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Abstract

Age-related macular degeneration (AMD) is a disease that affects the macula – the central part of 

the retina. It is a leading cause of irreversible vision loss in the elderly. AMD onset is marked by 

the presence of lipid- and protein-rich extracellular deposits around the retinal pigment epithelium 

(RPE), a monolayer of polarized, pigmented epithelial cells located between the photoreceptors 

and the choroidal blood supply. Progression of AMD to the late nonexudative “dry” stage 
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of AMD, also called geographic atrophy, is linked to progressive loss of areas of the RPE, 

photoreceptors, and underlying choriocapillaris leading to a severe decline in patients’ vision. 

Differential susceptibility of macular RPE in AMD and the lack of an anatomical macula in most 

lab animal models has promoted the use of in vitro models of the RPE. In addition, the need for 

high throughput platforms to test potential therapies has driven the creation and characterization of 

in vitro model systems that recapitulate morphologic and functional abnormalities associated with 

human AMD. These models range from spontaneously formed cell line ARPE19, immortalized 

cell lines such as hTERT-RPE1, RPE-J, and D407, to primary human (fetal or adult) or animal 

(mouse and pig) RPE cells, and embryonic and induced pluripotent stem cell (iPSC) derived RPE. 

Hallmark RPE phenotypes, such as cobblestone morphology, pigmentation, and polarization, vary 

significantly between different models limiting their usability for investigating different aspects 

of AMD biology. Here the AMD Disease Models task group of the Ryan Initiative for Macular 

Research (RIMR) provides a summary of several currently used in vitro RPE models, historical 

aspects of their development, RPE phenotypes that are attainable in these models, their ability 

to model different aspects of AMD pathophysiology, and pros/cons for their use in the RPE and 

AMD fields. In addition, due to the burgeoning use of iPSC derived RPE cells, the critical need 

for developing standards for differentiating and rigorously characterizing RPE cell appearance, 

morphology, and function are discussed.
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INTRODUCTION

Age-related macular degeneration (AMD) affects over 30 million individuals world-wide, 

and these numbers are expected to double by 2050 (Rein et al., 2009). AMD affects 

the macula, the central part of the retina that is responsible for central and sharp vision 

(Swaroop et al., 2009). Clinically, AMD is classified into two advanced stages, nonexudative 

‘dry’ AMD or geographic atrophy, characterized by degeneration of the retinal pigment 

epithelium (RPE) and photoreceptors in the macula, and exudative ‘wet’ AMD or choroidal 

neovascularization (CNV), characterized by hyperproliferation and migration of choroidal 

capillaries into the sub-RPE, subretinal, or the intraretinal space (Swaroop et al., 2009). 

AMD onset and progression have been linked to genetic and environmental risk-factors 

including age and lifestyle (e.g. diet and smoking); and genetic factors, which include risk 

alleles in genes (Swaroop et al., 2009) identified through genome-wide association studies 

(GWAS) (Fritsche et al., 2016). Several features of AMD pathophysiology make this one 

of the hardest diseases to model in vitro and in vivo. For instance, most routinely used 

lab animals do not have a macula; animal cells cannot replicate human genetic risk alleles 

associated with AMD; diet and aging are not easy to mimic in animals or cell culture; and 

specifically macular cells have not been successfully cultured in vitro. However, a growing 

body of evidence suggests that reliable models can be developed/utilized to study certain 

aspects of AMD pathogenesis.
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There has been significant interest in the biology of the RPE, a pigmented monolayer of 

post-mitotic cells located between the photoreceptors and the choroidal blood supply (Bharti 

et al., 2006). Multiple studies have suggested the RPE monolayer as the primary site of 

disease initiation (Wang et al., 2018). Accordingly, a majority of in vitro models focus on 

RPE cells, fidelity of the cell systems to the in vivo biology of RPE, and how it relates to 

AMD pathogenesis.

The AMD Disease Models task group of the Ryan Initiative for Macular Research (RIMR) 

aimed to provide direction on currently available and upcoming in vitro models used 

for better understanding of RPE cell biology and AMD pathogenesis related to RPE 

dysfunction. Between February and April 2021, the task group convened in four virtual 

sessions. The task group discussed the following models: immortalized RPE cell lines, 

primary RPE cells obtained from animals (mice and pigs) and donor human eyes (adult and 

fetal), as well as RPE cells differentiated from induced pluripotent stem cells (iPSCs). This 

review provides a summary of the discussions held during the RIMR AMD Disease Models 

task group meetings about usability, strengths, and limitations of these models for AMD 

research. This review also provides guidance on assays to compare RPE models across labs 

and quantitative readouts of RPE cell health under physiological stressors related to AMD 

pathogenesis.

RPE CELL LINES

Cell lines spontaneously formed from primary cultures (e.g. the ARPE19 cell line, Dunn 

et al., 1996) or by introduction of one of a number of immortalizing genes (hTERT-RPE1, 

Bodnar et al., 1998; Jiang et al., 1999) provide a readily available source and represent 

the most tractable models. However, several of the immortalized cell lines have abnormal 

karyotypes, and often lack some physiological characteristics of RPE in vivo, so that their 

use comes with a potential trade-off. In many cases, though, a cultured cell line may possess 

the characteristics required for the particular study at hand. Importantly, these characteristics 

depend, not just on the origin of the cell line, but also on the conditions under which 

it has been cultured. Unfortunately, numerous published studies have used an RPE cell 

line where the cells do not have a basic epithelial organization, such as a cobblestone-like 

appearance and apical-basal polarity. That said, it is possible in some cases that the lack 

of RPE characteristics is less of a concern. For example, use of hTERT-RPE1 cells (see 

below) as a model for the study of the pocket cilium (Molla-Herman et al., 2010) does not 

require RPE-like functions. On the other hand, an RPE cell culture that is not well polarized 

is inappropriate for studying many key RPE functions. For example, manifestation of the 

apical-basal localization and motility of RPE organelles, such as phagosomes, lysosomes, 

and mitochondria, requires cells with apical-basal polarity that is determined by a well-

differentiated cytoskeleton. The maturation and degradation of phagosomes from the tips of 

the photoreceptor outer segments involve an apical to basal migration of the phagosomes. 

Indeed, defects in phagosome migration inhibit degradation and lead to AMD-like pathology 

(Pfeffer and Philp, 2014; Jiang et al., 2015; Lakkaraju et al., 2020).

The RPE-J line was generated by simian virus 40 (SV40) transformation of primary rat RPE 

cells and was the first immortalized RPE cell line to be described (Nabi et al., 1993). In early 
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studies, RPE-J cultures were shown to possess numerous characteristics of differentiated 

RPE. They formed a cobblestone-like appearance based on circumferential localization 

of the tight-junction protein, ZO-1, exhibited extensive apical microvilli, and displayed 

significant trans-epithelial resistance (TER) (350 Ω.cm2) (Nabi et al., 1993). However, the 

cells lacked some characteristic features dependent on polarity, such as the specific apical 

localization of the Na+/K+-ATPase and neural cell adhesion molecule (NCAM) (Nabi et 

al., 1993), which are critical for RPE and photoreceptor function. Nearly three decades 

later, the RPE-J cell line continues to be used as an RPE model; however, the true passage 

number of these cells is often not known, and their ability to differentiate seems limited, at 

least by common culturing methods. Growing currently available RPE-J cell cultures in the 

presence of 10 nM retinoic acid has been reported to induce a differentiated RPE phenotype, 

however, resulting cultures typically lack a cobblestone-like appearance and demonstration 

of apical-basal differentiation (Kim et al., 2013). On the other hand, RPE-J cells use the 

same apical phagocytic receptors and signaling pathways as primary rat RPE to phagocytose 

shed outer segment fragments (Finnemann 2003). Overall, there has been minimal utility of 

RPE-J cells in modeling of AMD pathobiology in vitro; the focus of most of RPE-J studies 

has been on RPE cell biology.

