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Summary:

Cell size is tightly controlled in healthy tissues, but it is unclear how deviations in cell size affect 

cell physiology. To address this, we measured how cell proteome changes with cell size. Size-

dependent protein concentration changes are widespread and predicted by subcellular localization, 

size-dependent mRNA concentrations, and protein turnover. As proliferating cells grow larger, 

concentration changes typically associated with cellular senescence are increasingly pronounced, 

suggesting that large size may be a cause rather than just a consequence of cell senescence. 

Consistent with this hypothesis, larger cells are prone to replicative, DNA damage-, and CDK4/6i-

induced senescence. Size-dependent changes to the proteome, including those associated with 

senescence, are not observed when an increase in cell size is accompanied by an increase in 

ploidy. Together, our findings show how cell size could impact many aspects of cell physiology 

through remodeling the proteome and provide a rationale for cell size control and polyploidization.
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eTOC Blurb

Lanz et al. used mass spectrometry to measure how proteome composition changes with cell size 

(i.e., DNA-to-volume ratio). They found that different cellular components scale differently with 

size. Large cell size elicited senescence-like proteome changes and contributed to irreversible cell 

cycle exit upon replicative aging and exposure to DNA damage.

Introduction

Cells have dedicated mechanisms to control their size, which is one of the most prominent 

characteristics of distinct cell types (Ginzberg et al., 2015; Lloyd, 2013; Zatulovskiy and 

Skotheim, 2020). The link between the characteristic cell size and cell function is more 

obvious at the extremes of the cell size range. Red blood cells and lymphocytes need to be 

small to squeeze through tight spaces, while macrophages must be larger to engulf a wide 

range of targets. However, in the middle of the cell size range, including epithelial cells and 

fibroblasts, the link between cell size and function is unclear. One possibility is that these 

cells control their size to enhance proliferation, as their rapid turnover is a key part of their 

physiological function (Lengefeld et al., 2021; Miettinen and Bjorklund, 2016). Yet, even if 

these cells are optimized for growth and proliferation, as has been indicated (Lengefeld et 

al., 2021; Neurohr et al., 2019), it is unclear why there would be an optimal cell size. As 

cells get larger, it has long been assumed that most proteins and RNA remain at constant 

concentrations (Berenson et al., 2019; Crissman and Steinkamp, 1973; Kempe et al., 2015; 

Lin and Amir, 2018; Padovan-Merhar et al., 2015; Son et al., 2015; Williamson and Scopes, 

1961; Zlotek-Zlotkiewicz et al., 2015), and organelle volumes, such as the nucleus, increase 

in direct proportion to cell size (Cantwell and Nurse, 2019; Chan and Marshall, 2010; 

Marshall, 2020). If protein and RNA concentrations remain constant, larger cells should be 

capable of proportionally more biosynthesis. However, this is not the case. There is a limit 

to the size range of efficient biosynthesis (Zhurinsky et al., 2010), and excessively large cells 

exhibit loss of mitochondrial potential (Miettinen and Bjorklund, 2016), dilution of their 
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cytoplasm (Neurohr et al., 2019), and reduced proliferation (Demidenko and Blagosklonny, 

2008). Moreover, recent work has demonstrated the remarkable effect even small variations 

in cell size can have on hematopoietic stem cell proliferation (Lengefeld et al., 2021).

One possible explanation for why there is an optimal cell size for biosynthesis would 

be if many key cellular proteins did not remain at constant concentration as cells grow. 

Then, the further cells are from their target size, the more concentrations of these proteins 

would change, and the more growth and metabolism would deviate from the optimum. 

Intriguingly, investigations of the mechanisms cells use to control their size identified a 

class of proteins whose concentrations change with cell size. In budding yeast, human, and 

plant cells, key cell cycle inhibitors are not synthesized in proportion to cell size so that 

they are diluted by cell growth, a behavior defined as sub-scaling (Figure 1A) (D’Ario 

et al., 2021; Schmoller et al., 2015; Zatulovskiy et al., 2020). Larger cells therefore have 

lower concentrations of cell cycle inhibitors, which promotes their division. In fission yeast, 

division is in part promoted by a size-dependent increase in the concentration of a cell 

cycle activator (Keifenheim et al., 2017), a behavior defined as super-scaling (Figure 1A) 

(Chen et al., 2020). If this phenomenon of size-dependent protein concentration changes 

were widespread across the proteome it would provide an explanation for why there is an 

optimal cell size. Namely, the further a cell would be from its target size, the further its 

intracellular protein concentrations would be from their optimum. To explore this possibility, 

we first measured how the proteome changes as a function of the natural cell size variation 

in proliferating human cells.

Results

Measuring cell size-dependent changes to the human cell proteome

To measure the scaling behavior of the human proteome (Figure 1A), we developed a 

method based on triple-SILAC (Stable Isotope Labeling by Amino acids In Cell Culture) 

proteomics (described in Figure S1), which enables the simultaneous measurement of 

thousands of individual proteins. Asynchronously proliferating SILAC-labeled primary 

Human Lung Fibroblasts (HLFs) and hTERT-immortalized RPE-1 epithelial cells were 

gated for G1 DNA content and sorted into three size bins (small, medium, and large) using 

fluorescence-activated cell sorting (FACS) (Figure 1B). SILAC labeling orientation was 

swapped for replicate experiments, and the attainment of differentially sized G1 cells was 

confirmed using a Coulter counter (Figure 1C and S2A). The SILAC channel intensities 

within a peptide “triplet” represent relative peptide concentrations (Figure 1D and S1A), so 

we used the behavior of multiple independent peptide triplets to determine the size scaling 

relationship for individual proteins. HMGB1, PGK, and VAT1 are proteins we chose to 

exemplify sub-scaling, scaling, and super-scaling behavior, respectively (Figure 1E). Rather 

than measure SILAC ratios, as is typically done, we calculated a slope value to describe 

the size scaling behavior of each peptide triplet (Figure 1F, S1D–G). Peptide triplets with 

positive and negative slopes represent peptides (Figure 1G), and therefore proteins (Figure 

1H), whose concentrations are super- and sub-scaling, respectively, whereas triplets with a 

slope value near 0 maintain an approximately constant concentration as a function of G1 cell 

size.
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We observed a continuum of size scaling behaviors across the proteome, which spanned 

slope values from −1 to 1, indicating that a 2-fold increase in cell size can lead to a 2-fold 

increase or decrease in concentration for a given protein (Figure 1H; Table S1). Several 

chromatin-associated High Mobility Group proteins (HMGs), including HMGB1, are diluted 

in larger cells and so exhibit sub-scaling behavior like what has been previously described 

for RB, Whi5, and histones (Claude et al., 2020; Swaffer et al., 2021a; Zatulovskiy et al., 

2020). We also identified a diverse set of super-scaling proteins, such as VAT1, whose 

concentration increases as a function of cell size. Setting a requirement for multiple 

independent measurements per protein significantly improved the correspondence between 

replicate experiments and yielded a high-confidence set of ~1,500 proteins, each having at 

least 4 distinct peptide measurements (Figure 1I; Table S1). We validated candidate super- 

and sub-scaling behaviors for a subset of proteins using immunofluorescence combined with 

flow cytometry (Figure 1J and S3). In both primary lung fibroblasts (HLF) and immortalized 

epithelial cells (hTERT RPE-1), changes to the proteome were directly proportional to 

changes in G1 cell volume, indicating that similar concentration changes take place when 

cell size increases from small to medium as when it increases from medium to large (Figure 

1K and S4). Importantly, the size-dependency of the proteome is not specific to a single 

human cell type, as we found a striking degree of similarity in the proteome scaling of both 

cell lines we measured (Figure 1L).

We also confirmed that the process of cell sorting did not affect our proteome measurements 

(Figure S5A) and that isolation of different sized cells using SSC (Side Scatter) or the total 

protein dye CFSE (carboxyfluorescein succinimidyl ester) as proxies for cell size (Berenson 

et al., 2019; Tzur et al., 2011) yielded similar results (Figure S5B–D; Table S2). Since 

larger G1 cells have on average spent more time in G1, it is possible that the protein 

concentration changes we observe reflect time in G1 rather than cell size. To control for 

this possibility, we selected different sized G1 cells that were synchronously released from a 

Thymidine-Nocodazole cell cycle arrest. We found a highly similar size-scaling relationship 

in our synchronous and asynchronous experiments (Figure S6; Table S3), indicating that cell 

size, not time in the G1 cell cycle phase, is driving changes to the proteome.

Size scaling of protein concentrations correlate with subcellular localization

To examine how cell size may influence different aspects of cellular biology, we asked if 

different groups of related or interacting proteins exhibited similar size scaling behavior. 

