of COVID-19 cases and 

atalities in the world – to demonstrate the practical application of 

ur proposed model. The proven optimal solutions were found us- 

ng GAMS 24.8.3 solver CPLEX on a Core i5 PC with 32 GB of RAM.

lthough the optimality gap of our results in this scale based on 

eal data is zero, to solve large-scale problems with higher model 

omplexity, other approaches such as heuristics and metaheuristics 

eed to be considered. 

.1. A background about the case study 

Tehran includes 22 urban areas, each one designated a patient 

rea. During our study (June-August 2020), two hospitals were de- 

oted to COVID-19 patients, while six clean hospitals were deemed 

ackup hospitals. Moreover, 11 potential field hospitals were con- 

idered for allocation to COVID-19 patients in case of shortage in 

he two devoted HCs. Note that to deal with non-COVID cases, only 

 portion of clean hospitals can be considered as candidate backup 

ospitals. Fig. 2 shows a geographical view of patient areas 1–22, 

s well as available hospitals, backup hospitals, and potential lo- 

ations for the field hospitals. As the COVID-19 pandemic boosted 

emand, nurse shortages escalated the potential ratio of patients 

er nurse to 12 [70] . 

The estimated costs over the treatment epoch for different 

ypes of COVID-19 patients as a function of the nurse type and the 

tilized PPE type are summarized in Table 3 . 

The number of ward and ICU beds, ventilators, and nurses in 

ach HC and the set-up cost for establishing field hospitals are 

ummarized in Table 4 . Two of the HCs are the available hospitals, 

nd six other HCs are backups that will be allocated to COVID- 

9 patients with no setup cost. Both the overload payments to 

he nurses and the distance limitations were obtained from Iran’s 

inistry of Health and Medical Education (MHME) and through 
Fig. 2. A geographic view of patient areas, available h

9 
onsultations with experts. The distance limitations for severe and 

oderate patients are, respectively, 11,293 and 14,116 meters, with 

o limitation for outpatients. 

To emphasize the critical importance of patient lives, the cost 

f non-admission (i.e., lost patient) is deemed significantly high. 

he costs of not admitting a patient and adding a new ventilator 

o an HC are 330,0 0 0 and 20 0,0 0 0 (IRR 10,0 0 0/unit), respectively.

ll distances in our case study were estimated from Google Map 

summarized in Appendix C ). The value of αu (i.e., functionality 

core of the u -type PPE) was obtained from the US Environmental 

rotection Agency, and σn ( overload-caused dissatisfaction rate for 

urse type n ) was obtained from [71] . The value of βn (patient sat-

sfaction rate served by nurse type n ) was obtained from [72] . For

 comprehensive analysis of the weight of the three objective val- 

es, we considered 16 different scenarios summarized in Appendix 

 . The standard ratio of patients per nurse during nurses’ normal 

orkload was considered equal to eight [39] . However, due to spe- 

ial conditions caused by the COVID-19 pandemic, we used the 

atio of 12 during nurses’ overload based on [70] . Finally, in this 

tudy, the number of newly infected patients at each period was 

eemed uncertain. Based on the data gathered from MHME, a uni- 

orm distribution was identified as the best fit for these data (see 

ppendix E ). Next, we present the results of various analyses we 

onducted. 

.2. Impact of reduced number of active nurses on the objective 

unctions 

As discussed in Section 1 , a proportion of nurses are unable 

o work during the pandemic. Therefore, to protect the system 

gainst disruption and to secure reliability, three different plans 

ith 100, 80, and 60% ratios of nurse availability were considered. 
ospitals, backup hospitals, and field hospitals. 
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Table 4 

Number of B j , BICU j , V j , N jn , and set up cost for field hospitals in each HC. 

HC type HC B j BICU j V j HC type HC Setup cost (IRR 10,0 0 0/ unit) B j BICU j V j 

Available 

hospital 

1 119 14 11 Field 

hospital 

1 6,580,000 199 16 9 

2 446 30 20 2 7,000,000 190 22 12 

3 7,620,000 181 30 17 

4 6,980,000 169 26 15 

Backup 

hospital 

1 240 13 8 5 5,560,000 168 11 7 

2 266 12 7 6 5,300,000 165 10 6 

3 257 12 7 7 4,160,000 108 10 6 

4 240 11 7 8 4,120,000 106 9 6 

5 520 32 18 9 3,700,000 75 11 7 

6 400 14 8 10 2,980,000 59 8 5 

11 2,860,000 53 7 5 

Fig. 3. Rate of admitted patients at each HC. 
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he obtained values for the first, second, and third objective func- 

ions shown by G 1 , G 2 , and G 3 , for varying ω are demonstrated

n Appendix D . The results suggest that, in general, a lower ratio 

f nurse availability worsens the optimal solutions, i.e., increasing 

ealthcare cost and decreasing patient and nurse satisfaction. 

.3. Contribution of each HC 

Fig. 3 illustrates the admission rate for all patient types by each 

C. The optimal solutions suggest that all backup hospitals were 

elected, with four out of 11 potential field hospitals (field hospi- 

als 2, 3, 4, and 9) opened for service. Backup hospitals 5 and 6 of-

ered the highest contribution for treating COVID-19 patients, hav- 

ng the most required resources, i.e., nurses, ward beds, ICU beds, 

nd ventilators. We also observe that due to the distance limita- 

ion, the moderate patients and outpatients are admitted to other 

Cs, although available hospital 2 is open at the beginning of the 

ime horizon. Moreover, backup hospital 4 offered the lowest con- 

ribution, having fewer resources compared to other backups. For 

he same reason, field hospital 9 offered the lowest contribution 
Table 5 

The number of lost patients in scenarios A, B, and C. 

