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Abstract

Background and purpose: Artificial intelligence advances have stimulated a new generation 

of autosegmentation, however clinical evaluations of these algorithms are lacking. This study 

assesses the clinical utility of deep learning-based autosegmentation for MR-based prostate 

radiotherapy planning.

Materials and methods: Data was collected prospectively for patients undergoing prostate-

only radiation at our institution from June to December 2019. Geometric indices (volumetric Dice-

Sørensen Coefficient, VDSC; surface Dice-Sørensen Coefficient, SDSC; added path length, APL) 

compared automated to final contours. Physicians reported contouring time and rated autocontours 

on 3-point protocol deviation scales. Descriptive statistics and univariable analyses evaluated 

relationships between the aforementioned metrics.

Results: Among 173 patients, 85% received SBRT. The CTV was available for 167 (97%) with 

median VDSC, SDSC, and APL for CTV (prostate and SV) 0.89 (IQR 0.83–0.95), 0.91 (IQR 

0.75–0.96), and 1801 mm (IQR 1140–2703), respectively. Physicians completed surveys for 43/55 

patients (RR 78%). 33% of autocontours (14/43) required major “clinically significant” edits. 

Physicians spent a median of 28 min contouring (IQR 20–30), representing a 12-minute (30%) 

time savings compared to historic controls (median 40, IQR 25–68, n = 21, p < 0.01). Geometric 

indices correlated weakly with contouring time, and had no relationship with quality scores.

Conclusion: Deep learning-based autosegmentation was implemented successfully and 

improved efficiency. Major “clinically significant” edits are uncommon and do not correlate with 
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geometric indices. APL was supported as a clinically meaningful quantitative metric. Efforts are 

needed to educate and generate consensus among physicians, and develop mechanisms to flag 

cases for quality assurance.

Keywords

Radiation oncology; Deep learning; Radiologic technology; Program evaluation; Prostatic 
neoplasms

Contour delineation is an integral part of radiation treatment planning in the modern era. 

Both intra- and inter-observer variation are common [1–7], with some evidence suggesting 

that specialization or expertise could influence contour quality [8] and subsequent patient 

outcomes [9]. With increasingly complex treatments, contouring has also become a time-

consuming process that can limit clinic workflow efficiency [10]. Previous work by our 

group suggests that radiation oncologists in the United States spend a median of 6 hours 

per week contouring, despite frequent assistance from dosimetrists and trainees (data in 

submission), which is comparable to the 5 hours per week reported in a similar survey 

among radiation oncologists in New Zealand and Australia [11].

Autosegmentation aims to address these challenges by reducing both time spent manually 

contouring and contour variation. To date, atlas- and model-based methods have 

demonstrated time savings of up to 30% when automating normal tissues, or organs at risk 

(OAR) [12,13]. Recent advances in artificial intelligence have spurred a new generation of 

autosegmentation tools based on deep learning. In many cases, deep learning appears to have 

outperformed older methods in both accuracy and efficiency, and have been touted to match 

human performance [14–16]. Recent studies show that deep learning-based algorithms used 

for prostate autosegmentation specifically are able to perform at a level comparable to 

expert inter-observer variability based on geometric indices, with one study showing time 

savings of 12 min (46%) among a small cohort (n = 36) [17–19]. Geometric indices 

are most commonly reported but tend to correlate poorly with physician quality ratings 

[20]. Additionally, clinical utility and efficiency gains in routine practice have not been 

demonstrated, particularly for target volumes.

This study therefore aims to comprehensively evaluate the implementation of an in-house 

developed, MRI-based deep learning autosegmentation algorithm for both OARs and 

target volumes in short-course prostate radiation [21]. Primary endpoints include physician-

reported time spent contouring, physician-assessed quality scores, and standard geometric 

indices. Secondarily we investigated the correlations between physician and geometric 

contour assessments, and evaluate changes in the magnitude of physician edits throughout 

the study period. We hypothesized that physician feedback would not correlate well with 

objective geometric measures, and that the magnitude of physician edits would decrease 

over the study period due to a learned reliance on the algorithm, a behavioral phenomenon 

known as automation bias [22].
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Materials and methods

Study design

This is an observational quality improvement study of the clinical implementation of 

an in-house deep learning-based automated contouring system designed to generate both 

OARs and target volumes for short-course prostate radiation. Clinical data including 

physician feedback was collected prospectively as part of routine care and approved by 

the Institutional Review Board at XXX for retrospective analysis.