Indeed, this was the case. For example, all 17 detected histone variants sub-scaled and had 

slope values near −1 (Figure 2A), indicating that histones are maintained in proportion to 

DNA (Wisniewski et al., 2014) and are therefore diluted by cell growth in G1 (Claude et 

al., 2020; Swaffer et al., 2021a). Moreover, 5 of the 6 detected cathepsin proteases were 

strongly super-scaling and nearly doubled in concentration from the smallest to the largest 

cell size bin. Interestingly, we found that all individual protein subunits of the ribosome 

and proteasome showed small but highly consistent sub- and super-scaling behaviors 

respectively (Figure 2A) and that, more generally, proteins that are partners in a complex 

scale similarly (Figure 2B; Table S4). We also re-confirmed the sub-scaling behavior of the 

cell cycle inhibitor RB (Zatulovskiy et al., 2020) (Figure S5E and S7E), which was the 20th 

most sub-scaling protein (of a total of 4,387 proteins) identified in our RPE-1 dataset.
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We next assessed how size-scaling behavior relates to subcellular location. To do this, we 

first annotated the proteome based on a strict association with a single, major cellular 

compartment. Subcellular localization was a strong predictor of size scaling behavior, with 

ER- and lysosome-resident proteins becoming increasingly concentrated with size, and 

nucleoplasmic/nucleolar proteins becoming more dilute (Figure 2C, S7A, and S7B). We 

confirmed lysosome super-scaling by measuring the lysosome-labelling dye Lysotracker 

and the lysosomal protein LAMP1 (Figure S7C). While we did not observe a difference 

in scaling behavior of luminal- and membrane-associated organelle proteins, we were able 

to identify multiple protein domains, sequence features, and post-translation modifications 

that are preferentially associated with super- or sub- scaling proteins (Figure S8A). A 

less stringent 2D annotation enrichment revealed a range of intermediate scaling behaviors 

across multiple different cellular compartments and annotation groups (Figure 2D and S8B; 

Table S5). Importantly, we confirmed that large G1 cells exposed to generated by long-term 

treatment with the CDK4/6 inhibitor Palbociclib, which arrests cells in G1 but does not 

inhibit cell growth (Figure 2E) (Neurohr et al., 2019; Tan et al., 2021), recapitulated the 

proteome changes we observed in size-sorted G1 cells (Figure 2F–H; Table S6). In further 

support of these findings, a proteomic analysis revealed similar size-scaling relationships 

when the relative protein concentration was plotted against the mean cell size for each 

cancer cell line in the NCI60 collection (Cheng et al., 2021). Taken together, these analyses 

refute the commonly held assumption that the protein content of cellular components scales 

in uniform proportion to cell volume. While total protein concentration may be mostly 

constant within a cell’s natural size range, this is not necessarily true for individual proteins.

A linear model based on diverse mechanisms predicts protein size scaling

After identifying size-dependent changes in the concentrations of individual proteins, we 

sought to investigate the underlying mechanisms. We first tested whether size-dependent 

changes in a protein’s concentration are explained by changes in the concentration of 

its mRNA transcript. To do this, we performed RNA-seq on size-sorted G1 cells and 

calculated mRNA slope values analogous to the protein slopes described in Figure 1. We 

found that although there was significant correlation between the protein and RNA slope 

values, there was large variability in protein scaling slopes for any given RNA slope (Figure 

3A–C, and S9A; Table S7). Overall, changes in mRNA concentrations explained only a 

minority of the size-dependent variation in protein concentration. We therefore explored 

additional post-transcriptional variables using linear models. We found that a protein’s 

turnover (Zecha et al., 2018) and codon affinity (Frenkel-Morgenstern et al., 2012) both 

significantly correlated with the Protein Slope (Figure S9B and S9C; Table S8). Iterative 

incorporation of each parameter (mRNA Slope, protein turnover, and codon affinity score) 

significantly improved the model with minimal collinearity (Figure 3D and S10). Since 

none of these parameters explained the striking difference in size scaling highlighted in 

Figure 2C, we incorporated an additional variable to account for a protein’s subcellular 

localization (Figure 3D and S10). Using the correlation between biological replicates as 

a benchmark for the maximum size-dependent variation any model could predict, we find 

that our composite model predicts ~60% of this maximum size-dependent variance. Taken 

together, this analysis indicates that the size-dependency of a protein’s concentration is 

regulated both pre- and post-transcriptionally.
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Large size promotes senescence in primary human fibroblasts

Curiously, increasing cell size in proliferating cells is accompanied by proteomic changes 

normally associated with cell senescence, including the upregulation of beta-galactosidase, 

lysosomal proteins, and metalloproteases, and the downregulation of Ki67, HMGB proteins, 

and LaminB (Hernandez-Segura et al., 2018) (Figure 4A and S7D). Senescence-associated 

secretory phenotype (SASP) proteins (Ruscetti et al., 2018) were also super scaling (Figure 

4B and S11). While large cell size is associated with senescence (Hernandez-Segura et 

al., 2018), it has generally been thought that large size results from a senescent cell’s 

inability to divide while at the same time maintaining cell growth. However, our experiments 

indicate that in proliferating (non-senescent) cells, increasing cell size itself results in 

proteome changes that gradually approach those found in senescent cells, which supports 

the hypothesis that cell size per se promotes senescence (Lengefeld et al., 2021; Neurohr et 

al., 2019). This is consistent with earlier reports that continued cell growth and hypertrophy 

are required to induce senescence in cell cycle arrested cells (Demidenko and Blagosklonny, 

2008).

To test if large cell size contributes to senescence, we used primary human lung fibroblasts 

(HLF) that naturally senesce after 10–15 passages. We sorted HLFs into 4 cell size bins 

at passage #8, re-plated the cells, and then cultured them for an additional 4 passages. 

After these 4 additional passages, cells that were larger at the time of sorting had higher 

concentrations of the senescence marker p16 and had higher senescence-associated beta-

galactosidase (SA-beta-Gal) staining (Figure 4C–F). This is despite the fact large and small 

cells did not differ in the mRNA concentrations of senescence markers shortly after sorting 

and were equally proliferative (Figure 4G, 4H, and S12A–D). There was also no correlation 

between cell size and telomere length (Figure S12E). Moreover, when the cells were induced 

to grow large through G1 cell cycle arrest with the CDK4/6 inhibitor Palbociclib (Figure 

5A), the expression of senescence markers p21 and p16, as well as the percentage of SA-

beta-Gal-positive cells, progressively increased with longer Palbociclib treatments (Figure 

5B–H). Importantly, co-treatment with the mTOR inhibitor Rapamycin, which slows down 

cell growth, reduced the expression of senescence markers in Palbociclib-arrested cells 

(Figure 5C–H). This finding supports our hypothesis that large cell size promotes replicative 

senescence in primary cells.

Large cell size promotes drug-induced senescence in telomerase-immortalized cells

Having shown that increased cell size is associated with increased rate of replicative 

senescence in primary cells, we next sought to examine how cell size contributes to a drug-

induced senescence in the cells that do not senesce naturally. To do this, we treated size-

sorted telomerase-immortalized human retinal pigment epithelium cells (hTERT RPE-1) 

with a low dose of a DNA damaging agent (10 ng/ml Doxorubicin), which triggers the 

DNA damage response. In some ways this is similar to the telomere shortening occurring in 

primary fibroblasts. We note the proteome’s size-dependency in untreated G1 RPE-1 cells is 

very similar to that of HLFs (Figure 1L and S7). Consistent with the previous result, larger 

cells increasingly induced the senescence marker SA-beta-Gal upon Doxorubicin treatment 

(Figure 6A and 6B). Moreover, co-treatment with the mTOR inhibitor Rapamycin, which 

reduces cell size, significantly attenuates the SA-beta-Gal staining induced by prolonged 

Lanz et al. Page 6

Mol Cell. Author manuscript; available in PMC 2023 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



treatment with Doxorubicin or the Cdk4/6 inhibitor Palbociclib (Figure S14), a finding 

consistent with previous work (Demidenko et al., 2009). We note that, unlike in our 

experiments using primary fibroblasts, the concentrations of p16 did not increase with cell 

size in RPE-1 cells (Table S1), which is consistent with the observations of others (Cheng et 

al., 2021).

So far, we have only assayed senescence using indirect markers rather than the durable 

cell cycle arrest that defines a senescent cell (Sharpless and Sherr, 2015). We therefore 

sought to more directly test whether large cell size inhibits cell cycle re-entry following the 

withdrawal of two treatments previously shown to induce senescence (Neurohr et al., 2019). 

We treated hTERT RPE-1 cells with Palbociclib or a low-dose of Doxorubicin for 4 days 

to induce senescence in a fraction of the cell population. We then washed out the drugs and 

imaged these enlarged cells for 4 additional days to determine which cells re-entered the 

cell cycle and which cells remained durably arrested (Figure 6C). Importantly, Palbociclib 

or Doxorubicin treatment arrests cells without stopping cell growth, and thus generates a 

population of cells with a range of large cell sizes that exhibit senescent features (Neurohr 

et al., 2019). Since all these cells are exposed to drug for the same duration, we can isolate 

cell size as a determining factor for durable cell cycle arrest. We found that the cells that 

were larger at the time of drug washout are more likely to remain arrested than smaller 

cells (Figure 6C). This supports the hypothesis that larger size makes cells more prone to 

senescence, consistent with findings for excessively large budding yeast (Neurohr et al., 

2019). Large cell size may help explain the durable cell cycle arrest in response to transient 

exposure to a DNA damaging agent. This is because the excessive cell growth that occurs 

while cells delay cell cycle progression to repair DNA can inhibit cell cycle re-entry.

Larger cells have more DNA damage after Doxorubicin treatment

Our proteomics data show that most DNA repair and replication factors subscale with 

cell size (Figure 6D). To test if large cells are more prone to DNA damage than small 

cells, we treated the cells with a low concentration (10ng/ml) of Doxorubicin for 24 hours 

to induce DNA damage, and then quantified the numbers of γ-H2AX and 53BP1 loci 

that mark unrepaired DNA breaks in cell nuclei (Figure 6E, 6F, and S15). We found that 

the number of those loci per nucleus increases with the nucleus area (Figure 6F). The 

total amount of γ-H2AX marker per cell also increases with cells size within the G1 

population of cells (Figure S15F–H). This supports the idea that larger cells have more DNA 

damage, which may promote senescence. Crucially, we are not stating that large cell size 

is the only driver of senescence, but rather proposing that the large size characteristic of 

senescent cells may itself further promote this state by inhibiting cell cycle progression and 

maintaining cell cycle arrest (Figure 6G). Consistent with this hypothesis, mutations to the 

Rb-family proteins that reduce cell size prevent senescence of mouse embryonic fibroblasts 

and hematopoietic stem cells (Dannenberg et al., 2000; Lengefeld et al., 2021; Sage et al., 

2000).