Patient 

type Scenario 

Plan 1 

TNLP Average reduction 

Severe A 438 

B 162 63% 

C 17 96% 

Moderate A 2162 

B 0 100% 

C 0 100% 

Outpatient A 294 

B 0 100% 

C 0 100% 

10 
mong selected field hospitals. Therefore, under a budget cap or 

hen allocating clean hospitals to treat COVID-19 patients, backup 

ospital 4 and field hospital 9 can be eliminated from the candi- 

ate HCs. 

.4. Contribution of backup and field hospitals to the number of lost 

atients 

To highlight the importance of backup and field hospitals in 

ur analysis, Table 5 illustrates the total number of lost patients 

TNLP) under three scenarios: (A) only the available hospitals can 

dmit COVID-19 patients, (B) both available and backup hospitals 

ay admit COVID-19 patients, and (C) all HCs can admit COVID-19 

atients. The results are presented as “average reduction” that in- 

icates the proportional reduction in the number of lost patients 

elative to the worst-case scenario, i.e., scenario (A). Accordingly, 

nder scenario B, although all moderate patients and outpatients 

re admitted, the admission rate for severe patients is 63%, mean- 

ng that a great proportion of severe patients remain unadmitted. 

nstead, under scenario C, at least 96% of severe patients can be 
Plan 2 Plan 3 

TNLP Average reduction TNLP Average reduction 

438 438 

162 63% 162 63% 

17 96% 1 99.8% 

2216 2312 

0 100% 0 100% 

0 100% 0 100% 

960 1584 

0 100% 0 100% 

0 100% 0 100% 
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Table 6 

Occupancy rates under optimal solution ( ω 1 = 0 . 4 , ω 2 = 0 . 3 , ω 3 = 0 . 3 , and 	 = 0 ). 

Type of HC ROB ROV NAV RP n 2 RN u 2 

Available Hospital 1 92.4% 100% 3 47.5% 10.9% 

Available Hospital 2 3.4% 50% 10 100.0% 0.0% 

Backup hospital 1 35.4% 100% 5 48.7% 23.0% 

Backup hospital 2 36.1% 100% 5 46.8% 12.0% 

Backup hospital 3 42% 100% 5 42.0% 8.9% 

Backup hospital 4 4.6% 100% 4 100.0% 0.0% 

Backup hospital 5 19.2% 100% 14 100.0% 0.0% 

Backup hospital 6 56.7% 100% 6 53.8% 22.3% 

Field hospital 2 61.6% 100% 10 50.3% 22.9% 

Field hospital 3 40.3% 100% 13 53.1% 13.5% 

Field hospital 4 15.4% 100% 11 54.7% 14.4% 

Field hospital 9 94.7% 100% 4 56.7% 27.8% 

∗ROB: Rate of occupied beds in the last period, ∗ROV: Rate of occupied ventilators in 

the last period, ∗NAV: Number of added ventilators, ∗RP n 2 : Rate of patients served 

by nurse n 2 , 
∗RN u 2 : Rate of nurses using PPE u 2 
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dmitted, indicating a significant improvement in patient coverage. 

hese results confirm that both backup and field hospitals greatly 

nhance patient coverage. 

.5. Occupation rate of facilities in HCs 

Table 6 illustrates the allocated HCs, the rates of occupied beds 

nd ventilators at the end of planning horizon, the total number of 

dded ventilators, the rate of patients served by n 2 , and the rate of

urses using u 2 in plan 2 where ω 1 = 0 . 4 , ω 2 = 0 . 3 , ω 3 = 0 . 3 , and

= 0 . These results show the importance and contribution of each 

ospital in treating COVID-19 patients. Accordingly, by encounter- 

ng a high number of patients, the rate of occupied ventilators in 

he final period is 100%, except for one hospital (i.e., available hos- 

ital 2). New ventilators should be added to all hospitals to secure 

he healthcare SC against shortage. Finally, available hospital 2 of- 

ers the lowest rate of occupied beds in the final period since it is 

ocated in a region far from the patient areas. Instead, field hospi- 

al 9, located in patient area 12, yields the highest rate compared 

o the opened field hospitals. Interestingly, the results also suggest 

elationships among the rate of occupied beds (in the last period), 

he rate of patients served by nurse type n 2 , and the rate of nurses

sing PPE type u 2 . Accordingly, when the rate of HC-occupied beds 

n the last period is lower, more regular nurses are allocated to 

OVID-19 patients and less special PPE is assigned to nurses. 
Fig. 4. The impact of the cost of adding a new ventilator

11 
.6. Impacts of ventilator price and the maximum possible number of 

dded ventilators 

Ventilators are crucial for treating severe COVID-19 patients. 

uring the pandemic, the need for this device noticeably increased, 

hus raising its price. Fig. 4 shows the impact of ventilator price on 

he total number of those added per HC. Intuitively, as ventilator 

rice rises, the total number of added ventilators falls. For exam- 

le, by increasing the price from 350,0 0 0 to 40 0,0 0 0, our model

uggests buying significantly fewer ventilators, instead allocating 

ore HCs to treat COVID-19 patients. Thus, adding new ventilators 

s not always helpful. DMs should consider the price of ventilators 

efore admitting more severe patients to an HC. 

