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Abstract

We must often infer latent properties of the world from noisy and changing observations. 

Complex, probabilistic approaches to this challenge such as Bayesian inference are accurate 

but cognitively demanding, relying on extensive working memory and adaptive processing. 

Simple heuristics are easy to implement but may be less accurate. What is the appropriate 

balance between complexity and accuracy? Here, we model a hierarchy of strategies of variable 

complexity and find a power law of diminishing returns: increasing complexity gives progressively 

smaller gains in accuracy. The rate of diminishing returns depends systematically on the statistical 

uncertainty in the world, such that complex strategies do not provide substantial benefits over 

simple ones when uncertainty is either too high or too low. In between, there is a complexity 

dividend. In two psychophysical experiments, we confirm specific model predictions about how 

working memory and adaptivity should be modulated by uncertainty.
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Introduction

We often use sequences of sensory observations to arrive at judgements about current and 

future states of the world. This kind of sequential inference can be modeled in ways that 

differ widely in form, accuracy, and complexity [1–8]. This diversity leaves open basic 

questions about the relevance of these models to cognition. The goal of the present study 

was to identify fundamental principles governing when particular cognitive operations are 

important to perform inferences that are both effective and efficient; that is, sufficiently 

accurate but also consistent with computational and information-gathering constraints that 

lead to bounded rationality [6, 9, 10]. We reasoned that computational complexity in models 

of inference can represent a cognitive cost (e.g., in terms of the amount of working memory 

and the degree of adaptivity) that under some conditions might outweigh the benefits of 

potential gains in accuracy.

To test this idea, we constructed a hierarchical class of inference models that can be rated 

in terms of both accuracy and computational complexity. At the top of the hierarchy 

is Bayesian inference, which uses a probabilistic framework to combine both noise and 

volatility into a strategy that makes the most accurate inferences about current and future 

states of the world based on all previous observations [3, 11–13]. This model provides a 

maximum-accuracy benchmark for our analyses, but it also can require virtually unlimited 

computational resources and thus provides a maximum-complexity benchmark as well. We 

then extended previous work showing that exact Bayesian inference can be approximated 

using weighted combinations of simpler computational units [7], by constructing two nested 

families of models that generated increasingly simple approximations to Bayesian inference 

(Fig. 1). These models have progressively lower adaptivity and memory requirements, along 

with lower accuracy and complexity, along the hierarchy.

We examined the performance of these nested models on a general class of tasks that require 

inference in the presence of noise (stochastic fluctuations in the observations) and volatility 

(fundamental changes in the structure of the environment) [14–16]. We used several 

complementary approaches to identify two fundamental principles. The first principle is 

a law of diminishing returns, whereby gains in accuracy become progressively smaller with 

increasing complexity, regardless of the amount of uncertainty in the environment. The 

second principle is a non-monotonic relationship between uncertainty and the complexity of 

the most efficient model: simple models are the most efficient when uncertainty is very high 

or low, whereas more complex models are useful at intermediate levels of uncertainty, when 

cues are both identifiable and helpful. We then used two behavioral experiments to show that 

these principles apply to human behavior. Overall, these results provide new insights into 

the cognitive processes that may be differentially engaged to perform efficient and effective 

inference under different conditions.

Results

A hierarchy of inference strategies

Numerous models have been proposed to solve inference problems in dynamic, noisy 

environments. These models range from Bayesian probabilistic strategies to simpler, 
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heuristic update processes like non-adaptive delta rules that are often described as 

implementing a “model-free” form of learning [7, 12, 14, 16, 17]. Here we show that 

many of these models can be described parsimoniously in terms of two partially overlapping 

nested families that represent systematic simplifications of the Bayesian ideal observer (Fig. 

1). The two families each include a progression from adaptive, memory-dependent learning 

to inflexible processes with no memory or learning.

In general, a system for online inference aims to identify the current source of observations 

(estimation) or to predict the next source (prediction), in the presence of noise and 

unsignalled change-points, given all past and present data x1:t = {x1, …, xt}. We consider 

a standard problem in which change-points in the source occur according to a Bernoulli 

process with a fixed probability h (volatility), and the source, characterized by a single 

number μt at a time t, generates observations with Gaussian variability (Fig. 2) [7, 14]. Noise 

in this generative process is measured by the ratio R between the standard deviation of the 

observations with respect to their source and the standard deviation of the sources across 

many change-points.