Cell volume-to-ploidy ratio drives size-dependent proteome changes

Our data so far are consistent with the hypothesis that large cell size inhibits cell division, 

and that this may be due to widespread changes in the concentrations of individual 
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proteins as cells grow larger. The further cells are from their target size, the more protein 

concentrations deviate from their optimum. However, in apparent contradiction to this 

model, there are many examples of large animal cells that proceed through the cell cycle 

and maintain highly efficient cell growth (Lee et al., 2009; Mu et al., 2020). In many cases, 

such large cells are polyploid and therefore do not have an aberrant cell size-to-ploidy ratio. 

We therefore sought to test whether protein size-scaling is determined by cell size per se or 

by the cell size-to-ploidy ratio. To do this, we sought to compare the proteomes of diploid, 

tetraploid, and octoploid (2N, 4N, 8N) G1-phase cells (Figure 7A and 7B). To obtain G1 

cells with different ploidies, we induced endoreduplication in RPE-1 cells using a moderate 

dose of the Aurora kinase B inhibitor barasertib (75nM, 48 hours) (Mu et al., 2020) and 

sorted 2N, 4N, and 8N G1 cells from a mixed population using FACS (Figure 7A). While 

ploidy increases are accompanied by a corresponding increase in cell size (Figure 7A), 

proteomic analysis showed that the ploidy-sorted cells do not exhibit the same proteome 

changes as size-sorted cells with 2N ploidy (Figure 7C, 7D, and 7E; Table S9). Taken 

together, these results indicate that the proteome’s size-dependency is largely due to changes 

in the cell size-to-ploidy ratio. Thus, despite being different sizes, cells of different ploidy 

maintain similar protein concentrations, which may be why the excessively large size of 

polyploid cells does not impede their cell cycle progression.

Discussion

As cells grow larger, the total protein amount increases in proportion to cell volume so that 

total protein concentration remains constant (Figure 1A). While it was long thought that 

the concentrations of individual gene products also remained constant as cells grew larger 

(Padovan-Merhar et al., 2015; Zhurinsky et al., 2010), this paradigm had not previously 

been tested on a proteomic scale. In contradiction to the previous paradigm, we find that the 

concentrations of most individual proteins change with cell size. Some proteins sub-scaled 

with cell size and were diluted in larger cells, while others super-scaled with cell size so 

that their concentrations increased as cells grew larger. The measurement accuracy and 

comprehensiveness of our proteomic approach now brings to light the widespread and 

diverse nature of cell size scaling.

Transcriptional and post-transcriptional size-scaling mechanisms.

To begin to determine the mechanisms governing size scaling across the proteome, we built 

a series of linear models. We began our analysis by looking at scaling relationships of 

mRNA, which in budding yeast was shown to exhibit super- and sub-scaling behavior (Chen 

et al., 2020; Swaffer et al., 2021a). Our linear models predicted the size scaling slope of 

individual proteins from their relative mRNA concentration, protein half-life, codon affinity, 

and subcellular localization. Taken together, our models indicate that both transcriptional 

and post-transcriptional size-scaling mechanisms govern protein size scaling. One possible 

mechanism linking protein stability and size scaling could be through changes in cellular 

biosynthesis. In the large cell size regime, where growth efficiency (growth rate per unit 

mass) begins to slow, proteins that are stable would become more prevalent than those 

that are actively degraded (Neurohr et al., 2019). This is because the concentration of 

unstable proteins reflects a balance of their synthesis rate per unit mass, which likely scales 
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in proportion to the growth efficiency, and their degradation rate, which is likely to be 

independent of cell size. While our linear models represent a good starting point, further 

investigation of specific proteins with diverse size scaling properties will be required to 

identify the underlying molecular mechanisms.

Differential size scaling in the proteome content of organelles.

The characteristic that best predicts a protein’s scaling behavior is its subcellular 

localization. Using microscopy, others have previously measured fluorescently tagged 

markers of several different organelles (Neumann and Nurse, 2007; Rafelski et al., 

2012). The consensus from these experiments is that organelle volume typically scales 

in proportion to cell size. Though this is inconsistent with our measurements of organelle 

protein content, several factors could explain this discrepancy. First, aggregate organelle 

protein concentration may not reflect the scaling behavior of any single “marker” 

protein, but instead reflect an average across several proteins that is weighted by their 

abundance. Second, our proteomic method may be more precise than previous imaging-

based analyses. For example, we find statistically significant ~1.15x differences in the 

scaling of organelle protein content within a ~2-fold range of cell size (e.g., Cytoplasm 

compared to Mitochondria or Nucleoplasm; see Figure S7). It is unclear whether this type 

of resolution can be achieved using fluorescence microscopy. Finally, it is possible that 

organelle volume may not scale with its protein content, so individual proteins within 

the organelle may become increasingly concentrated or diluted as cells grow. This last 

possibility is particularly intriguing since it would likely result in a size-dependence of 

organelle function, which has been observed in mitochondria (Miettinen and Bjorklund, 

2016).

Causal relationship between large cell size and senescence.

Our results also shed light on the phenomenon of cellular senescence (Hernandez-Segura 

et al., 2018; Kumari and Jat, 2021; Sharpless and Sherr, 2015). While the senescent cell 

state has been associated with large cell size, this was mostly thought to be a passive 

consequence of continuing biosynthesis after cell cycle arrest. However, consistent with 

recent reports (Lengefeld et al., 2021; Neurohr et al., 2019), we demonstrate that large 

cell size also inhibits entry into the cell cycle (Figure 6C), implying that the relationship 

between cell size and senescence can also be inverted. Moreover, as proliferating cells 

grow larger, we detect senescence-like changes in several common “markers” of senescence 

(Hernandez-Segura et al., 2018; Kumari and Jat, 2021; Sharpless and Sherr, 2015). It could 

be that these senescence-associated changes to the proteome collectively contribute to the 

exit of larger cells from the cell cycle. Alternatively, it may be that only some (or few) 

senescence-associated changes are consequential for cell cycle arrest while other “markers” 

of senescence are merely markers of large cell size.

One potential reason large cells exit the cell cycle is that they accumulate more DNA 

damage than smaller cells (Figure 6). There are at least two plausible hypotheses for why 

we observe more DNA damage in larger cells that are not mutually exclusive. The repair 

of damaged DNA could be compromised in larger cells, or larger cells may be more prone 

to accumulate DNA damage in the first place. The fact that many DNA repair proteins 
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sub-scale with cell size supports the first hypothesis. However, the fact that DNA replication 

factors also subscale with cell size supports the hypothesis that larger cells might accumulate 

more DNA damage than smaller cells during S phase. The sub-scaling nature of many DNA 

replication factors may explain the detrimental effect of long-term CDK4/6 inhibition on 

cells subsequently released into S phase (Crozier et al., 2022), since long-term CDK4/6 

inhibition results in large cell size (Figure 2F) and concomitant changes to the proteome 

(Figure 2G).

Polyploidy as a mechanism to generate large non-senescent cells.

Our observation here that most protein concentrations change as cells grow provides a 

rationale for why many cells control their size. If the proteome content that supports 

optimal cell physiology is only found near the target cell size, then the further a cell 

deviates from its target size, the further protein concentrations will be from their functional 

and growth-supporting optimum. While a small change in the concentration of a single 

protein may not significantly affect cell physiology, the cumulative effect of thousands of 

small protein concentration changes could account for the drastic drop in the efficiency of 

biosynthesis in large cells (Demidenko and Blagosklonny, 2008; Lengefeld et al., 2021; Liu 

et al., 2022; Neurohr et al., 2019). The inability to maintain biosynthesis efficiency at large 

cell sizes is likely due to the decreasing amount of DNA in larger cells, which becomes a 

limiting factor for transcription (Berry et al., 2022; Sun et al., 2020; Swaffer et al., 2021b; 

Zhurinsky et al., 2010). Consistent with DNA being a limiting factor, we find that proteome 

concentrations mostly depend on the cell size-to-ploidy ratio rather than cell size per se. 

Interestingly, growth efficiency can be maintained over a 100-fold range if cell ploidy is 

scaled proportionally to cell size (Mu et al., 2020). Thus, our findings highlight the utility 

of polyploidization as an elegant mechanism for organisms to generate large, non-senescent 

cells capable of efficient and balanced protein synthesis.

Limitations of the study

Although we successfully measured the concentrations of about 3000 proteins across 

different cell sizes, there are still thousands of proteins that we were unable to consistently 

detect using proteomic mass spectrometry. As a result, our datasets are enriched for 

structural proteins and metabolic enzymes because of their high abundance in the cells. 

We therefore still lack information about many signaling and regulatory proteins, which 

are generally less abundant. In addition, we do not capture the size-dependency of post-

translational modifications that modulate protein activities. Importantly, this work and 

a contemporaneous study from the Bjorklund lab (Cheng et al., 2021) suggest that the 

proteome’s size-dependency will be similar across many of the common lineages of cultured 

mammalian cells. However, we expect the relationship between cell size and proteome 

content will be more complex in the context of a tissue. Thus, it is unclear to what extent 

our measurements in vitro will reflect the how cell size impacts cell physiology in vivo. 

Furthermore, because cultured mammalian cells proliferate in a non-native environment, 

single-celled organisms may represent a simpler and more physiological system to study the 

relationship between cell size and the proteome.
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STAR Methods

Resource availability

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Jan Skotheim (skotheim@stanford.edu).