The shortage of ventilators during COVID-19 mostly suffered 

rom issues related to the global SC [46] . Therefore, in many coun- 

ries, the vital decision about adding extra ventilators is mainly in- 

uenced by supply capacity rather than price. Fig. 5 shows the im- 

act of the maximum number of ventilators added to a healthcare 

ystem on the rate of lost severe patients. The results demonstrate 

hat increasing the total number of ventilators that can be added 

o the healthcare system reduces the rate of losing severe patients 

y more than 80%. 

.7. Increasing resilience through student nurses and field hospitals 

Our analyses indicate that the failure to admit all COVID-19 pa- 

ients is largely caused by capacity limitations regarding nurses. 

or further investigation, an extra nurse capacity of eight was con- 

idered to deliver services to more patients. Accordingly, a total 

f 16 patients can be allocated per nurse in case of HC nursing 

hortages. To implement this plan reasonably, a higher dissatisfac- 

ion rate and salaries are also considered for nurses working in 

his situation. Within this analysis, we also investigated the role 

f student nurses and field hospitals in the healthcare system. 

able 7 illustrates the results under four different situations, all 

ased on Plan 2 (i.e., ω 1 = 0.4, ω 2 = 0.3, and ω 3 = 0.3). Situation 1

epresents the most resilient case, where both field hospitals and 

tudent nurses can be allocated to COVID-19 patients to boost the 

ealthcare system’s resilience. Situations 2 and 3 are partially re- 

ilient under which, respectively, student nurses and field hospi- 

als are prohibited. Finally, situation 4 represents the least resilient 

ituation, i.e., where no student nurses nor field hospitals can be 

tilized. These results suggest that by eliminating student nurses, 
 and the total number of added ventilators in HCs. 
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Fig. 5. The impact of the maximum possible number of added ventilators on the rate of lost severe patients. 

Table 7 

Situation of system with and without field hospitals and medical students. 

Situation Allocated hospitals G 1 

Change in G1 

compared to 

Situation 1 G 2 

Change in G2 

compared to 

Situation 1 G 3 

Change in G3 

compared to 

Situation 1 NNAP RUON APOICU 

1 available 1,2; back up 1-6; 

field hospital 2,3,4,9 

71,405,620 7639.41 17,785.6 17 (severe) 2.3% 0.76 

2 available 1,2; back up 1-6; 

field hospital 2to4, 7,8,10 

78,777,880 10% 8224.1 7.7% 6,320.0 -64% 1 (severe) 29% 0.74 

3 available 1,2; back up 1-6 92,684,940 30% 7675.9 0.5% 13,737.6 -23% 180 (severe) 10% 0.80 

4 available 1,2; back up 1-6 94,828,620 33% 7891.17 3.3% 4,423.0 -75% 180 (severe) 55% 0.83 

NNAP: Number of non-admitted patients, RUON: Rate of unexpected overload for nurses, APOICU: Average percentage of occupied ICU beds. 
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Table 8 

The value of ω in each scenario. 

Scenario ω 1 ω 2 ω 3 

1 1 0 0 

2 0.6 0.2 0.2 

3 0.4 0.3 0.3 

4 0 0.5 0.5 

5 0.4 0.6 0 

6 0.4 0 0.6 

a

a

p
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q

a
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t
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l
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(

ore HCs should be allocated. This increases the total healthcare 

ost while elevating patient satisfaction and decreasing nurse sat- 

sfaction. Boosting patient satisfaction occurs by utilizing more reg- 

lar nurses and enabling access to a closer HC. Naturally, allocat- 

ng more HCs increases the total number of ICU beds for admit- 

ing more severe patients, thus reducing the total number of lost 

OVID-19 patients. Moreover, through this situation, the satisfac- 

ion rate of nurses dramatically plummets due to the high pressure 

f nurse overload. Dismissing field hospitals for treating COVID- 

9 patients would also significantly increase the total cost of the 

ealthcare system. In this situation, 80–100% of ICU beds are occu- 

ied on average in some periods, escalating fatalities among severe 

atients. The worst situation is when both student nurses and field 

ospitals are eliminated from the network (i.e., situation 4). In this 

ituation, the total healthcare cost increases significantly while the 

atisfaction rate of nurses falls by 75%. 

.8. Impact of the robust optimization 

To handle the uncertainty in the number of COVID-19 patients 

eeking treatment at each period, we applied a robust optimiza- 

ion approach proposed by Bertsimas and Sim [69] . To this end, 

e considered different values for the uncertainty budget, denoted 

y 	, to assess their impacts on each objective function. Here, the 

xtreme value 	 = 0 reflects a deterministic model, while 	 = 1 

onsiders the maximum level of demand uncertainty. Fig 6 a–c de- 

ict the impact of demand uncertainty on each objective value for 

he six different scenarios in Table 8 . 
12 
The results suggest that a higher uncertainty budget increases 

ll three objective values with different rates. This trend is due to 

llocating more HCs to COVID-19 patients. By utilizing more HCs, 

atients enjoy access to closer HCs and receive more services from 

egular nurses, and nurses face fewer patient overloads. Conse- 

uently, the total system costs and the satisfaction rates of patients 

nd nurses all rise. 

Finally, to study the tradeoff between the level of conservatism 

nd the cost of the robust solution, ten different realizations of the 

ncertain parameter were performed (refer to Appendix F for de- 

ails). To characterize the value of the robust solution, we not only 

omputed the total cost of the system ( G 1 ) but also quantified the 

nexpected penalty value (UPV) for comparison, which captures 

he reduction in the number of lost patients under the robust so- 

ution. Specifically, a higher level of conservatism results in fewer 

ost patients under the robust solution. Fig. 7 portrays the effect of 

onservatism level (or uncertainty budget 	) on total system cost 

i.e., G ) and UPV for deterministic and robust solutions. 
1 
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Fig. 6. The impact of the robust approach on different objective functions. 