The human telomerase (hTERT)-RPE1 cell line was derived from a young donor’s RPE 

cells, using human telomerase reverse transcriptase activity. These cells have been reported 

to become pigmented in the absence of serum after four to eight weeks in culture 

and to express some RPE-associated proteins (e.g. cellular retinaldehyde-binding protein 

[CRALBP]) (Rambhatla et al., 2002). However, they do not form a differentiated epithelium 

with a cobblestone-like organization and have been used mainly for studies on the primary 

cilium (Molla-Herman et al., 2010). After a few days of serum starvation, ciliogenesis is 

robustly initiated, although the cilium typically extends between the cell and the substrate, 

rather than from an apical surface as in normal RPE cells. For vision scientists, the most 

applicable use of hTERT-RPE1 cells appears to be as a model for the photoreceptor cilium 

(Trivedi et al., 2012), since its cilium arises from a pocket (Molla-Herman et al., 2010; 

Chadha et al., 2021), like that of the photoreceptor cilium (Liu et al., 2007).

The first descriptions of the adult RPE-19 (ARPE-19) and D407 lines (Davis et al., 1995; 

Dunn et al., 1996) showed that they differentiate readily into polarized RPE cells. However, 

these cell lines have abnormal karyotypes (Davis et al., 1995; Fasler-Kan et al., 2018; 

Hazim et al., 2019), and having been passaged over many years have diminished ability 

to demonstrate characteristics of differentiated RPE (Strunnikova et al., 2010; Lehmann 

et al., 2014). Nevertheless, the ARPE-19 cell line remain widely used, and mimics many 

characteristics of RPE in vivo – provided they are cultured under conditions that promote 
differentiation.

Improved culture conditions that promote differentiation of ARPE-19 cells have been 

reported. They involve culture on a porous Transwell® filter and media additives that 

affect metabolism. One method involves the addition of pyruvate in high-glucose DMEM. 

Under these conditions, cells recapitulate key features of RPE cells, including RPE-specific 

differentiation markers, a cobblestone-like organization, polar expression of proteins, 

extensive microvilli, the ability to phagocytose, and secretion of VEGF (Ahmado et al., 

Bharti et al. Page 4

Exp Eye Res. Author manuscript; available in PMC 2023 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2011). The expression of the premelanosome marker Pmel17 was observed, although, as 

with the original study (Dunn et al.,1996), cylindrical melanosomes characteristic of the 

RPE were not evident. In addition, the cells did not exhibit a TER greater than 51 Ω.cm2. 

However, the same protocol employed by another group reported a TER of 126 Ω.cm2 

(Samuel et al., 2017), but it required a three-to-four-month period for RPE differentiation. A 

more recent method incorporates the addition of nicotinamide instead of pyruvate, resulting 

in rapid differentiation of ARPE-19 cells. In the presence of nicotinamide, cells form a 

tightly-packed, cobblestone-like appearance after one week, and a well-polarized epithelium 

within four weeks (Hazim et al., 2019). While the epithelium still possesses a relatively low 

TER, this method of culturing ARPE-19 cells in media supplemented with nicotinamide 

preserves the ease of use inherent in a cell line.

ARPE-19 cells have already been used to study many characteristics of AMD, including 

EMT (Yang et al., 2021), inflammation (Tseng et al., 2013), phagocytosis defects (Xu et 

al., 2012, and complement activation (Chung et al., 2017; Fernandez-Godino et al., 2018). 

Unfortunately, most studies appear to have been performed on undifferentiated, or, at best, 

poorly differentiated cells. Nevertheless, the studies suggest that differentiated ARPE-19 

cells may be amenable to such studies. Importantly, gene editing has been used successfully 

with ARPE-19 cells; for example, a mutant line was obtained by editing the EFEMP1 gene 

to generate a mutation that underlies dominant macular degeneration (Fernandez-Godino 

et al., 2018). Thus, while there are limitations in the use of RPE cell lines, the use of 

appropriate culture conditions, in order to promote a differentiated epithelium, make the 

ARPE-19 cell line useful for various types of RPE studies, including those related to AMD 

(Table 1). A recent editorial by Pfeffer and Fliesler provides additional guidance for using 

ARPE19 cells with appropriate culture conditions (Pfeffer and Fliesler 2022).

PRIMARY RPE CELLS (MOUSE, PORCINE, BOVINE, MONKEY, HUMAN)

Primary RPE cultures have been established from freshly harvested retinas of mouse, 

porcine, or human donors. These cells are plated at confluence on collagen- or laminin or 

other extracellular matrices-coated semipermeable membrane inserts (Transwells®), culture 

conditions leading to cells that recapitulate several features of RPE in situ. The time to 

full maturation depends on the species: about two weeks for porcine RPE and more than 

six weeks for cultures established from human donors. After this period, the cultures have 

formed well-differentiated monolayers with tight junctions and TERs >300 Ω.cm2. The cells 

exhibit a polarized RPE phenotype, with precisely organized microtubules that are essential 

for the appropriate localization of apical (e.g., Na+,K+-ATPase, αvβ5 integrin, MCT1) and 

basolateral (e.g., MCT3, bestrophin-1 , Stra6) proteins (Lakkaraju et al., 2020). The cells 

of these cultures degrade photoreceptor outer segments with kinetics comparable to RPE 

in vivo. Detailed protocols that have been validated in multiple publications are available 

(Blenkinsop et al., 2013; Gibbs and Williams, 2003; Maminishkis et al., 2006; Toops et al., 

2014).
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PRIMARY MOUSE RPE

Mouse RPE cultures are usually established from trypsinized RPE cells isolated from eyes 

of newborn pups and survive about 10 days in culture, which is sufficient for experiments 

using transfection, transduction, or live imaging approaches (Gibbs et al., 2003; Gibbs and 

Williams, 2003; Fernandez-Godino et al., 2016). These cultures can be generated from 

transgenic mice, which allows investigation of subcellular mechanisms that can contribute to 

RPE dysfunction and retinal degenerations (Nandrot et al., 2004; Esteve-Rudd et al., 2018; 

Jiang et al., 2015). Advantages of mouse RPE cultures include short post-mortem times 

and consistency of cultures due to inbred mouse lines. Some caveats are that cultures are 

easier to establish from younger mice than adult mice, which could limit the ability to model 

age-dependent disease pathology. On the other hand, younger mice have smaller eyes, so 

more eyes might be needed to generate a sufficient number of RPE cells. Another caveat, 

especially with regards to studying AMD, is that mice do not express key AMD-associated 

genes such as ARMS2 and CETP and express only one isoform of APOE.

Recently, a new promising method of culturing an intact mouse RPE layer without the loss 

of its properties and function has been described (Shang et al. 2021). Briefly, the eye is 

dissected under sterile conditions to remove the anterior segment and the retina, followed by 

flattening the RPE-choroid-sclera explant on a polyvinylidene difluoride (PVDF) membrane 

with the sclera attached. Such RPE flat mounts can then be kept in culture for at least 

seven days without the loss of RPE viability and properties or significant alterations in 

the expression of RPE-specific genes. The main benefit of this method is that it is the 

gentlest technique to date for maintaining intact RPE cultures, where the procedure-induced 

stress to the RPE is minimal. An additional benefit is that the RPE can be obtained from 

any genetic background, including known mouse models for dry AMD (briefly discussed 

below), making it a good model for studying various aspects of AMD development and 

treatment in vitro.