Patient cohort and simulation

The study cohort included consecutive patients with prostate cancer treated from June-

December 2019 with prostate-only radiation at our institution. All patients underwent 

implantation of three intraprostatic fiducials and a hydrogel rectal spacer approximately 

1 week before undergoing simulation in our institution’s MR-only workflow. Patients were 

simulated supine with 3 T MRI with a full bladder (1–2 cups of water 30–45 min prior) and 

empty rectums (enema administered 2–3 h prior). MR images were acquired for contouring 

(T2w axial, voxel size 0.5 mm × 0.5 mm × 3 mm), synthetic-CT generation (3D FFE-based) 

and fiducial identification (3D bFFE-based). Acquisition time was 25 min and synthetic-CT 

was generated at the console using the commercial software, MRCAT [23]. Further details 

about the simulation method used have been previously described [21,24].

Autosegmentation algorithm and contouring process

A detailed explanation of the autosegmentation algorithm development can be found in 

earlier publications [21]. In brief, an expert-delineated cohort of 50 MRI images obtained 

via clinical routine on one dedicated MR scanner at our institution was selected to use as 

a training dataset. Delineations included the clinical target volume (CTV, which included 

prostate and entire seminal vesicles combined, per institutional standard) and relevant OARs 

(namely: rectum including anal canal, penile bulb, and bladder). For treatment planning, 

a uniform PTV expansion of 3 mm is added to the CTV without further edits. The deep 

learning architecture used for autosegmentation was the publicly available DeepLabV3 

+ developed initially by Chen et al. [25–28] for use in general purpose 2D computer 

vision tasks. A transfer learning approach was used to train the model, which leveraged 

generic convolutional filters generated from training on millions of natural images available 

in computer vision challenges like Microsoft Common Objects in Context (COCO) and 

PASCAL Visual Object Classes (VOC). In order to apply this technique, pre-processing 

of the T2w scans to multiple 8-bit three channel (false color) images was done. This 

involved converting each axial image into a set of 3 images, where each image received 

a separate preprocessing consisting of either a simple down-sample from 16-bit to 8-bit 

(1st channel), additional image inversion (2nd channel) or apply contrast limited adaptive 

histogram equalization (3rd channel).

Prior to physician review, contours were generated automatically on the T2w axial scan 

then were subsequently mapped onto registered synthetic-CT simulation scans using the 

implanted fiducials as reference. A standard post-processing algorithm of the contours was 

applied through vendor software (MIM Software, Inc) to remove potential stray pixels 
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and smoothen contours. The treating physician then reviewed and edited these contours as 

needed prior to approving for subsequent treatment planning.

Geometric contour assessment

DICOM RT structure sets containing the CTV, rectum, penile bulb, and bladder were 

automatically saved both at baseline (before any manual edits) and at plan approval (after 

physician edits as well as dosimetrist/planner edits required to proceed with treatment 

planning). A quantitative comparison using three geometric measures was performed on 

each structure to assess the similarity of the automated contours to the approved contours in 

the clinical setting. Additionally, a composite of all contours (average of CTV + each OAR) 

was calculated in order to assess the correlation of these measures with the quality score and 

time spent contouring recorded by the treating physician on the entire case (further described 

below). We included the most commonly referenced volumetric Dice-Sørensen Coefficient 

(VDSC), as well as surface Dice-Sørensen Coefficient (SDSC) which compares the relative 

contour surface overlap above a clinically determined tolerance parameter, τ, which has 

potentially improved correlation with time savings compared to VDSC [16,29,30]. More 

specifically, VDSC is represented by the volume overlap of two structures V1 and V2 shown 

in equation 1.

V DSC =
2 V 1 ∩ V 2
V 1 + V 2

SDSC with tolerance τ is defined as the summation of the intersection of each surface (S1 

and S2) with respect to its expanded boundary surface with size τ (B1 and B2) divided by the 

total surface area of both, as shown in equation 2.