Materials availability—All cell lines used in this study are available from the lead contact 

upon request without restriction.

Data and code availability

• Proteomic and RNA-seq data have been deposited to PRIDE and GEO, 

respectively, and are publicly available as of the date of publication. Accession 

numbers are listed in the key resources table. Microscopy and western blotting 

data reported in this paper will be shared by the lead contact upon request.

• This paper does not report any original code.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

Experimental model and subject details—Primary human fetal lung fibroblasts from 

Cell Applications (Cat#506–05f) and hTERT-immortalized RPE-1 (RRID: CVCL_4388).

Method Details

Cell Culture—Recently isolated primary fetal human lung fibroblasts (HLF) were 

purchased from Cell Applications, telomerase-immortalized retinal pigment epithelium 

(hTERT RPE-1, here also referred to as RPE-1 for brevity) cells were obtained from the 

Stearns laboratory at Stanford. All cells were cultured at 37°C with 5% CO2 in Dulbecco’s 

modification of Eagle’s medium (DMEM) with L-glutamine, 4.5 g/l glucose and sodium 

pyruvate (Corning), supplemented with 10% heat-inactivated fetal bovine serum (FBS, 

Corning) and 1% penicillin/streptomycin.

Fluorescence-activated cell sorting (FACS)—Fluorescence-activated cell sorting was 

used to sort live cells by their size and cell cycle phase. To do this, the cells were harvested 

from dishes by trypsinization, stained with 20 μM Hoechst 33342 DNA dye in PBS for 15 

minutes at 37°C, and then sorted on a BD FACSAria Fusion flow cytometer. Consecutive 

SSC-A over FSC-A, and FSC-H over FSC-A gates were used to isolate single cells. Then, 

G1 cells were gated by DNA content (Hoechst staining). Finally, we collected the 10% 

smallest and 10% largest cells, as well as another 10% of the cells near the average size 

using the gating based on SSC-A signal. During sorting, all cell samples and collection tubes 

were kept at 4°C. To determine the cell size distributions of the collected samples, aliquots 

were taken from each sorted size bin and measured on a Z2 Coulter counter (Beckman). 

Sorted cells were used for mRNA or protein isolation, or re-plated for assessing senescence 

dynamics.
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Stable Isotope Labeling In Cell culture (SILAC)—Cells for SILAC were cultured 

in special Lysine/Arginine-free DMEM for SILAC (Thermo Scientific) with 10% 

dialyzed heat-inactivated FBS (HyClone) and penicillin/streptomycin. These cultures were 

supplemented with “light”, “intermediate”, or “heavy” versions of Lysine (0.8mM) and 

Arginine (0.4mM) (Cambridge Isotope Laboratories) (Deng et al., 2019). The “light” (Agr0 

Lys0) version of the media contained L-Arginine and L-Lysine built with normal 12C and 
14N isotopes; the “intermediate” (Arg6 Lys4) version had L-Arginine containing six 13C 

atoms and L-Lysine containing four deuterium atoms; the “heavy” (Arg10 Lys8) version 

had L-Arginine containing six 13C and four 15N atoms and L-Lysine containing six 13C and 

two 15N atoms. Proline (200 mg/l) was added to the media to prevent conversion of isotope-

coded Arginine into Proline in cells. We confirmed that cell proliferation is not impaired in 

our SILAC medium (Figure S2B). To ensure complete labelling, the cells were cultured in 

SILAC media for 5 passages (approximately 10 doublings) prior to the experiments.

LC-MS/MS sample preparation - SILAC—See Table S10 for a complete list of 

proteomic experiments. Small, medium, and large cells sorted by FACS were pelleted by 

centrifugation at 500xg for 10 minutes and lysed for 40 minutes on ice in RIPA lysis 

buffer (Abcam) containing a protease and phosphatase inhibitor cocktail. SILAC-labeled 

different sized cells were mixed prior to lysis in order to minimize handling error in 

protein extraction, proteolytic digestion, and peptide desalting. Cell lysates were cleared by 

centrifugation at 15000xg for 30 minutes at 4°C. The mixed lysates were then denatured 

in 1% SDS, reduced with 10mM DTT, alkylated with 5mM iodoacetamide, and then 

precipitated with three volumes of a solution containing 50% acetone and 50% ethanol. 

Proteins were re-solubilized in 2 M urea, 50 mM Tris-HCl, pH 8.0, and 150 mM NaCl, and 

then digested with TPCK-treated trypsin (50:1) overnight at 37°C. Trifluoroacetic acid and 

formic acid were added to the digested peptides for a final concentration of 0.2%. Peptides 

were desalted with a Sep-Pak 50mg C18 column (Waters). The C18 column was conditioned 

with 5 column volumes of 80% acetonitrile and 0.1% acetic acid and washed with 5 column 

volumes of 0.1% trifluoroacetic acid. After samples were loaded, the column was washed 

with 5 column volumes of 0.1% acetic acid followed by elution with 4 column volumes of 

80% acetonitrile and 0.1% acetic acid. The elution was dried in a Concentrator at 45°C.

LC-MS/MS sample preparation - TMT—Lysis, denaturation, reduction, and 

precipitation for SILAC analysis was the same for TMT analysis (working solution 

of Iodoacetamide was dissolved in HEPES rather than Tris buffer). Our method for 

TMT labeling was adapted from Zecha et al. (Zecha et al., 2019) and the Thermo 

TMT10plex™ Isobaric Label Reagent Set Protocol. In brief, acetone precipitated samples 

were resuspended in 100μm TEAB and digested O/N with TPCK trypsin (50:1) in the 

absence of Tris or Urea. After digestion, peptide concentration was ~1μg/ul in 100μM TEAB 

for all samples. 20μg of peptide was labeled using 100μg of Thermo TMT10plex™ in a 

reaction volume of 25μl for 1 hour. The labeling reaction was quenched with 8μL of 5% 

hydroxylamine for 15 minutes. Labeled peptides were pooled, acidified to a pH of ~2 using 

drops of 10% formic acid, and desalted with a Sep-Pak 50mg C18 column as described 

above.
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HILIC fractionation - SILAC—Desalted peptide samples were reconstituted in 80% 

acetonitrile and 1% formic acid and fractionated by hydrophilic interaction liquid 

chromatography (HILIC) with a TSK gel Amide-80 column (2 mm × 150 mm, 5 μm; 

Tosoh Bioscience). 90 second fractions were collected between 10 and 25 minutes of the 

gradient. Three solvents were used for the gradient: buffer A (90% acetonitrile), buffer B 

(80% acetonitrile and 0.005% trifluoroacetic acid), and buffer C (0.025% trifluoroacetic 

acid). The gradient used consists of a 100% buffer A at time = 0 min; 88% of buffer B and 

12% of buffer C at time = 5 min; 60% of buffer B and 40% of buffer C at time = 30 min; 

and 5% of buffer B and 95 % of buffer C from time = 35 to 45 min in a flow of 150 μl/min. 

HILIC fractions were dried in a SpeedVac and reconstituted in 0.1% trifluoroacetic acid. A 

total of 10 fractions were collected and pooled back into 5 fractions (1–6, 2–7, 3–8, 4–9, 

5–10).

High-pH reverse phase fractionation - TMT—TMT-labeled peptides (Experiment 

from Figure S5D) were fractionated using a Pierce™ High pH Reversed-Phase Peptide 

Fractionation The eight default fractions were either injected separately or pooled back into 

4 fractions (1–5, 2–6, 3–7, 4–8). Dried peptides were reconstituted in 0.1% formic acid.

LC-MS/MS data acquisition - SILAC—Peptide samples were analyzed using a Fusion 

Lumos mass spectrometer (Thermo Fisher Scientific, San Jose, CA) equipped with Dionex 

Ultimate 3000 LC systems (Thermo Fisher Scientific, San Jose, CA). Peptides were 

separated by capillary reverse phase chromatography on a 25 cm reversed phase column 

(100 μm inner diameter, packed in-house with ReproSil-Pur C18-AQ 3.0 m resin (Dr. 

Maisch GmbH)). Liquid chromatography was performed using a two-step linear gradient 

with 4–25 % buffer B (0.1% (v/v) formic acid in acetonitrile) for 90 min followed by 25–40 

% buffer B for 10 min. Data was acquired in top 20 data dependent mode. Full MS scans 

were acquired in the Orbitrap mass analyzer with a resolution of 120,000 (FWHM) and 

m/z scan range of 340–1500. Selected precursor ions were subjected to fragmentation using 

higher-energy collisional dissociation (HCD) with quadrupole isolation, isolation window 

of 1.6 m/z, and normalized collision energy of 30%. HCD fragments were analyzed in 

the Orbitrap mass analyzer with a resolution of 15,000 (FWHM). Fragmented ions were 

dynamically excluded from further selection for a period of 15 seconds. The AGC target 

was set to 400,000 and 50,000 for full FTMS scans and FTMS2 scans, respectively. The 

maximum injection time was set to 50 ms for full FTMS scans and dynamic for FTMS2 

scans.