Fig. 7. The tradeoff between cost and budget of uncertainty. 
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The main takeaways from Fig. 7 are as follows. First, the ro- 

ust and deterministic solutions are equal when 	= 0. Note that 

he actual cost under the robust solution is the total system 

ost plus the UPV. When 	= 0, the robust solution cannot re- 

uce any unexpected lost patient compared to the determinis- 

ic solution. However, when the level of conservatism increases, 

he UPV decreases at the expense of a more robust solution (e.g., 

ore field hospitals are established). More specifically, by increas- 

ng the level of conservatism from 0 to 0.2, the price of robust- 
13 
ess equals 38,333,0 0 0 × 10 4 IRR. However, the system would save 

3,310,200 ×10 4 IRR if there are new unexpected patients in the 

ystem. Also, by extending the level of conservatism from 0.2 to 

.4, the price of robustness increases only 2%, while the system 

ost reduces by 13% for new, unexpected patient admissions into 

he system. 

. Managerial insights 

The COVID-19 pandemic has challenged the global health sys- 

em, and strategic and tactical decisions should be made to over- 

ome this crisis. The main purpose of the proposed approach for 

he healthcare network redesigning during the COVID-19 pandemic 

as to enable COVID-19 patients to access suitable treatment and 

lleviate pressure on the medical staff. Our main findings suggest 

ome managerial insights for DMs to improve health systems cop- 

ng with the pandemic. 

First, under limited resources, some field hospitals offer min- 

mal contributions; hence can be discarded under budget con- 

traints. This point also applies to the backup hospitals that offer 

imited contributions. When planning, only HCs with the highest 

ontributions should be selected. Second, as nurses are exposed to 

he risk of COVID-19, a portion of them may become dysfunctional. 

herefore, by reducing the number of active nurses, the system 

ost increases, and the satisfaction rate of nurses declines. Third, 
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y considering backup hospitals during COVID-19, all moderate and 

utpatients would have access to treatment facilities. However, es- 

ablishing field hospitals becomes necessary to increase severe pa- 

ient admission. Fourth, field hospitals and student nurses can sig- 

ificantly boost system resilience. Moreover, although nurse satis- 

action would decline under patient overload, allowing nurses to 

rovide service for more patients per shift would reduce the num- 

er of non-admitted patients and save more lives. By eliminating 

he role of field hospitals and student nurses from the network, 

he system would incur 33% more cost, and satisfaction for nurses 

ould crumble by 75%. Fifth, the demand for ventilators logically 

scalates their price. Still, in cases of necessity and sufficient avail- 

bility of ICU beds, it would be reasonable for DMs to add new 

entilators to HCs even when their price skyrockets fourfold. Fi- 

ally, by increasing the level of conservatism, the average and stan- 

ard deviation of the first objective function, PV, and UPV decrease 

ignificantly. Moreover, protecting the health system from failure 

hen facing an unexpected number of new patients is possible 

ith a modest increase in the system’s total cost. For example, by 

xtending the level of conservatism from 0 to 0.2, the system saves 

1% in costs. By increasing the level of conservatism from 0.2 to 

.4, the price of robustness grows by only 2%, while the system 

aves 13% when facing unexpected new patients into the system. 

elow a 0.4 level of conservatism, the value of UPV declines dra- 

atically, and by obtaining the level of conservatism equal to 1, the 

alue of UPV nearly zeroes out. These results can help DMs find a 

uitable level of conservatism for their systems. 

. Conclusion 

According to the WHO, the COVID-19 outbreak has put pub- 

ic health in an emergency worldwide, and healthcare systems 

hould be resilient enough to combat this epidemic successfully 

73] . Aligned with this strategy, this study has proposed a new 

obust multi-objective, location-allocation healthcare network re- 

esign modeling that minimizes the system’s total cost while max- 

mizing the satisfaction rate of COVID-19 patients and nurses. 

he proposed model considers different hospital types (available, 

ackup, and field hospitals), regular and student nurses, different 

ypes of COVID-19 patients, different PPE, ICU and ward beds, ven- 

ilators, and coverage distance for each patient type – all applied 

o a real-life case study to investigate model applicability. Novelties 

n this study are as follows. 

This study developed a location-allocation model for optimal 

esilient healthcare network design in the context of the COVID-19 

andemic aimed at boosting the resilience of the healthcare sys- 

em by considering backup and field hospitals, student nurses, and 

ew ventilators, as well as robustness by considering demand fluc- 

uation in the model. As nurses play one of the most critical roles 

n combating COVID-19, with a proportion of them may be unable 

o work, the impact of their reduced active headcount on system 

ost and the satisfaction of patients has been demonstrated. Fur- 

her, under limitations in budget or in allocating only clean hos- 

itals to COVID-19 patients, this study has identified HCs offering 

he highest contribution, as well as the impact of eliminating each 

C type from the healthcare system. Moreover, as the rising de- 

and for ventilators affects the price, we illustrated the relation- 

hip between adding new ventilators to HCs and their price. More- 

ver, the impacts of field and backup hospitals plus student nurses 

s the three main pillars of resilience in health systems were thor- 

ughly investigated. A conservative robustness approach was also 

pplied to handle demand uncertainty, where ten different realiza- 

ions were performed. This study also investigated the roles of PPE 

ype, bed differentiation, and distance limitation for COVID-19 pa- 
14 
ients in the health system. Finally, a novel mathematical technique 

as developed to linearize a nonlinear constraint in the model. 