SDSC =
S1 ∩ B2, τ + S2 ∩ B1, τ

S1 + S2

A τ value of 3 mm was set for this study given the resolution of the input MR axial 

T2-weighted images have similar voxel size.

Added Path Length (APL) was collected as a third metric based on work by Vaassen et 

al. [31] showing that this distance measurement correlates best with absolute time spent 

editing contours. APL is an absolute distance measurement of amount of surface adjusted 

from the original (autosegmented) contour, summed over all slices. Since it is not relative to 

the size/shape of the contour in question, it directly represents the amount of editing made, 

which makes it distinct from metrics like VDSC and SDSC.

Physician feedback and contour assessment

A short questionnaire was integrated into the clinical workflow during the first 2 months to 

assess the physician-perceived quality of automated contours. Physicians provided a global 

quality rating on a 3-point scale similar to that previously reported from clinical trial quality 

assurance for defining protocol deviations [32], with “1” indicating automated contours 

were acceptable without edits, “2” indicating the need for minor edits, and “3” suggesting 
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that major, clinically significant edits were needed. Self-reported time spent contouring and 

optional free-text comments about the autocontours were additionally collected to provide 

further insight into physicians’ experience and perceptions of the clinical utility of the 

autosegmented contours.

Localizing frequent physician edits

To further characterize physician edits, three-dimensional (3D) heat maps were generated 

to visualize the specific locations of the most-edited regions for the CTV, rectum, and 

bladder. All initial and final (edited) contour masks were first deformably registered using 

the open-source software package SimpleITK [29]. By counting the number of pixels with 

vector magnitudes exceeding 0.5 mm (one-pixel length) within each deformation map, and 

then summing all voxels across patient datasets, the resultant heat maps highlight aggregate 

regions of frequent contour adjustment. All patients were aligned using the centroid of each 

contour and visualization is done by mapping this heat map on a single representative MR 

scan.

Statistical analysis

Descriptive statistics were calculated for all collected metrics. Spearman’s rank correlation 

coefficients between the three quantitative metrics and time spent contouring were generated 

in order to determine which metrics correspond best with physician effort. Further 

correlations were calculated in relation to the magnitude of physician edits over time. Due 

to the binary nature of available physician-reported quality scores (no “1 = acceptable, no 

edits”) Wilcoxon rank sum tests were used to assess the relationship between geometric 

indices and physician quality scores for automated contours. Two-sided p-values with 

adjusted alpha levels less than 0.006 were applied to all statistical tests, in order to account 

for multiple comparisons (Bonferroni correction). All computations were performed and 

generated using Rv3.6 (R Core Team, 2019, Vienna, Austria).

Results

A total of 173 patients with intact prostate cancer undergoing radiation to the prostate only 

were eligible for inclusion, as seen in Fig. A.1 in Appendix A. Treatment was provided by 

18 physicians across 7 campuses, with each physician treating a median of 8 patients on 

study (IQR 6–13) during the 6-month study period. 72% of patients (n = 124) were treated 

with SBRT alone, 15% (n = 26) were treated with SBRT after brachytherapy, and 13% (n = 

23) received moderately hypofractionated radiotherapy.

For the 167 cases for which complete CTV data was available, the median SDSC and 

VDSC for CTV final vs. initial automated contours was 0.91 (IQR 0.75–0.96) and 0.89 (IQR 

0.83–0.95), respectively. When taking OAR contours into account to calculate a composite 

geometric index, the aforementioned coefficients increased to 0.95 (IQR 0.88–0.98) and 

0.94 (IQR 0.90–0.97). Data distribution for these two metrics is displayed with histograms 

in Fig. A.2 in Appendix A. CTV contours had a median APL of 1801 mm (IQR 1140–

2703), which increased to 3062 mm (IQR 2011–4837) with the addition of OARs. This 

is illustrated in Fig. 1, which shows the APL distribution for each volume of interest as 
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overlaid kernel density plots. Detailed breakdown of all three metrics across anatomic sites 

is shown in Table 1.