In this setting, the Bayesian ideal observer estimates the full distribution of the source in 

terms of two quantities: (1) the conditional probability p(rt|x1:t) of the run-length rt, which 

is the number of time steps elapsed at time t since the last inferred change-point in the 

source; and (2) the probability p(μt|rt) that the source is μt given data observed over just the 

run-length rt. By multiplying these probabilities and summing over possible run-lengths, we 

can compute the probability that the source is μt given all the data:

p μt ∣ x1: t = ∑
rt = 1

t
p μt ∣ rt p rt ∣ x1: t . (1)

The Bayesian model computes p(μt|rt) and p(rt|x1:t) exactly [3, 12, 13]. The optimal 

Bayesian estimate of the source, μt, is then simply the expected value of μt in the conditional 

distribution (Eq. 1). To optimally predict the next source, μt + 1, given this estimate, we must 

include the expected rate of change-points so that

μt + 1 = ℎμ + (1 − ℎ)μt (2)

where μ is the asymptotic average value of the source (Fig. 2).

Thus, the Bayesian model balances prior belief against evidence integrated over temporal 

windows of all possible lengths, with each window weighted by the likelihood that the 

latent variable has been stable over that duration. This model minimizes mean squared 

error but is computationally expensive: the time needed to make an estimate or a prediction 

grows linearly with t, because the model requires a sum over possible run-lengths (Eq. 

1; [7]). In cognitive terms, exact Bayesian inference requires working memory to increase 

with time. This computation is systematically simplified in a hierarchically organized set 

of models depicted in Fig. 1 (see Methods for model details). The Mixture of Sliding 

Windows truncates the Bayesian model to a finite number of windows of fixed durations. 
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The Delta Rules instead weigh past observations exponentially (examples of window and 

exponential integration kernels are depicted as grey areas in Fig. 1). The inferences from 

different Sliding Windows or Delta Rules are weighted optimally in the Mixture models. 

The Memoryless model simply combines current evidence with the prior and maintains no 

working memory (Dirac delta kernel). The Prior model sticks to the prior belief regardless 

of evidence. The Evidence model follows the current evidence and ignores both prior beliefs 

and past evidence.

Each model estimates the source of observations and uses it to make predictions by 

computing a function that depends on: (1) observations (x1:t), (2) fixed parameters of the 

environment (the average source μ, the volatility h, and the noise level R), and (3) model-

dependent “meta-parameters” (the run-lengths and the learning rates). The simplifications 

giving rise to the two families of strategies from the full Bayesian model can be interpreted 

in terms of progressive reductions of cognitive demand (right arrow in Fig. 1).

Adaptive models reduce to calibrated simpler strategies

When probability distributions are inferred from limited samples, complex models can 

generalize worse to new data than simple models [18, 19]. How to identify the model 

that best trades off fitting accuracy and generalization performance is the subject of a vast 

literature on model selection. Here, we address a different problem. Even if a complex 

model has a lower prediction error, is the increase in accuracy relative to a simple model 

“worth the effort”? When and how can complex models be reduced to simpler ones?

To gain insights into these questions, we characterized the structure of our hierarchically 

organized models in terms of their Redundancy and Alignment. Redundancy is defined for 

each model as the ratio between the maximum and minimum eigenvalues of the Hessian 

matrix (H) evaluated at the minimum of the model’s error E. The eigenvalues of H indicate 

how much the error E increases when moving away from the minimum error in parameter 

space in the direction of the eigenvectors of H [20]. Thus, a high Redundancy indicates 

that the full model is reducible to a simpler one through a procedure that removes the least-

relevant degree of freedom (e.g., the “manifold boundary approximation” method of [21]). 

Alignment is defined for each model as the (normalized) angle between the least-relevant 

eigenvector and the direction of the parameter change that would produce the next-simpler 

model in the hierarchy with optimal parameters (Fig. 3A). A high Alignment, associated 

with high Redundancy, is interesting because it indicates that removing the irrelevant degree 

of freedom from the more-complex model generates an optimal (or nearly optimal) model 

that has lower complexity and automatically minimizes prediction error, without need for 

parameter recalibration. A high Alignment is not a trivial or necessary consequence of a 

high model Redundancy.