Our findings have advised several courses of practical actions as 

ollows. First, when backup hospitals become activated for COVID- 

9 patients, all moderate patients and outpatients are admitted to 

Cs while a proportion of severe patients remains non-admitted. 

owever, when field hospitals become available, the number of 

on-admitted patients drops to 5%. Second, by enabling nurses 

o serve more patients per shift while eliminating student nurses 

rom the health system, the total cost of the network and patient 

atisfaction rise from more allocated HCs, but this would incur a 

arked reduction in the satisfaction rate of regular nurses. More- 

ver, by eliminating field hospitals, 100% of ICU beds remain occu- 

ied in some periods, resulting in lost lives among severe patients. 

he worst situation occurs when student nurses and field hospi- 

als are both eliminated from the network, resulting in 33% more 

otal costs and a 75% reduction in the satisfaction rate of regu- 

ar nurses, with an average of 83% occupancy for the ICU beds. 

hird, our analyses demonstrated that although conservatism in- 

reases the system’s cost, it could also soften the expenses notice- 

bly when facing a large number of unexpected new patients. 

We acknowledge that our proposed framework comes with the 

ollowing limitations. First, we assume that adding new ventilators 

s impossible unless there are enough ICU beds in the hospital. This 

s not always true in practice. A severe patient may be admitted 

e.g., sitting up in chairs) even when no bed is available in the 

ospital. Under such conditions, assigning new ventilators to se- 

ere patients may be possible. Second, we assume that the number 

f allocated patients per nurse does not exceed a standard ratio. 

gain, this assumption may not apply during a pandemic. Finally, 

ur proposed framework is limited in solving large-scale scenarios, 

here the running time required for obtaining optimal solutions 

ncreases dramatically. Therefore, other techniques such as heuris- 

ics and metaheuristic algorithms would be needed for large-scale 

roblems to solve the optimization model. 

The proposed approach for boosting healthcare system re- 

ilience to combat failure and shortage can also be applied to fu- 

ure pandemics. To do so, the mathematical modeling in this work 

an be calibrated for future pandemics, while sensitivity analysis 

ould help DMs improve their health systems. To extend the cur- 

ent model, it is recommended to consider mobile hospitals for 

utpatients. Other approaches could utilize probability distribu- 

ions to reflect treatment periods for COVID-19 patients. Another 

nteresting model extension may include the notion of resource- 

haring among all hospitals. Moreover, considering a lateral trans- 

er of patients within hospitals merits further research efforts. For 

nterested practitioners, considering the routing problem for severe 

atients is recommended. 
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A

ed on an approach applied by [63] . 

X (A1) 

w aints that enforce X = min { x 1 , x 2 } to be linear are required. Let Y be a 

b 0 if x 1 > x 2 . Let M be a constant such that x 1 , x 2 ≤ M in any reasonable 

s e definition of Y : 

x (A2) 

x (A3) 

X (A4) 

X (A5) 

X (A6) 

X (A7) 

ined with constraints ( A6 ) and ( A7 ) would become X = x 1 if x 1 < x 2 
(

X (A8) 

 x 2 and equal 0 if x 1 < x 2 . 

x (A9) 

x (A10) 

X (A11) 

X (A12) 

X (A13) 

X (A14) 

bined with constraints ( A13 ) and ( A14 ) would become X = x 1 if x 1 > x 2 
(

A

of conservatism when solving a problem with uncertain data. It results 

i lled budget of uncertainty shown by 	i ; a positive parameter to capture 

u ger programming model: 

M (B1) 

w is a polyhedron. Consider b as an uncertain parameter in problem ( B1 ) 

s ominal value and maximum deviation, respectively. If the uncertainty 

i n problem ( B2 ) can be reformulated as follows: 

M (B2) 

w then i th constraint is uncontrollable against uncertainty, whereas it is 

a higher the level of conservatism of the decision-maker is, the higher 

v

ppendix A 

For linearizing constraint (18) , consider the following model bas

 = min { x 1 , x 2 } 
here x 1 and x 2 are constants or decision variables. A set of constr

inary decision variable, which would equal 1 if x 1 < x 2 and equal 

olution to the problem. The following constraint would enforce th

 2 − x 1 ≤ MY 

 1 − x 2 ≤ M ( 1 − Y ) 

Then, the following constraints enforce X = min { x 1 , x 2 } : 
 ≤ x 1 

 ≤ x 2 

 ≥ x 1 − M ( 1 − Y ) 

 ≥ x 2 − MY 

Constraints ( A4 ) and ( A5 ) result in X ≤ min { x 1 , x 2 } , and comb

 Y = 1 ), and X = x 2 if x 2 < x 1 ( Y = 0 ). 