One of the strongest genetic associations with the development of AMD has been shown 

to be a common polymorphism in the complement factor H (CFH) gene (Edwards et 

al. 2005; Hageman et al. 2005; Haines et al. 2005; Klein et al., 2005). Aged transgenic 

mice expressing the Y402H variant of the CFH gene on the Cfh-/- background (CFH-H/H) 

developed an AMD-like phenotype only after being fed a high fat, cholesterol-enriched diet. 

Moreover, this phenotype was not associated with complement activation but rather with 

lipoprotein dysregulation, supporting a noncanonical role for CFH in AMD pathogenesis 

(Landowski et al. 2019). We speculate that cultured RPE flat mounts (Shang et al. 2021) 

from the aged Y402H transgenic mice may be an interesting and highly relevant in vitro 
model to study AMD pathogenesis. The applications may include gene therapy studies 

(silencing the existing H402 variant and replacing it with the low-risk Y402 variant of the 

gene) as well as investigations aimed at elucidating the interplay between the complement 

system and lipid homeostasis in AMD.

Another notable genetic risk factor for AMD is determined by the variants of the 

apolipoprotein E (APOE) gene (Klaver et al. 1998). While APOE3 represents the wild-type 

variant, the presence of the APOE2 allele increases the risk of developing AMD in humans 
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(reviewed in Hu et al. 2021). APOE2 is associated with a slightly increased risk of AMD 

(odds ratio [OR] 1.124–1.83) while APOE4 is associated with a slightly reduced risk (OR 

0.43–0.81) (McKay et al. 2011; Hu et al. 2021). This is in stark contrast to the risk 

association of these alleles in Alzheimer’s disease where APOE4 is a major genetic risk 

factor (OR 4.86), while APOE2 is protective (OR 0.60) (Ang et al. 2008). Potentially 

contributing to this paradox, the frequency distribution of the APOE4 allele halves between 

the ages of 60 and 85 years (McKay et al. 2011; Hu et al. 2021) which could diminish the 

effect of the APOE4 allele in late AMD in this age range. ApoE is known to be an abundant 

component of drusen in both healthy individuals and in AMD patients. Being secreted 

from both the apical and basal sides of the RPE, ApoE plays a role in lipid trafficking. 

Importantly, aged mice overexpressing human APOE2, APOE3, or APOE4, developed 

isoform-dependent pathologies when maintained on a high fat, cholesterol-rich (HFC) diet 

in which APOE4 mice developed an AMD-like phenotype (Malek et al. 2005). In this 

original characterization of these APOE transgenic mice, all of the animals expressing the 

human ApoE were APOE homozygotes whereas, in the human association studies, the 

subjects were predominantly, if not exclusively, heterozygous for the APOE2 or APOE4 
alleles (Malek et al. 2005). In addition, in the human studies, the effect of diet as a 

modifier of the APOE allele effect on AMD risk was not investigated. It should also be 

noted that the homozygote APOE2 mice are 100% hyperlipoproteinemic unlike humans in 

which there is a 30% incidence (Sullivan et al. 1998), and this is not a feature of AMD. 

The AMD-like phenotype observed in old APOE4 fed an HFC diet could be blocked with 

systemic anti-amyloid immunotherapy which resulted in structural preservation of the RPE, 

reduction of activated complement components in the sub-RPE deposits and protection 

of visual function (Ding et al. 2011). Another clear driver of AMD development is the 

dysregulation of lysosomal function in the RPE. To date, several animal models exist that 

develop an AMD-like phenotype due to defective lysosomes and deregulated autophagy, 

including the Mcd/mcd mice (enzymatically inactive cathepsin D) (Zhang et al. 2002), Lamp 
2 KO mice (Notomi et al., 2019), and Cryba1 cKO mice (RPE-specific conditional knockout 

of gene encoding βA3/A1-crystallin) (Valapala et al. 2014; Zigler and Sinha 2015). Several 

genes involved in the lysosomes and autophagy have been shown to be critical in RPE cells 

(Frost et al., 2014; Gomez et al., 2018). It may be promising to use RPE cultures obtained 

from these animal models to further examine this relationship.

Despite several limitations, primary mouse RPE cultures – both from trypsinized cells and 

intact RPE monolayers, provide an excellent source to connect RPE biology to genetics, and 

to phenotypic data in animals, and its use continues to grow in the AMD field. Furthermore, 

mouse RPE cells can be expanded by one-two passages making them amenable to moderate 

drug screens. (Table 1).

PRIMARY PORCINE RPE

An increasing number of studies have used RPE from freshly harvested porcine eyes 

to establish well-polarized monolayers (Toops et al., 2014; Georgiannakis et al., 2015; 

Klingeborn et al., 2017). After approximately two weeks in anti-mycoplasma antibiotic 

(e.g. ciprofloxacin) on collagen-coated Transwell® filters, these monolayers express RPE 

polarity markers mentioned above, establish functional tight junctions, and have a TER >400 
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Ohms.cm2 (Toops et al., 2014). An advantage of using porcine RPE cultures is the similarity 

between human and porcine immune systems (Henderson and Hicks 2002; Sanchez et al., 

2011; Mair et al., 2014), which is important for investigating a disease with a strong immune 

component like AMD. In support of this, studies using porcine RPE have increased our 

insight into complement regulation in the RPE (Georgiannakis et al., 2015 Tan et al., 2016) 

and led to the discovery that intracellular complement activation is a novel modulator of 

RPE physiology (Kaur et al., 2018). Live imaging and bioinformatics analyses of the impact 

of APOE isoforms on porcine RPE cultures have identified that mitochondrial redox status 

regulates drusen nucleation in the RPE. Complement-mediated mitochondrial injury induces 

oxidation of proteins with reactive cysteines, such as APOE2 (the AMD risk isoform), which 

drives the formation of APOE biomolecular condensates as potential drusen precursors (La 

Cunza et al., 2021). Caveats for using porcine RPE cultures include the facts that: i) eyes are 

obtained from local abattoirs, meaning that tissue quality and therefore, ability to generate 

viable cultures, depends on the harvesting procedures used at different facilities; ii) pooling 

eyes from animals of different ages and sexes increases variability; and iii) RPE from some 

pig breeds are better able to generate healthy cultures compared to others, and provide 

sufficient quantity of cells for moderate size drug screens (Table 1).

PRIMARY BOVINE and MONKEY RPE

Previously primary cultures of bovine and monkey RPE cells have also been attempted (Oka 

et al., 1984; Pfeffer 1991; Hartnett et al., 2003; Becerra et al., 2004; Fronk and Vargis 2016). 

Bovine RPE cells required bovine serum for attachment, but serum free conditions led to 

better epithelial morphology in passaged cells (Oka et 1984). Hartnett et al determined that 

although the TER of primary bovine cultures increased for the first two weeks of cultures, it 

barely reached 100 Ohms.cm2 and stayed stable only for additional two weeks. In co-culture 

with endothelial cells the TER of these cells dropped significantly (Hartnett et al., 2003). 

Pfeffer developed a protocol to derive confluent monolayers of monkey RPE cells and 

studied the effect of media components on cell proliferation and attachment to the substrate. 

These cells were found to secrete PEDF mainly apically, similar to cultures of fetal human 

RPE and iPSC-derived RPE (Becerra et al., 2004; Maminishkis et al., 2006; Sharma et 

al., 2019). Bovine globes are rather easier to obtain but monkey globes are relatively hard 

to obtain because of continually reduced usage of monkeys in research. Overall, neither 

of cultures were used extensively in AMD research and their current use in this field is 

negligible.