LC-MS/MS data acquisition - TMT—Desalted TMT-labeled peptides were analyzed on 

a Fusion Lumos mass spectrometer (Thermo Fisher Scientific, San Jose, CA) equipped with 

a Thermo EASY-nLC 1200 LC system (Thermo Fisher Scientific, San Jose, CA). Peptides 

were separated by capillary reverse phase chromatography on a 25 cm column (75 μm 

inner diameter, packed with 1.6 μm C18 resin, AUR2–25075C18A, Ionopticks, Victoria 

Australia). Electrospray Ionization voltage was set to 1550 volts. Peptides resulting from 

on-bead digestion were resuspended in 10 μL of 0.1% formic acid. 2 μL was introduced into 

the Fusion Lumos mass spectrometer using a two-step linear gradient with 6–33% buffer 

B (0.1% (v/v) formic acid in 80% acetonitrile) for 145 min followed by 33–45% buffer 
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B for 15 min at a flow rate of 300 nL/min. Column temperature was maintained at 40°C 

throughout the procedure. Xcalibur software (Thermo Fisher Scientific) was used for the 

data acquisition and the instrument was operated in data-dependent mode. Survey scans 

were acquired in the Orbitrap mass analyzer over the range of 380 to 1800 m/z with a mass 

resolution of 70,000 (at m/z 200). Ions were selected for fragmentation from the 10 most 

abundant ions with a charge state of either 2, 3 or 4 and within an isolation window of 

2.0 m/z. Selected ions were fragmented by Higher-energy Collisional Dissociation (HCD) 

with normalized collision energies of 27 and the tandem mass spectra was acquired in the 

Orbitrap mass analyzer with a mass resolution of 17,500 (at m/z 200). Repeated sequencing 

of peptides was kept to a minimum by dynamic exclusion of the sequenced peptides for 

30 seconds. For MS/MS, the AGC target was set to 1e5 and max injection time was set 

to 120ms. Relative changes in peptide concentration were determined at the MS3-level by 

isolating and fragmenting the 4 most dominant MS2 ion peaks.

Spectral searches - TMT and SILAC—All raw files were searched using the 

Andromeda engine (Cox et al., 2011) embedded in MaxQuant (v1.6.7.0) (Cox and Mann, 

2008). See Table S11 for a complete summary of the search parameters used for the 

SILAC, TMT, and LFQ experiments. In brief, 3 label SILAC search was conducted using 

Maxquant’s default Arg6/10 and Lys4/8. For TMT searches, a Reporter ion MS3 search was 

conducted using 10plex TMT isobaric labels. For both TMT and SILAC searches, variable 

modifications included oxidation (M) and protein N-terminal acetylation. Carbamidomthyl 

(C) was a fixed modification. The number of modifications per peptide was capped at 

five. Digestion was set to tryptic (proline-blocked). Peptides were “Re-quantified”, and 

maxquant’s match-between-runs feature was not enabled. Database search was conducted 

using the UniProt proteome - Human_UP000005640_9606. Minimum peptide length was 7 

amino acids. FDR was determined using a reverse decoy proteome (Elias and Gygi, 2007).

RNA extraction and sequencing—To compare the transcriptomes of different-sized G1 

cells, primary HLFs were arrested in the G1 phase of the cell cycle by a 24-hour treatment 

with 1μM of the Cdk4/6 inhibitor Palbociclib and then sorted into size bins using FACS. 

To extract RNA, each sample of sorted HLF cells was split into two technical replicates 

each of which contained 200,000 HLF cells, which were then mixed with 100,000 D. 
melanogaster S2 cells as a spike-in. Each sample was then pelleted and RNA was extracted 

using Direct-zol™ RNA Microprep Kit (Zymo Research). mRNA was enriched using the 

NEBNext Poly(A) mRNA Magnetic Isolation Module (NEB, #E7490). The NEBNext Ultra 

II RNA Library Prep Kit for Illumina® (NEB, #E7775) was then used to prepare libraries 

for paired-end (2×150 bp) Illumina sequencing (Novogene). Two independent biological 

replicates of each sample were collected and for each biological replicate, two technical 

replicates (i.e., separate lysis, library prep, and sequencing) were processed. Approximately 

40 million reads were sequenced per replicate.

RNAseq data processing—RNA samples contained a mixture of H. sapiens and D. 
melanogaster spike-in. A combined H. sapiens and D. melanogaster genome file was 

created using the hg38 and dm6 versions of the respective genomes and a combined 

transcriptome annotation was created using the H. sapiens gene models from the v29 version 
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of the GENCODE annotation (Frankish et al., 2019) and the BDGP6 D. melanogaster 
gene models from ENSEMBL release 90 (Yates et al., 2020). For the purposes of 

RNA-seq data quality evaluation, genome browser track generation, and calculating the 

hg38-to-dm6 ratio, reads were aligned against the combined genomes and combined 

annotated set of splice junctions using the STAR aligner (version 2.5.3a; settings: --

limitSjdbInsertNsj 10000000 --outFilterMultimapNmax 50 --outFilterMismatchNmax 999 

--outFilterMismatchNoverReadLmax 0.04 --alignIntronMin 10 --alignIntronMax 1000000 

--alignMatesGapMax 1000000 --alignSJoverhangMin 8 --alignSJDBoverhangMin 1 --

sjdbScore 1 --twopassMode Basic --twopass1readsN −1) (Dobin et al., 2013). Read mapping 

statistics and genome browser tracks were generated using custom Python scripts. For 

quantification purposes, reads were aligned as 2×50mers in transcriptome space against 

an index generated from the combined annotations described above using Bowtie (version 

1.0.1; settings: -e 200 -a -X 1000) (Langmead et al., 2009). Alignments were then quantified 

using eXpress (version 1.5.1) (Roberts and Pachter, 2013) before effective read count values 

and TPM (Transcripts Per Million transcripts) were then separated for each genome and 

renormalized TPMs were calculated with respect to only the H. sapiens transcripts.

Flow cytometry—For flow cytometry analysis, cells were grown on dishes to ~50% 

confluence and harvested by trypsinization. The cells were then fixed with 3% formaldehyde 

for 10 minutes at 37°C, and then permeabilized with 90% methanol for 30 minutes on 

ice. Fixed and permeabilized cells were washed once with PBS, blocked with 3% BSA 

in PBS for 30 minutes at 37°C, and then stained with primary antibodies for 2 hours 

at 37°C. We used the following primary antibodies: p16 (Abcam, ab108349), HMGB1 

(Abcam, ab79823), HMGN2 (CST, 9437S), RPLP0 (Sigma, SAB1402899), Actin (Sigma-

Aldrich, A2103), UCHL1 (CST, 13179S), VAT1 (Santa Cruz, sc-515705), LAMP1 (CST, 

9091), alpha-Tubulin (Abcam, ab6160), γ-H2AX (Sigma Millipore, 05–636-I). After the 

primary antibodies, the cells were washed twice with a wash buffer (1% BSA in PBS + 

0.05% Tween® 20), stained with the fluorophore-conjugated secondary antibodies Alexa 

Fluor 488 goat anti-mouse (Life Technologies A11029), Alexa Fluor 594 goat anti-rabbit 

(Life Technologies A11037), and Alexa Fluor 405 goat anti-rat (Abcam ab175673) at 

1:1000 dilution for 1 hour at 37°C, and then washed twice again. After this treatment, 

the cells were resuspended in PBS containing 3 μM DAPI for DNA staining, incubated 

for 10 minutes at room temperature, and then analyzed on a Attune NxT flow cytometer 

(Thermo Fisher). To compensate for the nonspecific background staining with antibodies, 

we measured the fluorescence of cells stained with nonspecific Isotype Control antibodies. 

We then performed a linear regression of this nonspecific background signal with the cell 

size, and subtracted the background fluorescence corresponding to the cell’s size from the 

actual fluorescence signal measured for each cell. For total protein staining, live cells were 

resuspended in PBS, then the CellTrace CFSE dye (CarboxyFluorescein Succinimidyl Ester, 

Thermo Fisher) was added at 5 μM concentration, incubated for 30 minutes at 37°C. The 

dye was then washed out with FBS-containing DMEM, and the cells were pelleted and 

resuspended in PBS for the flow cytometry or for the fixation and antibody staining. For 

the Lysotracker staining, the cells were harvested and re-suspended in growth media at a 

concentration of 106 cells/mL. Then, Lysotracker Red DND-99 (Thermo Fisher) was added 

at a concentration of 75nM and incubated at 37°C for 30 min. Cells were spun down and 
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re-suspended for analysis or additional staining. For plotting the flow cytometry data, all 

protein amounts and cell size values were normalized to their means. To characterize the 

degree of size-dependency of protein amounts, we fit a line to the flow cytometry data after 

normalizing these data to mean values. We performed at least three biological replicates for 

each experiment that measured 100,000 cells.

To compare the proliferation efficiency of different-sized cells shortly after FACS sorting, 

the cells were left to settle on culture dishes for 2 days, then cultured in the presence of 

1μM EdU for 24 hours to label all the cells that underwent replication within this time 

period. Cells were then stained using a Click-iT™ EdU Alexa Fluor™ 647 Flow Cytometry 

Assay Kit (Molecular Probes), following the manufacturer’s protocol, and analyzed by flow 

cytometry. To compare the telomere lengths of different-sized cells, passage #8 HLF cells 

were stained using a Flow-FISH Telomere PNA Kit (Agilent DAKO) according to the 

manufacturer’s protocol and analyzed by flow cytometry.

Senescence-associated beta-galactosidase (SA-beta-Gal) staining—To detect 

senescent cells, the RPE-1 or HLF cells on a dish were stained using the Senescence 

β-Galactosidase Staining Kit (Cell Signaling Technology) following the manufacturer’s 

protocol. Briefly, live cells on a dish were washed once with PBS and fixed with 1x 

Fixation solution for 10 minutes at room temperature, then rinsed twice with PBS, and 

stained with β-Galactosidase Staining Solution for 48 hours at 37°C in a dry incubator (no 

CO2). The cells were then imaged on an EVOS M5000 imaging system to obtain a colored 

brightfield image. The obtained images were quantified manually, by a blinded investigator, 

to determine the percentage of senescent cells, i.e., the cells that have a pronounced blue 

staining.