This approach can be modified for max function as follows: 

 = max { x 1 , x 2 } 
Let Y be a binary decision variable, which would equal 1 if x 1 >

 1 − x 2 ≤ MY 

 2 − x 1 ≤ M ( 1 − Y ) 

Then, the following constraints enforce X = max { x 1 , x 2 } : 
 ≥ x 1 

 ≥ x 2 

 ≤ x 1 − M ( 1 − Y ) 

 ≤ x 2 − MY 

Constraints ( A11 ) and ( A12 ) result in X ≥ max { x 1 , x 2 } , and com

 Y = 1 ), and X = x 2 if x 2 > x 1 ( Y = 0 ) Eqs. (A1 )–( A14 ). 

ppendix B 

Using robust optimization approach, one can control the degree 

n an integer programming problem with polyhedral uncertainty ca

ncertainty in the i th constraint. Consider the following mixed-inte

in c ′ x s . t . Ax ≤ bx ∈ X 

here A = ( a 1 , a 2 , . . . , a i ) is a [ m × n ] matrix, b is a vector, and X

hown by ˜ b i that ˜ b i ∈ [ b i − ˆ b i , b i + ̂

 b i ] where b i , and 

ˆ b i are the n

nfluences the values of the right-hand side of constraints [74] , the

inc ′ x s . t . Ax ≤ b i − 	′ 
i ̂
 b i x ∈ X ; ∀ i 

here 	
′ 
i 
∈ [ 0 , 1 ] is the uncertainty budget. Specifically, if 	

′ 
i 
= 0 , 

bsolutely protected against uncertainty if 	
′ 
i 
= 1 . In general, the 

alue of uncertainty budget is needed. 
15 
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A

ables C1 and C2 . 
ppendix C 

The distance between the HCs and the center of patient areas T
Table C1 

The distance between the available and backup hospitals and the center of patient area (Meter). 

Patient 

area 

Available hospital Backup hospital 

1 2 1 2 3 4 5 6 

1 12841 25530 13958 17922 414 15518 18592 15155 

2 9709 21522 8950 12935 4598 10515 13664 10159 

3 3936 13945 8208 12321 8832 9252 13546 9781 

4 15444 19943 12081 15125 6217 13657 15301 12702 

5 2151 22817 7559 10896 13032 7878 12340 8993 

6 8022 19510 5568 9678 8027 7098 10555 6891 

7 4589 20622 4925 8696 11814 5587 10046 6453 

8 15703 15750 9757 11931 9758 11164 11817 9912 

9 5869 24764 3618 7364 12351 4255 8706 5126 

10 7518 26382 11572 12952 19785 10900 14422 12419 

11 10929 16310 4344 7522 10240 5888 7994 4945 

12 17191 14422 10157 11538 11999 11370 11145 9959 

13 6670 23203 3969 6465 14692 3637 7947 5024 

14 11463 14332 2402 4433 13261 3439 4918 2087 

15 19082 9792 10505 10257 15933 11228 9365 9692 

16 15992 9999 6685 5684 16042 7024 4816 5525 

17 19022 9146 10211 9651 16463 10823 8684 9290 

18 23576 9412 15102 14531 18969 15776 13453 14242 

19 13281 13460 5265 1542 18763 3851 2383 4048 

20 13502 23114 12692 11659 24392 11304 12751 12684 

21 15452 10355 6108 2852 18244 5541 1432 4538 

22 21011 6241 11762 8045 23308 11065 6588 10189 

Table C2 

The distance between the field hospitals and the center of patient area (Meter). 

Patient 

area 

Potential Field hospital 

1 2 3 4 5 6 7 8 9 10 11 

1 23357 10851 12923 23896 10876 13399 22621 22862 9022 8738 13452 

2 18508 5945 8732 19255 5884 8515 17645 18817 4807 3796 8842 

3 18503 7567 11728 20041 5685 9494 16779 21072 8750 4462 10845 

4 19455 8396 8249 19344 9760 10372 19473 17343 5415 8417 9536 

5 16963 8844 12996 18984 6583 9786 14734 21047 11090 6782 11572 

6 15505 3233 7143 16555 2449 5646 14394 16859 4122 405 6546 

7 14886 6007 10135 16674 3750 6971 12957 18380 8416 4355 8723 

8 15566 6357 4424 15236 8400 7468 15919 13123 3626 8013 6099 

9 13558 5221 9176 15334 3076 5815 11680 17103 7918 4343 7641 

10 17812 14289 17926 20417 12198 14220 14975 23833 17036 13112 16149 

11 12705 783 3644 13391 3001 2791 12111 13324 2380 3670 3054 

12 14340 7241 3929 13674 9464 7602 15074 11100 5141 9529 5862 

13 12452 6846 10303 14551 5023 6602 10223 17006 9785 6624 8531 

14 9750 2827 4076 10743 3874 360 9009 11592 5338 5731 2191 

15 11302 8852 4611 10087 11046 7903 12692 6959 8036 11863 6004 

16 7720 6515 3635 7539 8253 4487 8457 7152 7420 9770 3211 

17 10440 8864 4681 9205 11000 7669 11894 6218 8351 11971 5828 

18 14227 13320 9097 12252 15552 12504 16207 7515 12030 16175 10600 

19 5859 8497 9202 8174 8401 6237 3734 11614 11224 10587 7375 

20 14238 16276 18733 17088 14794 15068 11293 21551 19324 16486 16794 

21 4702 7890 6775 5763 8799 5323 4782 8034 9873 10801 5402 

22 2985 13261 10966 251 14409 10766 5903 5001 14706 16335 10274 

16 



E. Shaker Ardakani, N. Gilani Larimi, M. Oveysi Nejad et al. Omega 114 (2023) 102750 

A
ppendix D 

Figs. D1 , D2 and Table D1 . 
Fig. D1. Distribution of observations. 

Fig. D2. Cullen and Frey graph. 
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Table D1 

Characteristics of founded distributions for data. 