PRIMARY HUMAN RPE

Primary cultures from human donors have been generated from fetal RPE (Hu and Bok 

2001; Maminishkis et al., 2006; Sonoda et al., 2009). These cultures are highly pigmented, 

exhibit a polarized epithelial morphology with tight junctions, and express RPE-specific 

proteins. Fully polarized monolayers develop after six to eight weeks in culture and 

display a very high TER (500–800 ohm.cm2). After one to three months of culture on 

semi-permeable membrane supports, human fetal RPE monolayers constitutively secrete 

deposits containing APOE into the basal matrix, which can be increased by exposing the 

cultures to active complement components (Johnson et al., 2011).
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More recently a method for obtaining RPE cells from adult human RPE (ahRPE) 

monolayers has been described (Ferrington et al., 2017). Here, the cells are derived from 

cadaver donor eyes. RPE cultures established from adult donors have effectively been used 

to identify autophagic defects, mitochondrial dysfunction, secreted proteins, and decreased 

expression of nuclear hormone receptors in AMD donors compared with cultures established 

from donors without AMD (An et al., 2006; Hu et al., 2013; Ferrington et al., 2016; 

Ferrington et al., 2017; Choudhary et al., 2020; Zhang et al., 2020).

A significant obstacle to using human RPE cultures is the scarcity of donor tissue, ideally 

collected within short post-mortem times (Table 1). Moreover, RPE cells dedifferentiate with 

passaging and lose pigmentation, and acquire a fibroblastic morphology with loss of their 

cobblestone morphology. Some of these characteristics can be restored by long term culture 

(>8 weeks) on porous substrates, which facilitate the induction of polarity and related 

phenotypes (Hazim et al., 2019). That said, establishing primary RPE cultures would be 

especially useful when studying the epigenetic aspects of AMD induction. An increasing 

body of evidence suggests that epigenetics plays a role in AMD in the form of abnormal 

DNA and RNA methylations and histone modifications (reviewed in Li et al. 2020). We 

speculate that working with primary RPE cultures obtained directly from AMD donors, 

with their “naturally occurring” and unique patterns of epigenetic modifications, would 

allow researchers to identify important modifications and to potentially develop effective 

treatments to reverse them and to rescue RPE physiology and function. Despite the technical 

difficulties, donor-derived primary RPE seems to be ideal for this application, considering 

the complexity of the epigenetic modifications that may be hard, if not impossible, to 

recreate in other models (Table 1).

INDUCED PLURIPOTENT STEM CELL-DERIVED RPE

Over the last two decades, embryonic stem cells (ESCs) and induced pluripotent stem 

cells (iPSCs) have been developed as additional sources of differentiated human RPE 

cells (Sharma et al., 2020). Unlike the other sources of RPE cells discussed above, RPE 

differentiation from ESCs/iPSCs is a laborious and resource-consuming process. However, 

key advantages of this technology are: (1) the ability to obtain an unlimited supply of 

fully mature and functional RPE cells, making it feasible to perform disease modeling 

and high throughput drug screens that require large amounts of cells (Sharma et al., 2020; 

Miyagishima et al., 2021; Ferrer et al., 2014) and (2) derivation of patient-specific iPSC-

derived RPE cells allowing the possibility of performing comparative analysis between 

diseased and healthy cells and correlating cellular endophenotypes with patient symptoms 

and genotypes (Sharma et al., 2020; Miyagishima et al., 2021).

iPSC-RPE cell cultures are both diverse and accessible, as iPSCs can be obtained 

by reprogramming of fibroblasts collected through skin biopsies or reprogramming of 

peripheral blood mononuclear cells through blood withdrawal. Their utility can be seen 

as three-fold: (1) iPSC-RPE may provide material for restoration/transplantation due to the 

very large numbers of high-quality cells available, a direction taken by several academic and 

commercial research groups globally. We will not elaborate on these efforts here; suffice it 

to say that numerous materials and methodologies are under investigation and being tested 
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in clinical trials (see review by Sharma et al 2020); (2) iPSC-RPE may provide high quality 

RPE cell culture models for mechanistic RPE research in general and specifically for AMD 

“disease-in-a-dish” research (May-Simera et al., 2018; Sharma et al., 2020) and; (3) as 

an extension from exploring AMD disease mechanisms and identification of differences at 

the cellular level, iPSC-RPE may be interrogated for responsiveness to interventions and 

therapies such that AMD patients or individuals with high risk of developing AMD may 

receive personalized therapy or preventive treatment (Sharma et al., 2019).

The initial observation of RPE differentiation from human ESCs dates to 2004, when ESCs 

were spontaneously differentiated into RPE cells (Klimanskaya et al., 2004). Over the 

last two decades multiple iterations of RPE differentiation protocols have been developed 

(see review by Sharma et al 2020). One key advancement in RPE differentiation methods 

is the use of what is called directed or guided differentiation methods (Idelson et al., 

2009; Osakada et al., 2009; Sharma et al., 2019), using specific growth factors at defined 

timepoints to developmentally alter the fate of ESCs/iPSCs into RPE cells. Although the 

use of growth factors significantly increases the cost of RPE differentiation, there are 

multiple advantages to this approach: (1) it generates fully mature and functional RPE 

(May-Simera et al., 2018); (2) it improves the efficiency of differentiation from less than 

10% in spontaneous differentiation to 60–80% with directed differentiation (Sharma et al., 

2019); (3) it improves reproducibility of the protocol across multiple iPSC lines (Sharma 

et al., 2019); and, (4) it shortens the differentiation time from 30 weeks in spontaneous 

differentiation to 10 weeks in directed differentiation (Sharma et al., 2019).

iPSC-DERIVED RPE DIFFERENTIATION AND CHARACTERIZATION 

STANDARDS

One major concern with iPSC-RPE differentiation is that currently there are no standard 

protocols to differentiate and propagate iPSC-derived RPE. In addition to donor tissue 

source and individual donor characteristics, parameters that are likely to affect iPSC-RPE 

phenotype and function include substrate surface, plating density, feeding medium and 

frequency, and duration of culture. Depending upon the kind of substrate-coating, RPE cell 

change their gene expression profile especially of ECM-related genes (Sorkio et al., 2014). 

Unlike, immortalized cell lines, iPSC-derived RPE cells cannot be propagated forever. 

However, it may be possible to propagate iPSC-RPE cultures while maintaining their 

epithelial character, at least for a few passages, by using milder dissociation methods like 

low calcium containing medium, as suggested by Ramachandran Rao et al. 2018. There 

is nevertheless a need to develop standardized methods that are universally utilized for 

differentiation of iPSCs. In addition, there is a demand for commercial sources of AMD 

iPSC lines and derived RPE cells. The National Eye Institute recently started a repository 

of 65 AREDS2 iPSC lines at the New York Stem Cell Foundation (Wright et al., 2020). 

Some of the widely utilized iPSC-RPE commercial sources are iCell RPE from Fujifilm 

(catalog #R1102), Lagenlabs (RPE-catalog number not available), and Tempo Bioscience 

iRPE (Tempo-iRPE™).
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However, there continues to be a need to functionally validate iPSC-RPE across labs so that 

results derived in different labs, using a given patient cell line, can be directly compared. A 

visual inspection of RPE monolayer confluency, hexagonality, and pigmentation along with 

expression analysis of a subset of genes is frequently used to validate RPE cells (Bharti 

et al., 2011). These assays do support a RPE phenotype but are not sensitive enough to 

compare and validate cells across multiple labs and from different AMD patients. Structural 

assessment of the RPE monolayer has been performed using scanning and transmission 

electron microscopy (Sharma et al., 2019). It has been shown that iPSC-derived RPE cells 

contain robust apically located pigment granules, basally located nuclei, tight junctions 

between neighboring cells, and confluent apical processes supporting fully polarized and 

mature feature of these cells (Miyagishima et al., 2016; Sharma et al., 2019). Functional 

assessment of the tight junctions is confirmed by measuring the TER of cells grown on 

semi-permeable Transwell® filters. As cells continue to mature, tight junctions seal the 

paracellular space increasing the ability of RPE cells to resist the flow of current passed via 

an electrode on the top and another on the bottom of RPE monolayer. TER measurement is 

one of the easiest assays to validate the quality of RPE cells derived from different patients 

or in different labs. TER values slowly increasing in the initial weeks of culture reaching 

a plateau of several hundred Ω.cm2 have been demonstrated in iPSC-RPE cells derived 

from different donors (Miyagishima et al., 2016; Sharma et al., 2019). It is worth noting 

that TER measurements are extremely sensitive to outside variables like the composition, 

temperature, and pH of the cell culture medium and placement of electrodes (Srinivisan et 

al., 2015). Care must be taken to control these outside variables when comparing TER 

across labs or across cultures and additional assays of RPE barrier function must be 

performed. For instance, TER measurements in conjunction with quantification of apical and 

basal secretion of VEGF and PEDF are accepted assessments of barrier functions and RPE 

specific epithelial polarity. These tests have the benefit of being non-invasive and thus can 

be performed longitudinally to monitor cell differentiation over time of culture and under 

specific conditions of manipulation (e.g. stress challenge) or pharmacological treatment. 