Using this formalism, we found that the adaptive Mixture models tend to be redundant in 

two opposite conditions: (1) when noise and volatility are low so that inference is easy 

and complex strategies are unnecessary; and (2) when noise or volatility are high so that 

inference is difficult, making complex strategies ineffective (Fig. 3B). Furthermore, when 

the models are redundant, their Alignment is also high (Fig. 3CD). This relationship, which 

is particularly strong for Delta-Rule models, implies that the brain could, in principle, use 
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local estimates of performance gradients [22] to identify and eliminate a currently irrelevant 

parameter and automatically generate a calibrated, simpler strategy.

A power law of diminishing returns

The results above suggest that complex solutions to on-line inference problems may not 

always be worth the effort. To investigate the exact scaling of model performance with 

computational costs, we evaluated the algorithmic complexity of the models in Fig. 1 

in terms of the average number of computational and memory operations required to 

implement them (Fig. 4A, Supplementary Table 1). For the non-parametric Bayesian model, 

this cost grows linearly with the number of observations because the entire past provides 

a probabilistic context for each prediction or estimate, and thus the algorithmic complexity 

diverges to infinity. The other models are parametric and have constant complexity that is 

partly related to the number of free parameters. The values we computed are qualitatively 

consistent with other notions of complexity from Bayesian model selection, information 

geometry, and data compression, for which the leading-order term of model complexity 

grows with the number of parameters, and lower-order terms depend on the model’s 

functional form [18, 19, 23]. However, unlike those notions of complexity, algorithmic 

complexity can be applied readily to the kinds of deterministic models considered here.

We related the algorithmic complexity of each model to its performance relative to 

the Bayesian benchmark and found a power-law of diminishing returns: increasing the 

complexity of a model gives progressively smaller improvements in prediction (Fig. 4B–

F and Supplementary Fig. 2B–F). Prediction accuracy is maximized by using the most 

complex model. However, at both high and low noise (large and small R), low complexity 

models are already within 10% of the Bayesian optimum (light blue and dark blue lines 

in Fig. 4E). Likewise, when volatility is large, low complexity strategies perform almost 

as well as the full Bayesian model (red and brown lines in Fig. 4F). These results suggest 

that sophisticated inference procedures are only useful in a narrow range of conditions 

with an intermediate amount of noise and low underlying volatility. These conclusions are 

robust across a very wide range of thresholds for “good enough” performance (shifting black 

threshold lines in Fig. 4EF) and to very different model implementations (we recapitulated 

the results from Fig. 4 using neural-network implementations [24]; Supplementary Figs. 2 

and 3D–F).

Simple is usually best

The scaling laws identified above suggest that complex models are necessary only for a 

narrow range of conditions, and otherwise simpler models can be good enough. We tested 

this idea by identifying, for a broad range of noise and volatility conditions, the simplest 

model in our hierarchy that achieved performance within 10% of the Bayesian optimum for 

prediction and estimation tasks (qualitatively similar results were obtained using alternative 

metrics and tolerance levels; Supplementary Fig. 4 and Supplementary Methods). Also note 

that these results depend only on the accuracy and the complexity ranking of the models 

along the hierarchy of Fig. 1 and are therefore independent of the specific measure of 

complexity that is being used, as long as the ranking is maintained.
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For prediction problems (Fig. 5A), relatively complex strategies using adaptivity and 

working memory are necessary to maximize accuracy over a relatively small range of 

conditions at low volatility and intermediate noise. In contrast, extremely simple strategies 

(e.g., Evidence, Prior, and Memoryless models) reach nearly peak accuracy over a wide 

range of conditions. For example, when volatility is high, the simplest models do nearly as 

well as the Bayesian predictor, because the world is so variable that past observations do 

not provide much useful information. When volatility is low, the underlying latent variables 

are persistent over time, so past observations become more useful for predicting the future. 