Distribution P-value Best fit AIC 

Uniform 0.8639568 3552.551, 14672.132 756.5386 

Weibull 0.3932373 shape: 3.188378, 

scale:10217.348659 

780.5836 

normal 0.3614575 Mean: 9112.341, 

Sd: 3209.947 

782.4217 

Poisson 47883.46 

L-normal 0.4267309 Meanlog:9.0499036 

Sdlog: 0.3760329 

782.2426 

n-binomial 781.2443 

A

ut considering other objective functions. In other words, the optimum 

v tive function equals 1 and 0 for other objective functions. The optimum 

v G 

∗
1 , G 

∗
2 , and G 

∗
3 , respectively. For a better understanding of the impact of 

t , a ratio of the optimum value and the value of each objective function 

i

ppendix E 

The optimum value for each objective function is gained witho

alue for each objective function is obtained when ω for that objec

alue for the first, second, and third objective function is shown by 

he availability of nurses and ω on the value of objective functions

s also provided Tables E1 , E2 and E3 . 
Table E1 

Value of objective functions with different ω in plan 1 . 

ω 2 ω 3 

Plan 1 (Personnel = 100%), ( G ∗1 = 67430000 , G ∗2 = 8235 . 52 , G ∗3 = 93065 . 60 ) 

G 1 G ∗1 /G 1 G 2 G 2 /G ∗2 G 3 G 3 /G ∗3 G 4 

1 0 0 67,430,000 1.00 4476.87 0.54 52941.90 0.569 0.00 

0.8 0.2 0 67,458,000 1.00 6867.03 0.83 53425.35 0.574 0.03 

0.6 0.4 0 69,331,000 0.97 7469.39 0.91 53224.70 0.572 0.05 

0.4 0.6 0 73,274,000 0.92 8010.25 0.97 54371.85 0.584 0.05 

0.2 0.8 0 73,828,000 0.91 8041.59 0.98 54783.90 0.589 0.04 

0 1 0 106,500,000 0.63 8235.52 1.00 93065.60 1.000 0.00 

0.8 0 0.2 67,477,000 1.00 4415.71 0.54 70027.20 0.752 0.05 

0.6 0 0.4 67,477,000 1.00 4478.95 0.54 70027.20 0.752 0.10 

0.4 0 0.6 79,977,000 0.84 4437.92 0.54 85833.60 0.922 0.12 

0.2 0 0.8 89,096,000 0.76 4500.35 0.55 93065.60 1.000 0.06 

0 0 1 2,617,300,000 0.03 336.85 0.04 93065.60 1.000 0.00 

0.8 0.1 0.1 67,477,000 1.00 6847.53 0.83 70027.20 0.752 0.04 

0.6 0.2 0.2 67,963,000 0.99 7055.25 0.86 70027.20 0.752 0.08 

0.4 0.3 0.3 70,505,000 0.96 7517.01 0.91 71838.40 0.772 0.11 

0.2 0.4 0.4 95,576,000 0.71 8231.76 1.00 93065.60 1.000 0.08 

0 0.5 0.5 106,520,000 0.63 8235.52 1.00 93065.60 1.000 0.00 

Table E2 

Value of objective functions with different ω in plan 2 . 

ω 2 ω 3 

Plan 2 (Personnel = 80%), ( G ∗1 = 678970 0 0 , G ∗2 = 8194 . 7 , G ∗3 = 77220 . 8 ) 

G 1 G ∗1 /G 1 G 2 G 2 /G ∗2 G 3 G 3 /G ∗3 G 4 

1 0 0 67,898,000 1.00 4501.18 0.55 45186.00 0.59 0.00 

0.8 0.2 0 68,157,000 1.00 7043.84 0.86 44866.00 0.58 0.03 

0.6 0.4 0 70,062,000 0.97 7572.89 0.92 45183.10 0.59 0.05 

0.4 0.6 0 72,856,000 0.93 7937.53 0.97 45793.95 0.59 0.05 

0.2 0.8 0 74,383,000 0.91 7993.23 0.98 46967.45 0.61 0.04 

0 1 0 106,520,000 0.64 8194.66 1.00 77220.80 1.00 0.00 

0.8 0 0.2 67,942,000 1.00 4402.13 0.54 58248.00 0.75 0.05 

0.6 0 0.4 67,942,000 1.00 4401.29 0.54 58248.00 0.75 0.10 

0.4 0 0.6 82,984,000 0.82 4448.89 0.54 73155.20 0.95 0.12 

0.2 0 0.8 89,109,000 0.76 4466.14 0.55 77220.80 1.00 0.06 

0 0 1 2,621,800,000 0.03 316.65 0.04 77220.80 1.00 0.00 

0.8 0.1 0.1 67,943,000 1.00 6852.37 0.84 58248.00 0.75 0.04 

0.6 0.2 0.2 68,544,000 0.99 7186.87 0.88 58248.00 0.75 0.08 

0.4 0.3 0.3 71,617,000 0.95 7672.23 0.94 59603.20 0.77 0.11 

0.2 0.4 0.4 95,588,000 0.71 8188.99 1.00 77220.80 1.00 0.08 

0 0.5 0.5 106,520,000 0.64 8194.65 1.00 77220.80 1.00 0.00 
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Table E3 

Value of objective functions with different ω in plan 3. 