Other common assessments include phagocytosis of photoreceptor outer segment fragments 

(POS), a key task of RPE cells in the eye. Phagocytosis by RPE cells in culture involves 

two well characterized surface receptors, αvβ5 integrin and the TAM receptor MERTK, 

that function in POS recognition and internalization, respectively (Finnemann et al., 1997; 

D’Cruz et al., 2000). These receptors engage purified POS indirectly via extracellular bridge 

ligand proteins, e.g. MFG-E8 for αvβ5 integrin (Nandrot et al., 2007), and Protein S 

for MERTK (Burstyn-Cohen et al., 2012). Phagocytosis assays where challenging RPE 

cells in culture with and without bridge ligand supplementation can therefore specify 

recognition and engulfment capacity of RPE cells (Mazzoni et al., 2019). These assessments 

require the addition of POS and ligand proteins at concentrations that match the levels 

of available cell surface phagocytic molecules, which may vary depending on cell origin 

or culture conditions. The kinetics of POS uptake vary significantly between iPSC-RPE 

cell populations. Both POS binding and engulfment are saturable processes. Thus, POS 

phagocytosis assays are informative and might be used to compare RPE functionality across 

cell sources and laboratories if they are optimized to yield maximal POS engulfment. 

Reporting of stringent assessment of phagocytic capacity of any RPE population should 

include quantification of two distinct characteristics, namely average numbers of particles 
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engulfed per cell and fraction of phagocytic cells in the population. With regard to AMD, 

the most critical stage of POS phagocytosis concerns the degradation of the engulfed 

POS membranes, with inefficient degradation likely contributing to lipid deposition. This 

degradation phase can be most readily studied by removing the POSs from the RPE 

cells after a short interval, and then following the subsequent degradation of the POS 

membranes that were engulfed during the “pulse” interval. The rate of POS degradation 

in iPSC-RPE cells have been found to compare well with in vivo rates, although variation 

among RPE cultures from different iPSC lines was observed further highlighting the need 

for standardized protocols for iPSC-RPE differentiation (Miyagishima et al., 2016; Sharma 

et al., 2019 Hazim et al., 2017).

Functional validation of iPSC-RPE not only helps with establishing high-quality cultures 

and improve rigor, but it also sets the stage of translational work when using such cells 

for disease modeling or drug discovery. For instance, assessment of RPE polarity, marker 

expression, and phagocytosis are sensitive and quantitative, thus allowing identification 

of modest differences between non-AMD/low-risk genotype and AMD/high-risk genotype 

RPE cells. Indeed, there is some evidence that reduced polarized growth factor secretion 

and phagocytic activity are associated with AMD/high-risk iPSC-RPE (Sharma et al., 

2021). However, given the somewhat limited number of experimental parameters routinely 

tested for iPSC-RPE to date, additional insight into disease genotype or disease associated 

functional differences will likely be uncovered in future studies with more expansive testing. 

Interestingly donor dependent differences in purinergic receptor-based calcium signaling in 

iPSC-RPE cells has been reported, supporting the need for more nuanced assays to discern 

donor-specific differences in RPE cells (Miyagishima et al., 2016 & 2017). Observations 

from non iPSC adult human RPE studies suggest that quantifying F-actin stress fiber content 

of differentiated RPE may provide insight (Muller et al., 2018).

Unlike bona fide iPSC-RPE obtained through directing RPE differentiation from PSC, adult 

donor RPE-derived cultures may be maintained under conditions that promote proliferation 

and re-dedifferentiation into large numbers of polarized, functional RPE cells, known as 

RPE stem cell-derived RPE (RPESC-RPE) (Salero et al., 2012; Blenkinsop et al., 2013). 

Compared to iPSC-RPE, RPESC-RPE generation and maintenance is economical and 

practical if donor globes, or posterior shells are available. Side-by-side comparison of 

RPESC-RPE from different donors has revealed that RPESC-RPE (derived from non-AMD 

donors only) falls into two distinct categories with respect to F-actin morphology and 

phagocytic function (Muller et al., 2018). Genotyping and AMD risk assessment of donors 

will be needed to determine if they underlie these or other line-to-line differences in 

RPESC-RPE functionality. Altogether, testing additional RPE properties should advance 

our insight into functional deficits of AMD RPE and may suggest new avenues for therapy 

or prevention. One exciting question that remains unanswered to date is whether we will be 

able to utilize functional assessment of specific parameters of iPSC-RPE cells in culture to 

predict AMD risk of donor individuals regardless of known low-risk/high-risk genotypes as 

this would be an enormous clinical advance.

Naturally, some of the early “disease in a dish” studies in the iPSC-RPE field focused on 

discovering the specific cellular phenotypes associated with the major risk-alleles for AMD 
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discovered in the CFH and ARMS2/HTRA1 loci. Strikingly, these studies agree on the 

intriguing principal insight that AMD risk genotypes and/or AMD patient donor origin result 

in measurable functional differences among cell populations even if these are extensively 

propagated in cell culture. Moreover, the functional differences detected may be mitigated 

by manipulation of cell culture conditions. For instance, it was demonstrated that iPSC-RPE 

from AMD donors, some of whom carried the ARMS2/HTRA1 high-risk alleles, normalized 

their gene and protein expression of pro-inflammatory markers including complement 

protein C3 following exposure to the metabolite precursor nicotinamide (Saini et al., 

2017). A separate study comparing ARMS2/HTRA1 high-risk versus low-risk iPSC-RPE 

shows association of decreased superoxide dismutase 2 and decreased antioxidant defense 

capacity with the high-risk genotype (Yang et al., 2014). Whether or not nicotinamide 

supplementation restores antioxidant capacity to high-risk AMD has not yet been reported. 

An important implication of these findings is that genotyping of known risk alleles of donor 

cells is essential to be able to distinguish variability among cell cultures due to technical 

issues and from differences in disease relevant genotypes.

Recently it was demonstrated that RPE derived from AMD iPSCs with the CFH (rs1061170, 

Y402H) high-risk allele show reduced mitochondrial function and increased expression of 

inflammatory markers as compared to cells with low-risk for the CFH allele (Ebeling et 

al., 2021). Importantly, AMD risk genotype or disease differences were readily detectable 

in iPSC-RPE only if these were subjected to moderate, sub-lethal levels of oxidative stress 

but not under normal cell culture conditions (Ebeling et al., 2021). Whether nicotinamide 

supplementation would ameliorate the mitochondrial deficiencies/stress responses was not 

tested. Others have pursued a similar strategy of comparing phenotypic differences between 

CFH low- and high-risk expressing RPE cells and also tested the effect of locally activated 

complement proteins C3a and C5a on iPSC-derived RPE cells (Sharma et al., 2021). 