However, this usefulness depends on noise, which obviates the benefits of complex inference 

when it is too high (and all models perform equally poorly) or too low (and even simple 

models perform well). Thus, when volatility is low, there is a non-monotonic (“inverted-U”) 

pattern such that simple models are sufficient at low and high noise but complex strategies 

are needed at intermediate noise; when volatility is high, simple strategies are always good 

enough.

For estimation problems, slightly different patterns emerge (Fig. 5B). For high noise and 

volatility, and for low noise across volatilities, certain simple strategies are nearly as 

effective as complex ones, like for prediction problems. As noise increases from zero 

at fixed volatility, complex models become useful to balance the current noisy evidence 

against past observations and the prior. But as noise becomes high (and observations 

unreliable), increasingly simple models are sufficient again to achieve near-optimal 

estimation performance. Thus, like for the prediction problem, when volatility is low, there 

is an inverted-U relationship between the complexity required for good estimation and noise. 

However, over much of the noise-volatility landscape, estimation problems benefit more 

than prediction problems from the use of complex inference schemes.

Optimizing cognitive engagement

Above, we selected the simplest model whose performance exceeded a hard threshold as 

compared to the optimal Bayesian strategy. It might be more realistic to imagine a smooth 

reward function that decreases with increasing inaccuracy. This reward function can have 

a characteristic scale that sets the range of inaccuracies over which the animal receives a 

substantial reward. As a simple example, we can take the reward or performance level to be 

a Gaussian function of inaccuracy with standard deviation σr, so that substantial rewards are 

obtained when inaccuracy is O(σr) or smaller.

We can then use this function to derive an expression for expected performance per unit 

complexity for each noise/volatility pair:

P(ℎ, R)
C(ℎ, R) = 1

σr 2πC(ℎ, R)e− a(ℎ, R)2C(ℎ, R)−2b(ℎ, R)

2σr2 (3)

where a(h, R) and b(h, R) are the parameters of the power-law fits of inaccuracy versus 

complexity in Fig. 4. Because increased complexity in the inference strategy requires greater 

cognitive engagment, the ratio in Eq. 3 represents a trade-off between reward and cognitive 

cost per prediction or estimation. Because algorithmic complexity (Eq. 30) can also be 
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thought of as a qualitative estimate of the time required to make an inference, the ratio (Eq. 

3) can also be interpreted as an estimate of the reward one can obtain per unit time [25–28], 

which is a meaningful fitness function from an evolutionary and behavioural perspective.

The performance per unit cost can be optimized by maximizing the expression on the right 

hand side of Eq. 3 with respect to the complexity . This gives

Copt(ℎ, R) = a(ℎ, R) b(ℎ, R)
σr

1/b(ℎ, R)
(4)

for the complexity, or cognitive cost, of the optimal inference strategy. Fig. 6 represents 

log Copt for prediction and estimation tasks across a range of volatilities and noise levels. 

The results confirm features seen in Fig. 5. For example, high complexity or cognitive 

engagement is needed only in a small subset of conditions and follows an inverted-U trend 

with noise at low volatility.

Decreasing the width σr of the reward function decreases the tolerance for large inaccuracies 

and thus broadens the domain in which complex strategies are necessary but otherwise 

leaves the inverse-U trend unaffected. Likewise, changes in the reflexive component of 

complexity reflex (Eq. 30) leave the optimal reflective cost, and thus the optimal strategy, 

unaffected (Supplementary Methods). These results also generalize to other forms of reward 

functions, including exponential and linear instead of Gaussian, and fitness functions, 

including a linear Mixture of performance and cost instead of their ratio (Supplementary 

Fig. 5 and Supplementary Methods).

Subjects’ inferences are consistent with the theory

We performed two distinct psychophysical experiments to relate our theory to human 

inference. In the first experiment, subjects were shown sequences of random numbers 

sampled from the kind of stochastic processes described in Fig. 2 and, on each trial, were 

asked to estimate the generative mean of the most recently observed number. Noise and 

volatility were held constant in blocks of trials and changed from block to block. One 

group of subjects was tested in three conditions of fixed (low) volatility and variable noise 

(circles in Fig. 7A). A separate group was tested in three conditions of fixed noise and 

variable volatility (diamonds in Fig. 7A). These six conditions substantially extend the 

range of volatility and noise probed in previous experiments, which focused on low-noise, 

low-volatility environments ([7, 14, 29], small markers in Fig. 7A) that require complex, 

adaptive inference according to our theory. After training, subject behavior was on average 

sensitive to the different values of noise and volatility that we tested (Supplementary Fig. 6).