Live cell fluorescence microscopy—In preparation for imaging, cells were seeded on 

35-mm glass-bottom dishes (MatTek) at low density and incubated overnight at 37°C and 

5% CO2. Then, the cells were moved to a Zeiss Axio Observer Z1 microscope equipped 

with an incubation chamber and imaged for 96 hours (Schwarz et al., 2018). Brightfield 

and fluorescence images were collected from three dishes at multiple positions every 20 

minutes using an automated stage controlled by the Micro-Manager software. We used a 

Zyla 5.5 sCMOS camera, which has a large field of view allowing us to track motile cells 

within a field of view for long durations, and an A-plan 10x/0.25NA Ph1 objective. To 

distinguish G0/G1 and S/G2/M cells in time lapse imaging experiments, we used RPE-1 

cells expressing the fluorescent cell cycle reporters mKO2-hCdt1 (G1), and mAG-hGeminin 

(S/G2) (Sakaue-Sawano et al., 2008). These reporters were introduced into RPE-1 cells 

using a lentivirus vector, and the positive, fluorescent population of cells was isolated using 

fluorescence-activated cell sorting.

Immunofluorescent staining for microscopy—Cells were seeded on a 35-mm 

collagen-coated glass-bottom dish (MatTek) one day before starting the cell treatments. 

For the staining, cells were fixed with 4% formaldehyde for 10 minutes at room temperature, 

permeabilized with 0.2% Triton™ X-100 (Sigma-Aldrich) for 15 minutes at 4°C, and then 

blocked with 3% BSA in PBS. Then, the cells were incubated with primary antibodies 

overnight at 4°C, washed twice with PBS, and then incubated with conjugated Alexa Fluor 
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647 goat-anti-mouse (Invitrogen, A32728) and Alexa Fluor 488 goat-anti-rabbit (Invitrogen, 

A32731) secondary antibodies at 1:1000 for 1 hour at room temperature. The cells were 

washed twice with PBS, incubated with 300 nM DAPI for 5 minutes at room temperature, 

and then imaged using a Zeiss Axio Observer Z1 microscope with an A-plan 10x/0.25NA 

objective. γ-H2AX and 53BP1 loci were quantified from microscopy images using standard 

tools implemented in FIJI software. The primary antibodies used for immunofluorescent 

staining were rabbit anti-53BP1 (Novus Biologicals, NB100304, 1:2000 dilution), mouse 

anti-γ-H2AX (Sigma Millipore, 05–636-I, 1:200), rabbit anti-p16 (Abcam, ab108349, 

1:250), rabbit anti-p21 (Abcam, ab109199, 1:200), mouse anti-Lamin B1 (CST #68591, 

1:200).

Immunoblotting—For immunoblotting, cells were lysed in the RIPA lysis buffer on 

ice. Proteins from lysates were separated on 8% SDS-PAGE gels and transferred to 

nitrocellulose membranes. Membranes were then blocked with SuperBlock™ (TBS) 

Blocking Buffer (Thermo Fisher Scientific) and incubated overnight at 4°C with primary 

antibodies in 5% non-fat dry milk dissolved in TBST buffer. The primary antibodies were 

detected using the fluorescently labeled secondary antibodies Alexa Fluor 680 Goat anti-

Mouse IgG (Life Technologies, A21058) and Alexa Fluor 790 Goat anti-Rabbit IgG (Life 

Technologies, A11369). Membranes were imaged on a LI-COR Odyssey CLx and analyzed 

with LI-COR Image Studio software. The primary antibodies used for immunoblotting 

were rabbit anti-p16 (Proteintech, 10883–1-AP, 1:300 dilution), rabbit anti-p21 (Abcam, 

ab109199, 1:1000), rabbit anti-beta-Actin (Sigma-Aldrich, A2103, 1:3000), mouse anti-p21 

(Santa Cruz, sc6246, 1:300), mouse anti-GAPDH (Invitrogen, MA5–15738, 1:3000).

Quantification and Statistical Analysis

Peptide Quantitation – SILAC—Our SILAC analysis pipeline uses the peptide feature 

information in MaxQuant’s “evidence.txt” output file. Each row of the “evidence.txt” file 

represents an independent peptide triplet measurement. Contaminant and decoy peptide 

identifications were discarded. Peptides without signal in any of the three SILAC channels 

were also excluded. Peptide triplets (each row in the “evidence.txt” table) are assigned to a 

protein based on MaxQuant’s “Leading razor protein” designation. For each peptide triplet, 

the fraction of ion intensity in each SILAC channel was calculated by dividing the “Intensity 

L/M/H” column by the “Intensity” column. SILAC channels were normalized by adjusting 

the fraction of ion intensity in each channel by the median for all measured peptides (see 

Figure S1B and S1C). After normalization, the relative signal difference between the SILAC 

channels for each peptide triplet was plotted against the normalized cell size for each of the 

bins of isolated G1 cells.

For each peptide, we calculated its slope as follows (mean squared error filtering):

Y1,2,3 = Relative signal in each SILAC channel (order based on labeling orientation)

Avg. size = (mean volume of small bin + mean volume of medium bin + mean 

volume of large bin) / 3

x1 = (Mean volume of small size bin) / Avg. size
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x2 = (Mean volume of medium size bin) / Avg. size

x3 = (Mean volume of large size bin) / Avg. size

Based on the expectation that our experimental conditions would not result in large, non-

linear changes in protein expression, we exclude peptide triplets whose three data points did 

not loosely fit a linear regression line. Linear regressions on the ~50,000 triplets/experiment 

were performed using np.polyfit in Python. Regressions with a mean squared error > 0.075 

were excluded. Because this filtering step significantly improved the overall data quality 

(Figure S1F and S1G), we concluded that our filtering method mostly excludes peptide 

triplets contaminated by analytical interference or near the noise floor.

Individual peptide measurements were consolidated into a protein level measurement 

using Python’s groupby.median. Peptides with the same amino acid sequence that were 

identified as different charge states or in different fractions were considered independent 

measurements. We summarize the size scaling behavior of individual proteins as a slope 

value derived from a regression (similar to what is described above for individual peptides), 

and each protein slope value is based on the behavior of all detected peptides.

For a given protein, we calculate its cell size-dependent slope as follows:

yi = Relative signal in the ith SILAC channel (median of all corresponding peptides in 

this channel)

xi = same normalized cell size xi as for the peptide slope calculations above

The protein slope value was determined from a linear fit to the log-transformed data using 

the equation:

Log2(y) = Slope*log2(x)

Variables were log-transformed so that a slope of 1 corresponds to an increase in protein 

concentration that is proportional to the increase in volume and a slope of −1 corresponds 

to 1/volume dilution. Pearson r and p values for correlation analyses were calculated using 

scipy’s pearsonr module in Python.

Protein annotations—Protein annotations in Figure 2 were sourced from UniProt 

columns named “Subcellular location [CC]” or “Protein names” (UniProt, 2019). For Figure 

2D, protein localization was strictly parsed so that each annotated protein belongs to only 

one of the designated groups. Proteins with 2 or more of the depicted annotations were 

ignored (except for the “Cytoplasm / Nucleus” category, which required a nuclear and 

cytoplasmic annotation).

2D annotation enrichment—2D annotation enrichment, like in Figure 2D, was 

performed as described previously (Cox and Mann, 2012). In brief, all annotation groups 

with significant enrichment in either experiment are displayed on the plot (Benjamini-

Hochberg FDR value at 2%). The position of each annotation group on the plot is 
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determined by the enrichment score (S). The enrichment score is calculated from the rank 

ordered distribution of Protein Slope values:

S = 2(Rgroup − Rremaingproteins)/n

Where Rgroup and Rremaing proteins are the average ranks for the proteins within an annotation 

group and all remaining proteins in the experiment, respectively, and n is the total number of 

proteins.

Peptide quantitation - TMT—Our TMT analysis pipeline uses the peptide feature 

information in MaxQuant’s “evidence.txt” output file. Each row of the “evidence.txt” 

file represents an independent MS3 TMT measurement. Contaminant and decoy peptide 

identifications were discarded. Peptides without signal in any of the TMT channels were 

also excluded. TMT peptide measurements were assigned to protein based on MaxQuant’s 

“Leading razor protein” designation. For each peptide triplet, the fraction of ion intensity 

in each TMT channel was calculated by dividing the “Reporter ion intensity” column by 

the sum of all reporter ion intensities. TMT channels were normalized by adjusting the 

fraction of ion intensity in each channel by the median for all measured peptides (similar 

to the SILAC normalization in Figure S1B and S1C). After normalization, the relative 

signal difference between the TMT channels for each peptide triplet was plotted against the 

normalized cell size for each of the bins of isolated G1 cells. Slope values in Figure 2F 

and 2G were derived in a manner analogous to the Slope values calculated in the SILAC 

experiments. Pearson r and p values for correlation analyses were calculated using SciPy’s 

pearsonr module in Python.

Principle component analysis—PCA analysis was performed in Python using the 

sklearn package. Protein-level measurements were first obtained in manner similar to the 

slope calculation. A data frame was created that contained individual proteins as rows with 

columns corresponding to the relative protein concentration in each SILAC/TMT channel 

(obtained from the median of all peptide measurements for a given protein). These protein-

level measurements were subjected to MSE-filtering method (Figure S1F and S1G) used 

to calculate Protein Slope values. For the comparison of mRNA and Protein datasets, the 

columns corresponding to the relative change in transcript concentration (determined by 

RPKM value) for each biological replicate experiment were added to the data frame use to 

for the analysis in Figure 1K.

Protein complex analysis—Protein complex annotations were derived from the 

CORUM database (“Core Complexes” with 3512 entries). We calculated the Coefficient of 

Variation (CV) between the Protein Slope values of subunits in annotated protein complexes. 