Activation of local complement led to sub-RPE lipid deposits, loss of epithelial tight 

junctions, activation of the NF-kB pathway, and downregulation of autophagy (Sharma 

et al., 2021). Cells with the high-risk allele showed predisposition to disease similar to 

previous observations (Sharma et al., 2021). A proof-of-concept drug screen identified two 

drugs, a dopamine receptor antagonist and a serine protease inhibitor, that could suppress the 

effect of activated complement on RPE cells (Sharma et al., 2021). While these studies will 

benefit from follow-up studies using iPSC-RPE generated through different protocols and 

with different types of starting donor tissue, they suggest that altered cell metabolism may 

contribute to or even underlie diverse AMD iPSC-RPE defects described earlier. Altogether, 

metabolic profiling of donor iPSC-RPE should be included in RPE validation assays to 

preclude studying secondary effects of metabolic deficiency (Table 1).

ORGAN-ON-A-CHIP

RPE cells have been utilized most intensively as a cellular model system for AMD, since 

many of the disease processes associated with AMD are related to RPE function. However, 

recent single cell sequencing studies of the retina, RPE and choroid demonstrate that AMD-

associated genes are expressed in many different cell types beyond the RPE, including glial 

cells, vascular cells, fibroblasts, monocytes, photoreceptors, bipolar cells and horizontal cells 

(Menon et al., 2019; Cowan et al., 2020; Orozco et al., 2020). Furthermore, multiple RPE 
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subtypes that are differentially sensitive to AMD have been recently discovered (Ortolan et 

al., 2019). These finding suggests that modeling AMD in a ‘generic’ RPE cell and RPE 

alone may be too simplistic, and more complex model systems may be needed that include 

other retinal cell types. In early attempts to develop complex culture systems, RPE and 

endothelial cells were grown in two separate compartments of a transwell® culture system 

- RPE on top of the transwell insert membrane and endothelial cells at the bottom of the 

plastic dish well that holds the transwell insert. Despite cell culture medium separating the 

two cell types, this co-culture system showed improved TER of the RPE monolayer likely 

induced by cytokines secreted by endothelial cells in the cell culture medium (Benedicto et 

al, 2019). This work underscores that co-culture of different ocular cell types does affect 

their physiology. Bioengineering can aid in the development of in vitro models with higher 

complexity.

In recent years, organ-on-a-chip technology has demonstrated potential to establish in vitro 
models that can more closely mimic human tissue anatomy and functionality. Organ-on-

chips are microfluidic cell culture systems that contain continuously perfused chambers 

with controlled, dynamic conditions for co-culturing multiple cell types, and simulating 

tissue- and organ-level physiology (Bhatia and Ingbar 2014). Organ-on-a-chip technology 

enables high-resolution, real-time imaging and in vitro analysis of biochemical, genetic and 

metabolic activities of living cells in the context of a functional tissue or organ.

Several organs-on-a-chip have been developed to model tissues relevant to AMD 

pathogenesis, in particular the RPE-choroid interface (Jong et al., 2021). The first organ-

on-a-chip model of the RPE-choroid interactions consisted of ARPE-19 and HUVEC 

monolayers grown on opposite sides of a synthetic porous membrane, mimicking the in 
vivo anatomy where RPE cells are separated from the choroid by Bruch’s membrane. The 

ARPE-19 and HUVEC monolayers were cultured under perfusion in separate microfluidic 

channels (Chen et al., 2017). The co-culture platform was used to study the effect of culture 

conditions on ARPE-19 cells and the subsequent response of HUVEC cells. ARPE-19 

cells responded to lowered glucose and hypoxic microenvironments by increasing VEGF 

secretion, and HUVEC cells responded to increased concentrations of VEGF by moving 

through the pores towards the source of VEGF inside the microfluidic device. While this 

organ-on-a-chip model does not mimic the entire angiogenesis process, endothelial cell 

migration was used as a surrogate for the initial stage in angiogenic tube formation.

A second organ-on-a-chip device aimed to obtain a vascular network consisting of capillary-

like structures. Endothelial cells (ECs) were allowed to self-assemble by embedding 

HUVECs in a fibrin scaffold together with lung fibroblasts to stabilize the vascular network 

(Chung et al., 2018). The microfluidic platform was designed to form a perfusable 3D 

blood vessel network adjacent to an ARPE-19 monolayer, close enough to interact. Instead 

of a membrane, fibrin channels were introduced among the ARPE-19 cells and the blood 

vessel network. The model was used to mimic the pathogenesis of CNV. In response 

to excessive VEGF concentrations, penetrating angiogenic sprouts from the blood vessel 

network resulted in breakdown of the RPE monolayer. The sprouting neovessels regressed 

when VEGF was added along with bevacizumab, an anti-VEGF agent used clinically for 

CNV treatment.
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A similar vascular network-based organ-on-a-chip was developed using more 

physiologically relevant cells; human retinal microvascular ECs and primary human ocular 

choroidal fibroblasts were used to form a three-dimensional vascular network, and iPSC-

derived RPE cells were co-cultured in direct contact with the vascular network (Paek et al., 

2019). RPE maturation markers, such as melanosome number, were observed to increase in 

the co-culture.

Self-assembled vascular networks may lead to low reproducibility and consistency between 

different devices. To avoid this problem, an organ-on-a-chip device has been developed that 

consists of a monolayer of ARPE-19 cells in an open-top culture chamber, and a monolayer 

of HUVEC cells in a capillary-like channel, separated by a semipermeable membrane (Arik 

et al., 2021). The three-dimensional vascular structures within the chip were imaged by 

optical coherence tomography (OCT), a medical imaging technique that is routinely applied 

in ophthalmology. Upon inducing oxidative stress by treatment with hydrogen peroxide, a 

dose dependent increase in barrier permeability was observed using a dynamic assay for 

fluorescence tracing, analogous to the clinically used fluorescence angiography.

Another organ-on-a-chip concept, designed to reproduce the interface between the neural 

retina and the RPE has also recently been reported (Achberger et al., 2019). This device 

allows the co-culture of retinal organoids in advanced stages of maturation, containing 

photoreceptors, with apical exposure to an RPE monolayer. Phagocytosis of POS by the 

RPE was detected on-chip. Although the device is perfusable through a channel below the 

RPE compartment, there is no vascular system in this model.

For accurate disease modeling, it would be valuable to develop an organ-on-a-chip device 

that combines organoids, RPE and choroidal vasculature, thereby containing the wide 

variety of cell types that have been implicated in AMD pathology by single cell sequencing 

studies (Menon et al., 2019; Cowan et al., 2020; Orozco et al., 2020). In addition, it 

is necessary to extend the cellular lifespan of the cells on the chip, to allow increased 

maturation and observation of prolonged molecular processes (Jong et al., 2019). Further, 

it would be very useful to generate a multiplexed organ-on-a-chip device that allows high 

throughput screens for testing the effect of various disease stimuli and for drug screening 

purposes.

ASSAYS USING CULTURED RPE TO STUDY THE PATHOGENESIS OF AMD

As described in the previous sections, various cellular and molecular assays have been 

developed and used to not only validate the fidelity of in vitro cultures relative to the in vivo 
state, but also to characterize disease processes in the context of AMD pathology. Below we 

provide a brief review of culture models that present with AMD-associated morphological 

features and highlight a few assays relevant when studying AMD.