The subjects tended to adjust both adaptivity (their use of flexible time scales for linear 

integration of past observations) and working memory (their maximum integration time 

scale) across changes in noise or volatility in a manner that reflected key features of 

our theory (Fig. 7B–E). In our theory, adaptivity is most useful for estimation tasks with 

intermediate noise and low volatility. Accordingly, subjects tended to use higher adaptivity 

for the intermediate versus low (one-tailed t-test, p < 10−4, Cohen’s d = 1.1365) or high (p = 

0.0038, d = 0.4225) noise, and for the low versus intermediate or high volatility conditions 
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(p < 10−4 for both comparisons, d = 0.7647 and 2.0974, respectively). Furthermore, in our 

theory working memory is most useful for estimation tasks with intermediate or higher 

noise and low volatility. Accordingly, our subjects tended to have smaller working-memory 

loads at low versus intermediate and high noise conditions (p < 10−4 for both comparisons, 

d = 1.1599 and 1.1546, respectively) and as a function of increasing volatility (p < 10−4 

for all the comparisons, d = 1.2461, 2.0255, and 0.6337 for the low-intermediate, low-high 

and intermediate-high comparisons, respectively). These trends across conditions tended to 

be more pronounced for the theoretical than for the subject values, which likely reflected 

the use of mixed strategies, different tolerances to errors, and other sources of variability. 

Nevertheless, even with these additional sources of behavioural variability, these results 

show that our theoretical framework can be used to identify the task conditions in which 

different cognitive functions are most likely to be used by human subjects to solve inference 

problems.

We emphasize that the purpose of this analysis is to show that subjects make inferences 

that use working memory to different degrees and in more or less flexible (adaptive) ways, 

regardless of the specific model underlying such inferences. The nested nature of the models 

in Fig. 1 and the results of Fig. 3 imply that, for each model, the use of adaptivity and 

working memory changes across conditions corresponding to when that model is reduced to 

its simpler forms or expanded to its more complex forms.

We complemented this analysis with a standard Bayesian model-selection approach to 

identify which of the eight models of Fig. 1 best explained the subjects’ behavior in 

each noise and volatility condition (see Supplementary Fig. 8 for confusion analyses). The 

pattern of selected models matched key predictions of our theory (including when using 

different inaccuracy tolerances; Supplementary Fig. 4G–I). For low noise and volatility, the 

probabilities were split between two extreme models for the human data (Fig. 7F, left), 

which is roughly consistent with the theoretical transition point between the most- and least-

complex models in that regime. For intermediate noise (Fig. 7F, middle), the more-complex 

models had, on average, higher probabilities than simpler models. For high noise (Fig. 

7F, right), the single Sliding-Window model had the highest probability, again coinciding 

with the most-efficient model in the theoretical map. For low volatility (Fig. 7G, left), 

adaptive models had the highest probabilities, in agreement with the theoretical map. For 

intermediate (Fig. 7G, middle) and high volatility (Fig. 7G, right), the highest-probability 

models corresponded to those with intermediate/low complexity and no adaptivity and with 

the lowest complexity, respectively. In these two conditions, the theoretically most-efficient 

models of Fig. 7A were also non-adaptive and only slightly more complex. In general, 

increasing volatility progressively shifted the bulk of the probability distribution from highly 

complex to highly simple strategies (Fig. 7G, from left to right), as expected from the theory.

To show the generalizability of our results, we extended the study in two ways. First, we 

repeated the analyses of the behavioral data after including two additional models, the 

Kalman filter (KF) and the Hierarchical Gaussian Filter (HGF). In contrast to the models 

of Fig. 1, which were specifically developed for change-point inference, the KF and HGF 

were developed to track latent states that drift in time according to diffusion processes. 