To do so, all slope values were normalized to a value between 0 and 1. Slope values were 

then grouped for each protein complex. Only proteins with a minimum of 5 independent 

peptide measurements (between two replicate experiments) and protein complexes with at 

least three quantified subunits were considered in the analysis. To generate a randomized 

dataset, quantified proteins (i.e., proteins with Protein Slope values) within each protein 

complex were replaced with randomly selected proteins using the random function from 
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the NumPy library. CV is calculated for both real and randomized datasets and compared 

with ttest_ind (T-test) from scipy.stats library. Only cytoplasmic proteins and protein 

complexes were considered to avoid biases from the differential scaling observed in different 

subcellular compartments.

OLS linear regression model—Multiple linear regression analysis was performed using 

the statsmodels module in Python. The prediction of size scaling behavior was based on 

the 1,700 proteins shared between the protein turnover (HeLa cells) (Zecha et al., 2018), 

RNA Slope, and Protein Slope datasets (at least 2 peptides / protein). Independent variables 

for codon affinity score, RNA Slope, and protein turnover (T50%) were each independently 

standardized by subtracting all values by the dataset’s mean and then dividing by the 

dataset’s standard deviation. Because codons with an A or T residue in the 3rd position 

have lower affinity for tRNA and are thus less efficiently translated (Frenkel-Morgenstern 

et al., 2012), the codon affinity score we used to predict translation efficiency is the 

fraction of codons in a given mRNA transcript that contain an A or T residue in the 3rd 

position. The subcellular localization variable was based on UniProt’s “Subcellular location 

[CC]” annotations and entered as a binary value for each compartment (1 if a protein 

possessed an annotation and 0 if it did not). Only subcellular compartments that provided 

nonredundant predictive power were ultimately included in the model. A constant value was 

added to the regression equation using the add_constant function in statsmodels. We set 

the benchmark for predictive accuracy (Prediction %) as the correlation between biological 

replicate experiments (Protein Slope from Exp #1 vs Exp #2). See Figure S10 for more 

details on the model and its coefficients.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

Cell size (i.e., DNA-to-cell volume ratio) globally affects the cell proteome composition

Proteins located in a particular organelle scale similarly with cell size

Increase in cell size causes senescence-like proteome changes in non-senescent cells

Larger cells are more prone to replicative and drug-induced senescence
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Figure 1. Cell size shapes the human proteome.
(A) Schematic illustration of the potential scaling relationships between protein amount, 

concentration, and cell size. (B) Metabolically labeled HLFs cells were gated by G1 

DNA content and sorted into three size bins based on the side scatter parameter (SSC) 

as a proxy for cell size using FACS. (C) The attainment of differentially sized G1 cells 

was confirmed using a Coulter counter. Central dots represent the mean volume for each 

size bin and error bars represent the standard deviation. SILAC labeling orientation was 

swapped for replicate experiments. (D) Ion intensities within SILAC “triplets” represent 

relative peptide concentrations. (E) SILAC channel intensities are plotted for three proteins 

that exemplify different size scaling behaviors. Each dotted line represents an independent 

peptide measurement. (F) Derivation of a slope value that describes the scaling behavior of 

each peptide triplet. Proteins with a slope of 0 maintain a constant cellular concentration 

regardless of cell volume. A slope value of 1 corresponds to an increase in concentration 
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that is proportional to the increase in volume and a slope of −1 corresponds to dilution 

(1/volume). (G) Peptide and (H) Protein slope values from two replicate experiments. 

Only proteins with at least 4 independent peptide measurements in both experiments are 

shown. (I) Correlation of protein slope values from two replicate experiments. A threshold 

for the minimum number of peptide measurements per protein is indicated in each panel. 

(J) Immunofluorescence intensity measured as a function of SSC (cell size) using flow 

cytometry. Total protein amount is inferred from the measurement of carboxyfluorescein 

succinimidyl ester (CFSE) dye. The data were binned by cell size and plotted as mean 

protein amounts per cell for each size bin (solid lines). Dark shaded area shows standard 

error of the mean for each bin, and light shaded area shows the standard deviation. A 

representative plot is shown for n=3 biological replicates for each experiment. 100,000 

cells were analyzed for each sample. (K) Principal component analysis of the relative 

concentration of each protein in small-, medium-, and large-sized cells. The 1st principal 

component is plotted against cell volume for two cell lines, HLFs (fibroblast) and hTERT 
RPE-1 (epithelial). Dot size represents mean cell volume. (L) Similarity of the cell size-

dependent concentration changes between primary HLF and immortalized hTERT RPE-1 
cells. Protein Slope values for each cell type are the mean of two biological replicate 

experiments. Only proteins with at least 3 independent peptide measurements in each 

biological replicate are depicted (Table S1).
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Figure 2. Differential size scaling of organelle protein content.
(A) Scaling behavior of protein groups. Significance is determined by t-test between 

adjacent protein groups. (B) Variance of subunit Protein Slope values for 212 annotated 

protein complexes (Table S4). Only proteins with cytoplasmic annotation are considered. 

Significance is determined by t-test between the proteins grouped by complex and a 

randomized control set. (C) Scaling behavior of proteins based on subcellular localization 

(see methods). The number of highlighted proteins and their average slope are indicated for 

each panel. Ribosomal proteins are plotted in dark blue. (D) 2D annotation enrichment 

analysis using the Protein Slope values calculated in HLF cells. Table S5 contains a 

complete list of enrichment scores for significantly super- or sub-scaling GO terms. (E) 
Asynchronous RPE-1 cells were arrested in G1 with 1μM Palbociclib and (F) the relative 

change in the concentrations of individual proteins determined using TMT quantitation 

(Table S6). Dot size represents mean cell size. (G) Correlation of slope values derived 
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from size-sorted (asynchronous) and G1-arrested (Palbociclib treated) RPE-1 cells. For G1 

arrested cells, slope values for individual proteins were determined using the TMT reporter 

ions (MS3-level) and calculated as described in Figure 1. X-axis bins are shown in dark 

blue. Error bars represent the 95% confidence interval and r denotes the Pearson correlation 

coefficient. (H) Size-scaling of organelle protein content in cells arrested in G1 with 1μM 

Palbociclib, as plotted in (C).
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Figure 3. Diverse mechanisms control proteome size-dependency.
(A) Principal component analysis of the relative concentration of each protein and its 

corresponding transcript in small-, medium-, and large-sized cells. The 1st principal 

component is plotted against cell volume. Size dependency of the transcriptome was 

determined by sequencing the mRNA of size-sorted G1 cells. Dot size represents mean 

cell volume. (B) Size-dependent concentration changes for a representative set of proteins 

and their corresponding mRNA transcripts. For proteins, each connected line represents a 

unique peptide measurement from two biological replicate experiments (light and dark blue). 

For RNA, technical replicates are denoted in the same color, while biological replicates 

are denoted in different colors (4 replicates in total). (C) Correlation of size-dependent 

proteome and transcriptome changes. Examples in (B) are highlighted are in red. RNA Slope 

is calculated in a manner analogous to the Protein Slope using RPKM values (Table S7). 

(D) Ordinary least squares regression model predicts the size scaling behavior of 1,700 

individual proteins based on their subcellular localization and additional features. Prediction 

% denotes the amount of the variance predicted by the model divided by the variance of 

a replicate experiment (r2
model/r2

replicates), the benchmark for how much a model could 

predict. See Figure S10 for a full description of the model.
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Figure 4. Senescence-associated changes to the proteome are increasingly pronounced in large 
proliferating cells.
(A, B) Examples of protein concentration changes typically associated with senescence 

that we observe in proliferating cells. This includes size-dependent intracellular proteins 

(A) and SASP (senescence-associated secretory phenotype) proteins (B). (C-F) Replicative 

senescence of different-sized primary HLF cells. Asynchronous HLFs were gated for G1 

DNA content and sorted into four bins by size using FACS, then replated and stained for the 

senescence marker SA-beta-Gal at the indicated time points (D). Percentage of blue-stained 

SA-beta-Gal positive cells (C) was calculated for each time point and plotted for each 

sorted size bin as mean ± standard error. Cell sizes for each bin are shown as mean ± SD 

in (C). P denotes the cell passage number. (E) A representative immunoblot showing the 

dynamics of the senescence marker p16 in different-sized HLF cells at the indicated time 

after size sorting. (F) Quantification of the immunoblots measuring p16 in different-sized 

HLF cells. Data are shown as mean ± standard error, n=3. The antibodies against senescence 
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markers were validated using immunoblotting and immunofluorescent staining of early- and 

late-passage primary HLFs (Figure S13). (G) Cell cycle distributions of HLF cells 2 days 

after sorting by G1 cell size and re-plating. Size bins correspond to the bins in panel (C). (H) 
Percentage of cells in S/G2/M phases of the cell cycle for each of the four sorted cell size 

bins, 2 and 9 days after sorting.
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Figure 5. Large cell size promotes senescence.
(A) Cumulative cell size distributions of HLF cells arrested in G1 phase for 0 to 9 days 

with 1μM of the CDK4/6 inhibitor Palbociclib. (B) A representative immunoblot showing 

the accumulation of senescence markers p16 and p21 in the HLF cells that increase in size 

upon Palbociclib arrest. (C, D) Cell size distributions (C) and SA-beta-Gal staining images 

(D) of the RPE-1 cells treated for 8 days with DMSO or Palbociclib, in the presence or 

absence of Rapamycin to determine the effect of cell size reduction on senescence dynamics. 