Drusen-like extracellular deposit formation

In vitro modeling of sub-RPE deposit formation has been achieved, to some degree, in a 

number of studies to date. A seminal study using ARPE-19 cells cultured over time observed 

an increase in the amount of condensed deposition of banded fibrillar material with a 
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periodicity similar to fibrous long spacing collagen, typical of basal laminar deposits seen in 

human AMD samples (Amin et al., 2004). Challenge with albumin and retinal homogenates 

led to a significant increase in the total amount of both membranous and fibrillar containing 

deposits. With the availability of human fetal RPE cells, the accumulation of basal laminar-

like deposits containing fibrillar material, resembling fibrous long spacing collagen, has 

also been reported when cells were cultured for two to four months (Maminishkis et al., 

2006). Exposure of early passage human fetal RPE cultures to human serum was shown 

to result in deposition of drusen-associated proteins including APOE, vitronectin, clusterin, 

serum amyloid P, as well as the terminal complement complex C5b-9 indicating activation 

of the complement system (Johnson et al., 2011). These studies collectively demonstrate that 

drusen originate from the RPE. A plausible mechanism for drusen biogenesis was recently 

identified using polarized porcine RPE cultures: complement-induced mitochondrial injury 

leads to aggregation of proteins with reactive cysteines such as APOE, thereby ‘nucleating’ 

drusen within the RPE (La Cunza et al., 2021).

Studies using stem cells as platforms for generating in vitro RPE model systems have 

shown that stressing a sub-population of self-renewing multipotent stem cells isolated 

from adult human RPE cells with the oxidant tert-butylhydroperoxide (TBHP) stimulates 

upregulation of drusen-associated crystallins, apolipoproteins, and extracellular matrix 

molecules intracellularly (Rabin et al., 2013). Notably, cultures of RPE cells derived from 

human iPSCs derived from AMD patients carrying the ARMS/HTRA1 homozygous high-

risk genotype secrete several AMD relevant proteins including complement proteins. Lipid 

droplet accumulation, visualized using Oil Red O histochemistry, has been reported in iPSC-

derived RPE cells from patients homozygous for the low- and high-risk CFH genotypes 

(Hallam et al., 2017; Saini et al., 2017; Cerniauskas et al., 2020; Sharma et al., 2021). 

Finally, as touched on earlier, complement competent human serum treated iPSC-derived 

RPE cells from donors carrying the low- and high-risk CFH genotypes have been shown to 

induce extracellular APOE and lipid deposition (Sharma et al., 2021).

Extracellular deposits have also been reported in cultures of RPE cells isolated from 

non-human species, including mice and pigs. RPE harvested from mice with a dominant 

mutation in the EGF-containing fibulin-like ECM protein 1 (EFEMP1) produce basal 

deposits (Fernandez-Godina et al., 2015), whereas sub-RPE deposits containing drusen 

components have been observed in cultures harvested from porcine eyes, cultured for up 

to six months on polyester membrane inserts. The composition of the deposits was well-

characterized and included neutral lipids as illustrated with Oil Red O staining, APOE, and 

mineralization as seen with Von Kossa staining and hydroxyapatite fluorescence labeling 

and mass spectrometry, adjacent to highly pigmented RPE cells, after as little as 12 weeks 

of culture (Pilgrim et al., 2017). Collectively, these model systems should be useful for 

studying the genesis of basal deposits and/or testing the ability of drugs to target and clear/

block drusen-associated proteins.

It should be noted that in vitro models able to induce sub-retinal drusenoid deposits/reticular 

pseudodrusen, that accumulate on the apical side of RPE cells, are sparse (Rudolf et al., 

2008; Zweifel et al., 2010). One study investigated the effect of low-lipid and oxidized 

lipid media on primary human fetal RPE cells treated with cholesterol carriers including 
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high density lipoprotein (HDL) and apolipoprotein A-1 (APOA-1). They found that upon 

exposure of fetal RPE cells to oxidized LDL, apical cholesterol efflux increased significantly 

as compared to low-lipid media conditions whereas the basolateral cholesterol efflux was 

barely changed. These changes in vectorial lipid transport in stressed RPE cells suggests 

potential mechanisms underlying the formation of drusen versus sub-retinal drusenoid 

deposits (Lyssenko et al., 2018). Consistently Miller et al 2021 showed polarized APOE 

secretion in primary human RPE cells. Under oxidative stress conditions basolateral APOE 

secretion dropped favoring apically directed drusenoid formation (Miller et al., 2021). These 

culture conditions could potentially be used to evaluate the efficacy of drugs targeting apical 

versus basal RPE deposits.

Complement pathway-based assays

Genome-wide association studies have identified genetic variants in or near the CFH, CFB, 

C3, complement C9, CFI and vitronectin (VTN) genes, underscoring an important role for 

genetic variation in the complement system in the pathogenesis AMD (Fritsche et al., 2016; 

Jong et al., 2019). Various studies have evaluated the role of the complement system in RPE 

cells using various assays. Cultured RPE cells constitutively express various components of 

the complement system, including C3, C5, CFB, CFH, CFI, CD46, CD59, CLU and VTN 
(Anderson et al., 2010; Sugita et al., 2018). The effect of disease triggers or genotypes on 

the complement system in RPE cells can either be measured by quantifying the expression 

of complement gene expression or proteins, or by measuring deposition of complement 

activation fragments such as C3a, C3d, C5a or the membrane attack complex (MAC) using 

immunofluorescence (Jong et al., 2021).

The expression of complement factors is increased by exposure of RPE cells to 

inflammatory conditions such as interferon-γ treatment or in the presence of supernatant 

from T helper type 1 cells as well as by exposure to A2E and hypoxia (Fanelli et al., 

2017; Parmer et al., 2018). Increased MAC deposition was observed in response to hypoxic 

conditions (Fanelli et al., 2017), exposure to serum (Galloway et al., 2017), and cells 

carrying the CFH Y402H genotype had significantly increased C3d deposition compared to 

CFH 402Y cells (Keir et al., 2017). RPE cells are, like host-cells in general, protected from 

MAC induced lysis via several mechanisms, and therefore MAC deposition on RPE cells is 

generally sub-lytic (Morgan 2016).

Knock down of CFH in hTERT RPE-1 cells results in increased C3 expression and elevated 

C3 and/or C3b concentrations in the supernatant (Armento et al., 2020). In iPSC-RPE 

carrying high-risk genotypes at the CFH (Y402H) and ARMS2/HTRA1 loci, expression 

of the CFI, CFH and FHL-1 mRNA levels are significantly elevated while C3 mRNA is 

reduced (Hallam et al., 2017). CFH and CFI secretion from iPSC-RPE were shown to be 

functional, as incubation with RPE supernatant results in degradation of purified C3b to 

iC3b. Deposit formation is observed in RPE cultures carrying high-risk genotypes, which 

was demonstrated by immunostaining for the terminal complement complex C5b-9 and for 

APOE (Sharma et al., 2021).

Several studies have examined the effect of exposing RPE cells to complement proteins. 

Treatment of primary RPE cells with the anaphylatoxin C3a increases VEGF expression 
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(Nozaki et al., 2006), and stimulation of fetal RPE with C3a leads to increased basal 

accumulation of collagens IV and VI, decreased proteasome activity and increased 

MMP-2 activity (Fernandez-Godino and Pierce, 2018). C3a and C5a treatment triggers an 

intracellular Ca2+ response (Busch et al., 2017). Exposure of fetal RPE cultures to human 

serum as a source of complement resulted in a selective, deposit-associated accumulation 

of additional known drusen components, including vitronectin, clusterin, and serum amyloid 

P (Johnson et al., 2011). Exposure of iPSc-derived RPE cells to complement competent 

human serum as a source of anaphylatoxins C3a and C5a leads to a dramatic increase 

in APOE-positive sub-RPE deposits, irrespective of CFH Y402 genotype (Sharma et al., 

2021). APOE and lipid deposition are stimulated by C3a-C3aR1 and C5a-C5aR1 -induced 

NF-kB activation, autophagy downregulation, and dysregulated calcium homeostasis. The 

RPE can also generate biologically active C3a fragments and the consequent C3a-C3aR 

signaling leads to aberrant activation of mTOR, which inhibits autophagy and reprograms 

RPE metabolism (Toops et al. 2015; Kaur et al 2018). Sub-lytic MAC deposition on RPE 

cells can cause mitochondrial fragmentation (Tan et al., 2016) and increase secretion of IL-6, 

IL-8, and MCP-1 (Lueck et al., 2011), emphasizing a pro-inflammatory response of the RPE 

to complement stressors.