Nevertheless, they can also work well in the presence of abrupt change-points [30, 31]. 
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Both models are adaptive and make use of working memory but have lower algorithmic 

complexity than the Mixture models and the Bayesian model of Fig. 1 (Methods). In 

Supplementary Fig. 9, we show that all our conclusions remained valid after adding KF 

and HGF to the model set. From a theoretical standpoint, the models of Fig. 1 were more 

effective than KF and HGF in practically all volatility/noise conditions and across different 

tolerances to errors. From an experimental standpoint, the models that best explained the 

behavioral data in each condition remained those shown in Fig. 7FG.

Second, we performed an additional experiment using a Bernoulli prediction task. 

Observations were sampled from two possible sources. Each source generated binary 

observations with constant and complementary generative probabilities, and the source 

switched to the alternative at random times with constant probability h (Methods). On each 

trial, subjects were asked to predict the next observation. Thus, two important differences 

between this experiment and the previous one are the discrete as opposed to continuous 

nature of the latent process, and the prediction as opposed to estimation nature of the task. 

Noise R (a function in the [0, 1] range of the generative probabilities of the sources) and 

volatility h were held constant in blocks of trials and changed from block to block. Subjects 

were tested in three conditions of fixed (low) volatility and variable noise (circles in Fig. 

8A) and in two conditions of fixed noise and variable volatility (diamonds in Fig. 8A, one 

coinciding with the low-noise condition).

The behavioral results from this task also closely matched theoretical predictions. Here 

we considered three models that solve this task with decreasing accuracy and complexity 

[32]: (1) the maximally accurate Bayesian model, (2) a model that approximates the prior 

expectation with a volatility-dependent constant, and (3) a Leaky-Accumulator model in 

which the prior expectation is a fraction of the previous belief. Strategies (2) and (3) 

are approximations of the Bayesian model in regimes of low and high belief uncertainty, 

respectively. For low and intermediate noise (Fig. 8B, left and middle), and for the two 

volatility conditions (Fig. 8C), the behavioral responses of almost every subject were best 

explained by the model predicted by the theoretical map (Fig. 8A). For high noise, behavior 

was best explained by the Bayesian and Leaky-Accumulator models (Fig. 8B, right); this 

tested condition is close to the transition between these two models in the theoretical map 

(Fig. 8A). Similar results were obtained using Bayesian model selection (Supplementary 

Fig. 10). In summary, this different task supported both theoretically and experimentally the 

generality of the inverse-U trend of model complexity with noise and the decreasing trend of 

model complexity with volatility.

Discussion

We used a family of nested models and their mappings to particular cognitive functions to 

identify principles that govern the trade-off between the accuracy and simplicity of inference 

in noisy and changing environments. To support the broad applicability of our findings, 

we chose models that span a wide range of inference strategies, some of which have been 

studied extensively, including the complex Bayesian observer, its close approximations (the 

Mixture of Sliding Windows and Mixture of Delta Rules), further approximations that 

perform simpler forms of integration and “model-free” learning (Sliding Window and Delta 
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Rule), and even simpler heuristics based on using prior knowledge (Prior), the most-recent 

observation (Evidence), or both (Memoryless). By deriving these models in a novel, nested 

framework, we were able to highlight their interrelatedness while defining precisely how 

their particular, distinguishing features contribute to this trade-off. We also focused on 

classical inference problems, for which we probed noise and volatility conditions that 

extended the ranges considered in previous studies [7, 14, 29] and more generally are 

relevant to tasks that include both forms of uncertainty, such as commonly used reversal-

learning tasks [16, 33, 34]. Below we discuss our results relative to other computational, 

behavioral, and neural findings, focusing on the new insights provided by our work and 

potential future directions.

Each of our models is characterized by both its complexity and its inaccuracy compared 

to the exact Bayesian model. By analyzing two nested families of models, we identified a 

power-law scaling of inaccuracy with complexity: ℐ ∝ 1/ b. This scaling, with an exponent 

that depends on noise and volatility in the environment, implies a law of diminishing returns 

such that increasing the complexity of the inference strategy gives progressively smaller 

returns in prediction or estimation accuracy. This law is reminiscent of a similar result in 

rate-distortion theory: the minimum achievable distortion  of a transmitted signal is a 

continuous, monotonically decreasing, convex function of the information transmission rate 

ℛ [35]. This universal property of rate-distortion functions implies that, independently of 

the source of information, increasing the communication rate confers diminishing returns in 

reconstruction accuracy at the receiver.