Physician rating of contour quality was available for 43 patients treated in the first 2 months 

(early pilot phase) of the evaluation period, with an overall response rate of 78% (43/55). No 

difference was observed between the non-responder and responder cohorts when assessing 

VDSC on univariate analysis. Physicians reported a median of 28 min spent contouring 

(IQR 20–30), reflecting a 12-minute (30%) reduction in time compared to historic controls 

collected immediately prior to algorithm implementation (median 40 min, IQR 25–68, n 
= 21, p < 0.01). As shown in Fig. 2, 65% of automated contour sets (n = 28) received a 

quality score of 2 (accept with minor edits) from the treating clinician, while 35% (n = 

15) required major, clinically significant edits (score of 3). No automated contour sets were 

deemed acceptable without edits (quality score of 1).

Correlation coefficients between each geometric index and time spent contouring were 

calculated, as shown in Fig. 3. Almost all correlations were statistically significant (rejecting 

the null hypothesis of no correlation) but the correlation was only weak-moderate (0.2–0.5). 

Geometric indices were not significantly different between those scored “2 = minor edits” 

and “3 = major edits” (all p > 0.3). Over time, there was no change in the magnitude of edits 

based on any geometric indices (all p > 0.1).

Common automated contour errors were recorded from treating physician survey comments 

and categorized by anatomic location. Of the 25 optional free-text comments collected 

from the physician survey, 88% (n = 22) referenced CTV contours while 72% (n = 18) 

referenced OARs. Specific CTV comments specified the prostate apex and SV, while notable 

OARs were bladder and rectum each with 7 comments. The overall sentiments of comments 

were coded as “negative,” “positive,” or “mixed” following qualitative analysis by a single 

reviewer. 64% (n = 14) of CTV-related comments were negative, 23% (n = 5) were positive, 

and the remaining 14% (n = 3) were mixed or had a neutral tone. In contrast, a higher 

proportion of OAR-related comments were positive (44%, n = 8), with only 28% (n = 5) of 

comments coded as negative and the remaining 28% (n = 5) deemed mixed.

Three-dimensional heat maps characterizing aggregate physician edits across all patient 

datasets can be seen in Fig. 4. Highlighted areas, corresponding to a structure’s most edited 

region, included the prostate apex, the rectosigmoid junction, and several structure interfaces 

(e.g. CTV-rectum, bowel-bladder, CTV-bladder).

Discussion

In this largest-to-date study of clinical implementation and physician assessment of deep 

learning-based autosegmented contours for prostate-only radiation, we found a high utility 

of both OARs and CTV with 65% of cases requiring no more than minor edits, and a 

resultant median time savings of 12 min (30% of total time spent contouring) for physicians. 

The high geometric similarity between initial and final contours, and subsequent efficiency 

benefits provided by this deep learning-based algorithm are consistent with prior research 

[16,17]. We confirm limitations of geometric indices in determining the subset of cases 
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requiring major (clinically significant) edits, highlight the potential utility of aggregating 

edits onto a 3D heat map to localize common regions requiring edits, and reinforce the 

importance of physician engagement in improving the clinical utility of autosegmentation.

From both geometric indices and physician feedback, we conclude that edits predominantly 

occurred to the CTV contour. This is consistent with prior studies examining 

autosegmentation accuracy [18], and is likely in part reflective of the critical importance 

of accurate CTV delineation in the context of prostate SBRT. Furthermore, aggregated edits 

correspond to physician comments highlighting specifically the prostate apex and seminal 

vesicles, which are areas previously demonstrated to generate high inter-observer contouring 

variation [4]. Importantly, limited edits were needed at the prostate-rectum interface, which 

is often considered at highest risk for contributing to radiation toxicity, and of increasing 

concern with hypofractionated radiation [33]. This may be a result of using a spacer as 

standard of care for patients included in this study. This is further supported by higher 

geometric similarity of initial and final rectal contours in our model compared to that of a 

recently published MR-based deep learning autosegmentation algorithm for prostate OARs 

(VDSC 0.97 vs 0.88, respectively) [34]. In combination, these data suggest progress toward 

clinically useful models for autosegmentation of both OARs and target volumes when using 

MR-based deep learning techniques.