Cholesterol efflux assays

Given the notable accumulation of esterified cholesterol in Bruch’s membrane with age 

and the abundance of lipids and cholesterol carriers in drusen and sub-RPE deposits 

observed in AMD donor tissue (Curcio, 2018), cholesterol assays are used in studying 

AMD pathobiology and assessing potential treatments. The most established assays involve 

measuring 3H-cholesterol efflux via cholesterol acceptors including APOA1, APOE, and 

HDL (Biswas et al., 2017), fluorescent based assays of cholesterol efflux rate (Tsai et al., 

2021), uptake of oxidized LDL by RPE cells (Gnanaguru et al., 2016), histochemical and 

immunohistochemical staining of RPE cultures evaluating intracellular and extracellular 

lipid distribution using filipin, Oil Red O, bodipy, and adipored (Choudhary et al., 2020; 

Pilgrim et al., 2017; Sharma et al., 2021; Toops et al. 2015; Tan et al., 2016), as well as 

protein and gene expression (Liu et al., 2014; PMID: 24393350).

AMD-associated genetic variants in lipid metabolism have been identified in or near the 

ATP-binding cassette transporter 1 (ABCA1), APOE, cholesteryl transfer protein (CETP) 

and hepatic lipase C (LIPC) genes (Fritsche et al., 2016; van Leeuwen et al., 2018). ABCA1 

is strongly expressed in the RPE and is required for lipid metabolism and export (Storti 

et al., 2019). The expression of ABCA1 was found to be decreased in iPSC-RPE carrying 

the increased risk ABCA1 genotype treated with a Liver X receptor (LXR) agonist, a 

regulator of cholesterol homeostasis, compared to iPSC-RPE cells carrying the reduced risk 

ABCA1 genotype (Storti et al., 2019). A cholesterol efflux assay demonstrated that reduced 

ABCA1 expression hampered cholesterol efflux and led to lipid accumulation in iPSC-RPE 

cells (Peters et al., 2021). Increasing ABCA1 expression by a small molecule LXR agonist 

prevented cholesterol accumulation in primary porcine RPE cultures (Toops et al. 2015; Tan 

et al., 2016).
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Redox status-based assays

Oxidative stress is common to all three non-genetic risk factors of AMD – aging, smoking, 

and high-fat diet (Datta et al., 2017). AMD disease processes are thought to be triggered 

when the redox status of RPE cells switches from an anti-oxidant stage to a pro-oxidant 

stage. Damaged mitochondria are a source of reactive oxygen species (ROS), if not 

removed by mitophagy and has been shown to be associated with AMD (Karunadharam 

et al., 2010). Mitophagy can be analyzed by measuring the expression of mitochondrial 

proteins, quantifying the levels of mitochondrial DNA, measuring the activity of enzyme 

Citrate Synthetase, and by electron microscopy (Williams et al., 2017). Downregulation of 

mitophagy and mitochondrial activity has been noted in AMD patient derived iPSC-RPE 

cells (Golestaneh et al., 2016). Another mechanism regulating cellular redox homeostasis 

is regulated by transcription factor NRF2 that is upstream of genes involved in managing 

cellular oxidative stress response (see Datta et al 2017 for more details). It directly regulates 

the expression of several key oxidative stress pathway genes, such as Catalase and SOD. 

In addition, NRF2 has been shown to regulate levels of cellular anti-oxidants glutathione 

and thioredoxin. NRF2 expression is shown to decrease with aging (Suzuki et al., 2008) 

and after acute oxidative stress in RPE cells (Sachdeva et al., 2014). Measurement of the 

expression of NRF2 target genes, and the levels of glutathione and thioredoxin provides a 

critical readout of cellular redox status and is directly associated with AMD pathogenesis.

CONCLUSIONS AND RECOMMENDATIONS

Due to space limitations, we were only able to report a fraction of the literature, featuring 

some of the known inducers of AMD in the context of developing in vitro models for AMD 

research. A very detailed review on the risk factors for progression and development of 

AMD was published recently (Heesterbeek et al. 2020) and can be used as a source for 

developing in vitro models using AMD inducers that have not been featured in this report.

The improvement in the morphology and function of non-human and human derived 

RPE cell lines have paved the way for their use in pre-clinical studies testing potential 

therapeutics and pharmaceuticals. These cell-based models have primarily included single 

cell platforms, but also more complex cocultures (RPE and choroidal ECs), as well as 

organoids. The advantages of culture systems are their potential reliability, consistency, 

and low cost compared to in vivo studies. Additionally, single cell model systems allow 

for testing the effect of drugs in a cell-focused manner (Ferrer et al., 2014; Sharma 

et al., 2021) whereas the more complex coculture and organoid systems are a step 

closer to the physiological microenvironment, in which there are heterotypic intercellular 

communications. The need for high throughput platforms to test potential therapies 

has driven the creation and characterization of in vitro model systems that recapitulate 

morphologic and functional abnormalities associated with human AMD.

Going forward, we provide recommendations for these in vitro models described here. The 

immortalized cell lines each were generated from a single individual, therefore they do not 

recapitulate natural variation that occurs in the general population. Moreover, their use in 

an undifferentiated state has frequently led to results that may not reflect RPE biology. 

However, knockouts or knock-ins of genes of interest can easily be generated in these cell 
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lines using genome editing/CRISPR technology. Furthermore, their ease of access makes 

them an attractive tool for several labs, and recent work focusing on metabolic conditions 

have now demonstrated simple methods for establishing better polarized ARPE-19 cell 

cultures. Primary RPE cells and iPSC-RPE cells have been validated in several labs for 

physiologically relevant RPE phenotype and can recapitulate natural variation of patients 

or genetics of mouse models. One major drawback of these models is that they require 

specialized training and handling to achieve consistent and high-quality cultures reducing 

their accessibility. Furthermore, not all AMD-associated genetic variants have been routinely 

genotyped (Jong et al., 2021). In order to compare results using different studies, and to 

interpret the effects of genetic variants in these cultures it might be ideal to genotype all 

possible AMD-associated genetic variants and rare variants (e.g. the CFH and CFI genes) 

(Fritsche et al., 2016). However, this may be time-consuming and expensive. Therefore, 

since the complement factor H – complement Factor H Related 5 (CFH-CFHR5) locus 

on chromosome 1q32 and the ARMS2)/HtrA serine peptidase 1(HTRA1) locus on 10q26 

account for the majority of genetic susceptibility for AMD (Pappas et al., 2021), we 

recommend that at a minimum, these two loci be genotyped. To improve usability of the 

currently available in vitro models for different aspects of AMD research, it is critical to 

develop standardized protocols and quality control criteria such that results can be compared 

across labs.
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Highlights:

• In vitro models of the RPE provide a powerful tool to study RPE biology and 

AMD pathogenesis

• Key hallmarks of AMD pathophysiology have been replicated in several in 
vitro models

• Primary RPE and RPE cell lines are easily accessible and useful in 

biochemical and cell biology studies

• iPSC-derived RPE have been validated to present native-RPE like features 

and can provide patient-specific models

• Organ-on-chips and 3D organoids provide physiologically relevant models 

combining RPE with choriocapillaris and/or retinal photoreceptors
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