This relationship to rate-distortion theory implies that constraints on the inference 

algorithm, imposed by bounded rationality [9], create a sort of information bottleneck [36]. 

Specifically, in simple contexts, the rate is measured in bits as the mutual information, 

I(X; X), between the input X and output X of an information channel [35]. In this 

formulation, the distortion for a Gaussian channel (similar to our Gaussian source) scales 

as log D ~ −ℛ, for distortions smaller than the variance of the samples. We similarly 

showed that inaccuracy scales as log ℐ ~ −log , which suggests an interpretation of the 

log algorithmic complexity of our models as an effective transmission rate of information 

about the environment to a decision-making “receiver”, who gathers this information to 

make inferences about the world. The connection with information theory may provide 

new practical tools to help understand the diversity of strategies used across tasks and 

individuals to solve inference problems [11]. Such tools also have the potential to deepen 

our understanding of the diversity of deep neural networks, for which a power-law scaling 

between accuracy and computational complexity reminiscent of our findings was recently 

identified [37].

We also showed that complex strategies that use adaptive processes and/or working-memory 

are necessary only for a restricted range of conditions, characterized by low volatility and 

moderate noise, with working memory being useful across a slightly wider set of uncertainty 

levels, particularly towards higher noise. These dependencies give rise to an inverted-U 

relationship between cognitive demands and task difficulty: simple strategies are good 

enough when inference is easy, such as when the current evidence from the environment is 

highly reliable and thus historical information is not needed, and when inference is hard, 
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such as when incoming information is so noisy or volatile that there is little to gain from 

complex reasoning. This relationship is reminiscent of a known feature of combinatorial 

optimization problems: NP-complete problems such as K-satisfiability, graph coloring, the 

traveling salesman, and the Hamiltonian path problem all have characteristic easy-hard-easy 

patterns in the computational complexity required to find a solution. Hard problems are 

typically clustered around a critical intermediate value of an order parameter, which marks 

a phase transition from solvability to unsolvability [38–41]. In a broad sense, this order 

parameter plays a role similar to task difficulty or environmental uncertainty in our inference 

task.

Our behavioral findings build on previous studies that showed that humans tend to use 

relatively complex inference strategies in conditions of low volatility and moderate noise 

(Fig. 7A). For example, in [7, 42], subjects performed a Gaussian changepoint task similar 

to the one considered here, with volatility ~ 0.1 and noise ~ 0.1. Their predictions were 

consistent with a Mixture of Delta-Rules strategy with two computational units, which 

provided a better fit than models with either one or three units. This result matches our 

theoretical findings, for which the (h ~ 0.1, R ~ 0.1) point in the volatility-noise plane falls 

in the small region where the 2-Delta-Rule model is the most efficient strategy for prediction 

tasks (Fig. 5). Likewise, in [14], subjects performed a similar Gaussian change-point task 

with volatility ~ 0.04 and noise between ~ 0.06 and ~ 0.4. Their behavior was better fit by 

a Delta-Rule model with an adaptive versus a fixed learning rate, which is in agreement 

with the adaptive domain in our map of efficient models for both prediction and estimation 

tasks (Fig. 7A). In [29], subjects performed a probabilistic object-reversal task with object-

reversal probabilities (analogous to volatility) that ranged between ~ 0.008 and ~ 0.08 and 

the fraction of trials in which the statistically best option did not receive the top reward 

(analogous to noise) was 0.2. Again, here adaptive learning was found in a regime of low 

volatility and intermediate noise, compatible with our theory (Fig. 7A).

Our theoretical framework also makes other predictions that we hope will be tested in 

future experiments. First, do people solve estimation and prediction problems according 

to the differences prescribed by our theory? For estimation problems, we showed that 

memory is not necessary when noise is low, regardless of volatility, whereas for prediction 

problems, memory is not necessary when both noise and volatility are low (as volatility 

increases, current evidence carries increasingly little information about the future, and it 

instead becomes more useful to retain a long-term memory of the average source position). 

Moreover, complex strategies are useful over a wider region of the volatility/noise landscape 

for estimation problems than for prediction problems. Second, do subjects learn from recent 

evidence in conditions of high volatility and variable noise? Our theory predicts a transition 

between a domain where only prior information about the average source position is useful 

and a domain where that prior knowledge should be updated based on new evidence (Fig. 