ω 2 ω 3 

Plan 3 (Personnel = 60%), ( G ∗1 = 685350 0 0 , G ∗2 = 8011 . 847 , G ∗3 = 60502 . 4 ) 

G 1 G ∗1 /G 1 G 2 G 2 /G ∗2 G 3 G 3 /G ∗3 G 4 

1 0 0 68,535,000 1.00 4385.26 0.55 34919.40 0.58 0.00 

0.8 0.2 0 68,953,000 0.99 7173.35 0.90 35791.40 0.59 0.03 

0.6 0.4 0 70,614,000 0.97 7580.47 0.95 36103.05 0.60 0.04 

0.4 0.6 0 71,775,000 0.95 7730.83 0.96 36499.60 0.60 0.04 

0.2 0.8 0 73,206,000 0.94 7783.10 0.97 37410.75 0.62 0.04 

0 1 0 106,190,000 0.65 8011.85 1.00 60502.40 1.00 0.00 

0.8 0 0.2 68,578,000 1.00 4488.17 0.56 44696.00 0.74 0.05 

0.6 0 0.4 70,416,000 0.97 4369.70 0.55 47406.40 0.78 0.10 

0.4 0 0.6 87,701,000 0.78 4386.58 0.55 59603.20 0.99 0.12 

0.2 0 0.8 89,537,000 0.77 4395.92 0.55 60502.40 1.00 0.06 

0 0 1 2,716,500,000 0.03 176.81 0.02 60502.40 1.00 0.00 

0.8 0.1 0.1 68,634,000 1.00 6919.44 0.86 44696.00 0.74 0.04 

0.6 0.2 0.2 69,135,000 0.99 7233.75 0.90 44696.00 0.74 0.08 

0.4 0.3 0.3 72,673,000 0.94 7640.64 0.95 47406.40 0.78 0.10 

0.2 0.4 0.4 94,687,000 0.72 7985.05 1.00 60502.40 1.00 0.08 

0 0.5 0.5 106,180,000 0.65 8011.85 1.00 60502.40 1.00 0.00 

A

ertainty levels. Columns 2, 5, and 8 are PV, which is equal to the cost 

o nt UPV, which represents the cost of unexpected lost patients for the 

s unction ( G 1 ) in the deterministic and robust approaches. The last two 

r dard deviation of the penalty value, unexpected penalty value, and the 

fi

ppendix F 

The tables show the impact of the five different budgets of unc

f losing the patients for the system. Columns 3, 6, and 9 represe

ystem. Columns 4, 7, and 10 are the value of the first objective f

ows of the tables, respectively, represent the average and the stan

rst objective function Tables F1 and F2 . 
Table F1 

Effectiveness of the model under realization (IRR ×10 4 ). 

Deterministic Robust ( 	 = 0.2) Robust ( 	 = 0.4) 

Re No. PV UPV G 1 PV UPV G 1 PV UPV G 1 

1 183,480,000 177,870,000 249,486,800 48510000 47190000 123,770,600 13530000 13530000 115596200 

2 214,830,000 209,220,000 280836800 72930000 71610000 148190600 19800000 19800000 121866200 

3 134,310,000 128,700,000 200316800 59730000 58410000 134990600 19140000 19140000 121206200 

4 201,960,000 196,350,000 267966800 66000000 64680000 141260600 13530000 13530000 115596200 

5 114,510,000 108,900,000 180516800 49830000 48510000 125090600 14520000 14520000 116586200 

6 165,330,000 159,720,000 231336800 54780000 53460000 130040600 11880000 11880000 113946200 

7 126,390,000 120,780,000 192396800 59400000 58080000 134660600 13200000 13200000 115266200 

8 137,940,000 132,330,000 203946800 67320000 66000000 142580600 15180000 15180000 117246200 

9 166,980,000 161,370,000 232986800 53460000 52140000 128720600 11550000 11550000 113616200 

10 172,920,000 167,310,000 238926800 61050000 59730000 136310600 20460000 20460000 122526200 

Avr 161,865,000 156,255,000 227871800 59301000 57981000 134561600 15279000 15279000 117345200 

S.D 31421563.1 31421563.1 31421563.1 7475865.8 7475865.8 7475865.8 3141246.4 3141246.4 3141246.4 

∗Re No.: Realization number ∗Avr: Average ∗S.D: Standard Deviation 

Table F2 

Effectiveness of the model under realization (IRR ×10 4 ). 

Robust ( 	 = 0.6) Robust ( 	 = 0.8) Robust ( 	 = 1) 

Re No. PV UPV G 1 PV UPV G 1 PV UPV G 1 

1 13,530,000 12,540,000 117,240,200 4,620,000 0 116,451,800 2,970,000 0 116,272,200 

2 19,800,000 18,810,000 123,510,200 6,930,000 0 118,761,800 6,270,000 0 119,572,200 

3 19,140,000 18,150,000 122,850,200 8,250,000 330000 120,081,800 6,930,000 0 120,232,200 

4 14,520,000 13,530,000 118,230,200 5,610,000 0 117,441,800 3,960,000 0 117,262,200 

5 11,880,000 10,890,000 115,590,200 6,930,000 0 118,761,800 4,950,000 0 118,252,200 

6 13,200,000 12,210,000 116,910,200 6,600,000 0 118,431,800 6,270,000 0 119,572,200 

7 14,190,000 13,200,000 117,900,200 6,270,000 0 118,101,800 4,290,000 0 117,592,200 

8 11,550,000 10,560,000 115,260,200 3,300,000 0 115,131,800 2,310,000 0 115,612,200 

9 20,460,000 19,470,000 124,170,200 11,220,000 3300000 123,051,800 8,910,000 0 122,212,200 

10 11,220,000 10,230,000 114,930,200 4,290,000 0 116,121,800 1,980,000 0 115,282,200 

Avr 14,949,000 13,959,000 118,659,200 6,402,000 363000 118,233,800 4,884,000 0 118,186,200 

S.D 3349296.8 3349296.8 3349296.8 2124339.0 983931.4 2124339.0 2101662.2 0.0 2101662.2 
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