Interestingly, we did not see a reduction in the magnitude of physician contour edits 

over time, despite prior evidence that secular changes can occur when humans become 

accustomed to automation through a phenomenon called automation bias, which can have 

both positive (reducing inter-observer variation) and negative consequences (regressing to a 

potentially faulty standard) [22].

Immediately following the study period, we sought to further improve the model by 

integrating the final edited contours (primarily CTV), and were surprised to find minimal 

improvement in model performance. This appears to reflect the challenge created by 

inter-observer variability. We hypothesize that model improvement will require active 

engagement from physicians to generate consensus and concerted educational efforts to 

limit clinically insignificant edits. Meanwhile, our physicists and computer scientists can 

refine irregularities, focus on performance in areas identified by the heatmap to have greatest 

difference between initial and final contours, and generate dashboards to support rapid 

review and feedback for physicians (Fig. A.3 in Appendix A). Despite current algorithm 

limitations, no physicians requested a return to prior manual-only methods.

Finally, this study aimed to determine the utility of quantitative metrics (VDSC, SDSC and 

APL) in assessing deep learning algorithms in clinical practice. VDSC and APL correlated 

with physician reported time savings, although weakly [35]. APL does appear to provide 

more relevant and complete information than VDSC about contour edits across the patient 

cohort analyzed, given emphasis on absolute length of edits. Of the OARs, the penile bulb 

and rectum were less edited than the bladder. Combined with the localization heat map, this 

allows for a comprehensive understanding of the magnitude and position of potential model 

deficiencies from which to improve. These conclusions would be difficult to make using 

VDSC alone, given the relatively similar scores for OARs and perceived high score for CTV.
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There are several limitations to the current study. First, physician assessments were limited 

(n = 43) due to declining response rates at the end of 2 months, in order to reduce bias 

in the sample for analysis. This limits power of testing to correlate physician-reported 

quality to geometric indices. Additionally, power in this study is limited by the 3-point 

scale compared to a continuous scale, as is available with geometric indices. Nonetheless, 

due to the importance of assessing clinical relevance associated with physician ratings, 

consideration of a 5-point scale has been previously proposed and we would agree with that 

approach [36]. The quality scores are furthermore an aggregate for the case to simplify the 

survey and facilitate physician participation, though that further limits the ability to correlate 

quality ratings to geometric indices. Nonetheless, from the available data, quality scores 

appear to primarily reflect the CTV, due in large part to the high accuracy of the OAR 

autocontours, giving us confidence with this approach to evaluation. The lack of a true gold 

standard for prostate contour delineation is another inherent limitation to the study, with 

inter-observer variability making it difficult to truly assess the performance of the algorithm. 

And finally, during the study period, the institutional standard was to contour the entire 

seminal vesicle, thereby potentially under-reporting required physician edits in the setting of 

a risk-based approach. Optimal autosegmentation algorithms would account for clinical risk 

factors in addition to imaging characteristics.

In conclusion, a deep learning autosegmentation tool, developed using clinical institutional 

data, was successfully implemented for MR-based planning for intact prostate cancer with 

most (65%) of patients requiring no more than minor edits, and resulting in physician a 

median time savings of 12 min. Further time savings may be limited by human factors such 

as inter-observer variability. We describe a framework for clinical evaluation and physician 

engagement in clinical autosegmentation implementation. To fully realize the benefits of 

deep learning autosegmentation, greater contouring consensus and ongoing education will 

be required.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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SDSC surface Dice-Sørensen coefficient

APL added path length
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Fig. 1. 
Distribution of Added Path Length (APL) across volumes of interest, as represented 

by kernel density plots. As histogram variants, kernel density plots allow for smoother 

visualization of data spread across a continuous interval. Full graphical representation of 

the curves can be seen in the upper right inlay, with the magnified area indicated with the 

viewfinder.
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Fig. 2. 
Physician scoring of automated contours (n = 43).
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Fig. 3. 
All geometric measures correlated with physician-reported time spent contouring. 

Statistically significant correlation coefficients (rs) indicated with an asterisk (*).
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Fig. 4. 
Regions of frequent physician edits across all patient datasets, with magnitude of 

displacements represented using 3D heatmaps.
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