(E) Effect of Rapamycin, which reduces cell growth, on the percentage (±standard error) 

of SA-beta-Gal positive cells in RPE-1 cultures treated with Palbociclib for 8 days. Values 

shown next to each condition indicate the mean cell sizes after 8 days of treatment. SA-

beta-Gal quantification for every data point in included 700–1200 cells quantified from 9 

different fields of view. Values shown next to each condition indicate the mean cell sizes 

after 8 days of treatment. (F-H) Effects of Rapamycin on the expression of senescence 
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markers p21 and p16 in HLF cells that were treated with Palbociclib for 8 days to increase 

cell size. (F) Immunofluorescent staining against p21 in HLF cells. Scale bar = 10μm. 

(G) A representative immunoblot against p21 and p16. (H) Quantification of p21 and p16 

immunoblots. Data are shown as mean ± standard error, n = 4 biological replicates.
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Figure 6. Larger cells are more prone to DNA damage-induced senescence.
(A) Asynchronous RPE-1 cells were gated for G1 DNA content and sorted into four bins 

by size using FACS. (B) Sorted cells were replated, cultured in the presence of the DNA 

damaging agent Doxorubicin (10 ng/ml), and then stained for SA-beta-Gal at the indicated 

time points to determine the DNA damage-induced senescence dynamics. (C) Large cell 

size inhibits cell cycle re-entry after G1 arrest or DNA damage to promote senescence. 

RPE-1 cells were treated with Palbociclib or a low dose of Doxorubicin for 4 days. Then, 

the drugs were washed out, and the cells were imaged for 4 days to identify cells that 

re-enter the cell cycle, and cells that remain arrested in a senescent state. Nuclear area was 

used as a proxy for cell size and cell cycle re-entry was determined using the fluorescent 

cell cycle phase reporters Cdt1-mKO2 (G1 reporter) and Geminin-mAG (S/G2/M reporter) 

(Sakaue-Sawano et al., 2008). N = 33 cells for each data point. (D) Protein slope values 

for all proteins annotated as DNA repair (GO:0006281) and DNA replication (GO:0006260) 
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that were present in our dataset. (E) Immunofluorescence staining of RPE-1 cells treated 

with 10 ng/ml Doxorubicin for 24 hours against γ-H2AX (red) and 53BP1 (green), with 

DAPI staining shown in cyan. Scale bar = 10μm. (F) Number of γ-H2AX and 53BP1 loci 

in RPE-1 cells treated with 10 ng/ml Doxorubicin plotted against the nucleus area, which 

serves as a proxy for cell size. N = 1265 cells. All the experiments were performed in n = 3 

biological replicates. (G) Model of relationships between DNA-related stress, large cell size, 

and senescence.
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Figure 7. Cell volume-to-ploidy ratio drives size-dependent proteome changes.
(A) hTERT RPE-1 cells expressing fluorescent cell cycle reporters (Cdt1-mKO2, Geminin-

mAG) were treated with an Aurora kinase inhibitor barasertib (75nM, 48 hours) to partially 

inhibit cytokinesis. Cells were then sorted based on ploidy and G1 cell cycle phase. The 

attainment of differentially sized G1 cells was confirmed using a Coulter counter. The 

histogram shows a representative example of size distributions for sorted cells, and the 

numbers next to it represent mean cell size ± standard error for n=3 biological replicates. 

(B) Ploidy-sorted and Size-sorted G1 cells were isolated by FACS and their proteomes 

measured using TMTsixplex. Ploidy-sorted Protein Slope values were calculated by plotting 

the relative protein concentration against the mean cell size in the 2N, 4N, and 8N bins to 

obtain a slope value (Table S9). (C) Distributions of ploidy-sorted and size-sorted Protein 

Slope values. Despite large increases in cell size from 2N to 8N, concentration changes were 

minimal. (D) Slightly negative correlation between ploidy-sorted and size-sorted Protein 
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Slope values are consistent with a small increase in DNA-to-cell volume ratio in polyploid 

G1 cells. (E) DNA-to-cell volume-dependent concentration changes for a representative set 

of proteins. For each protein panel, dotted lines represent unique peptide measurements.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

rabbit anti-p16 Abcam Cat#ab108349; RRID: AB_10858268

rabbit anti-p16 Proteintech Cat#10883–1-AP; RRID: AB_2078303

rabbit anti-HMGB1 Abcam Cat#ab79823; RRID: AB_1603373

rabbit anti-HMGN2 Cell Signaling Technology Cat#9437S; RRID: AB_10949505

mouse anti-RPLP0 Sigma Cat#SAB1402899; RRID: 
AB_10738968

rabbit anti-UCHL1 Cell Signaling Technology Cat#13179S; RRID: AB_2798141

mouse anti-VAT1 Santa Cruz Biotechnology Cat#sc-515705

rabbit anti-LAMP1 Cell Signaling Technology Cat#9091; RRID: AB_2687579

mouse anti-γ-H2AX Sigma Millipore Cat#05–636-I; RRID: AB_2755003

rabbit anti-p21 Abcam Cat#ab109199; RRID: AB_10861551

mouse anti-p21 Santa Cruz Biotechnology Cat#sc-6246; RRID: AB_628073

rabbit anti-53BP1 Novus Biologicals Cat#NB100304; RRID: AB_10003037

mouse anti-Lamin B1 Cell Signaling Technology Cat#68591; RRID: AB_2799751

rat anti-Tubulin Abcam Cat#ab6160; RRID: AB_305328

rabbit anti-Actin Sigma-Aldrich Cat#A2103; RRID: AB_476694

mouse anti-GAPDH Thermo Fisher Scientific Cat#MA5–15738; RRID: AB_10977387

Alexa Fluor 488 goat anti-mouse IgG Thermo Fisher Scientific Cat#A11029; RRID: AB_2534088

Alexa Fluor 594 goat anti-rabbit IgG Thermo Fisher Scientific Cat#A11037; RRID: AB_2534095

Alexa Fluor 405 goat anti-rat IgG Abcam Cat#ab175673; RRID: AB_2893021

Alexa Fluor 647 goat-anti-mouse IgG Thermo Fisher Scientific Cat#A32728; RRID: AB_2633277

Alexa Fluor 488 goat-anti-rabbit IgG Thermo Fisher Scientific Cat#A32731; RRID: AB_2633280

Alexa Fluor 680 goat anti-Mouse IgG Thermo Fisher Scientific Cat#A21058; RRID: AB_2535724

Alexa Fluor 790 goat anti-Rabbit IgG Thermo Fisher Scientific Cat#A11369; RRID: AB_2534142

Bacterial and virus strains

Biological samples

Chemicals, peptides, and recombinant proteins

TPCK-treated Trypsin Worthington Cat#LS003740

Trypsin GOLD TMT10plex Mass Tags Promega Thermo Scientific Cat#V5280 Cat#90110

L-LYSINE:2HCL - Unlabeled Cambridge Isotope Lab Cat#ULM-8766-PK

L-ARGININE:HCL - Unlabeled Cambridge Isotope Lab Cat#ULM-8347-PK

L-LYSINE:2HCL (4,4,5,5-D4, 96–98%) Cambridge Isotope Lab Cat#DLM-2640–0.5

L-ARGININE:HCL (13C6, 99%) Cambridge Isotope Lab Cat#CNLM-2265-H-0.25

L-LYSINE:2HCL (13C6, 99%; 15N2, 99%) Cambridge Isotope Lab Cat#CNLM-291-H-1

L-ARGININE:HCL (13C6, 99%; 15N4, 99%) Cambridge Isotope Lab Cat#CNLM-539-H-1
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REAGENT or RESOURCE SOURCE IDENTIFIER

DMEM for SILAC Thermo Fisher Scientific Cat#A33822

HyClone Dialyzed heat-inactivated FBS Cytiva Cat#SH3007903HI

Palbociclib Sigma-Aldrich Cat#PZ0383

Rapamycin Thermo Fisher Scientific Cat#AAJ62473MF

Doxorubicin Thermo Fisher Scientific Cat#D419325MG

Barasertib Selleck Chemicals Cat#AZD1152-HQPA

Hoechst 33342 Thermo Fisher Scientific Cat#H1399

DAPI (4’,6-Diamidino-2-Phenylindole, Dilactate) Thermo Fisher Scientific Cat#D3571

Lysotracker Red DND-99 Thermo Fisher Scientific Cat#L7528

Critical commercial assays

Pierce BCA Protein Assay Kit Thermo Scientific Cat#23225

Sep-Pak 50mg C18 Cartridges Waters Cat##054955

High pH Revered-phased Peptide Fractionation Kit Thermo Scientific Cat#84868

Senescence β-Galactosidase Staining Kit Cell Signaling Technology Cat#9860

Direct-zol™ RNA Microprep Kit Zymo Research Cat#R2063

Click-iT™ EdU Alexa Fluor™ 647 Flow Cytometry 
Assay Kit

Thermo Fisher Scientific Cat#C10424

CellTrace™ CFSE Cell Proliferation Kit Thermo Fisher Scientific Cat#C34554

Deposited data

All Proteomics raw files and spectral searches This paper PRIDE:PXD033332

All RNAseq raw files This paper GEO: GSE208348

Experimental models: Cell lines

hTERT RPE1 Stearns Lab (Stanford) RRID: CVCL_4388

Primary human fetal lung fibroblasts Cell Applications Cat#506–05f

Experimental models: Organisms/strains

Oligonucleotides

Recombinant DNA

Software and algorithms

FlowJo BD Biosciences, https://
www.flowjo.com/solutions/flowjo

RRID: SCR_008520

FIJI https://imagej.net/software/fiji/ RRID: SCR_002285

MaxQuant Mann Lab N/A

Python - Jupyter Notebooks Anaconda N/A

Other
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