5). These two domains are separated by a roughly power-law curve in the volatility-noise 

plane, so that decreasing volatility increases the noise level beyond which learning from 

new evidence is useless. Answering these questions will further help to establish if and how 

trade-offs between accuracy and complexity govern the cognitive operations used to perform 

inference in the brain.
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Our models have plausible neural implementations. We considered exponentially 

decaying, sliding-window, and instantaneous (Dirac-delta function) integration kernels 

(implemented in the Delta-Rule, Sliding-Window and Memoryless models, respectively). 

The exponentially decaying kernels correspond to “α-synapses” used widely in biophysical 

models of neuron spiking dynamics [43]. Implemented as Delta Rules, they are also closely 

related to reward-prediction errors that are thought to be encoded by dopaminergic neurons 

and drive learning in the striatum and possibly elsewhere [16, 44]. This implementation, 

compared to exponentially decaying integration, has advantages in terms of working 

memory, because it effectively produces Markovian estimates of the source: each estimate 

depends only on the current observation and on the immediately previous estimate. The 

Sliding-Window kernels are more memory intensive, requiring representations of each 

sample used in the given window. Such memory signals could, in principle, be based on 

persistent activity that maintains representations of a sequence of observations, such as those 

found in the prefrontal cortex network [45]. The Dirac-delta kernels can be implemented 

trivially without any working memory.

Adaptivity is achieved in our models using a bank of different integration timescales, 

consistent with multiple reports describing different integration timescales in the brain [46–

50]. In our formulation, the estimates obtained from these different integration timescales 

are weighted optimally and combined to produce a single output [7, 42]. Consistent with this 

idea, learning rates with more relevance to an ongoing estimate of choice values have been 

shown to explain more variance in fMRI signals [51]. This weighting process is thought 

to require the noradrenergic, cholinergic, and dopaminergic neuromodulatory systems, each 

of which has been linked to adaptive inference via pupillometry and other measures [52, 

53]. The noradrenergic and dopaminergic systems are also thought to be responsible for an 

inverted-U relationship between learning and arousal, via their effects on neural activity in 

the prefrontal cortex and perhaps elsewhere in the brain [53–56]. It is tempting to think 

that the statistical difficulty of a task might modulate activity in these brain areas similarly 

to arousal states, to engage or disengage mental resources in a way that best meets task 

demands.

An alternative hypothesis on how adaptive Bayesian inference might be approximated by the 

brain is based on particle filters and importance sampling [3, 4, 26, 57]. In these approaches, 

a limited number of samples (particles) is used to represent the posterior distribution of 

the hidden state given the observations. Unlike in our models, in these approaches the 

hypothesis space for the hidden state varies in time, as new hypotheses are continuously 

sampled from the Bayesian posterior distribution given the observations. By contrast, in 

our Mixture models the hypothesis space (set of run-lengths or integration timescales) is 

constrained and fixed in a given environment and adaptivity is achieved by weighting the 

different hypotheses by their time-dependent posterior probability. It would be useful for 

future work to compare the computational complexity of these different kinds of approaches 

to adaptive inference, which could help advance our understanding of if and when they 

could be used in the brain.

Overall, our study provides a unified view of several plausible models of on-line statistical 

inference, showing that they can be regarded as special cases of a single formalism. This 
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novel interpretation suggests a hierarchical (nested) organization of cognitive processes 

and a natural, efficient way in which the brain could engage or disengage them. This 

organization implies that the brain could meet the demands of a wide range of different 

environments and tasks, by adjusting the parameters of a single, flexible inference process.

Methods

Statement on Ethics Approval

The study protocol for human subjects research was reviewed by the University of 

Pennsylvania Institutional Review Board and determined to be exempt as authorized by 45 

CFR 46.104, category #2. All participants provided informed consent prior to participating.

Change-point tasks

We considered two different change-point tasks: a continuous Gaussian change-point task 

and a discrete Bernoulli task.

All analyses in Figs. 1–7 and Supplementary Figs. 1–9 refer to the Gaussian change-point 

task (Fig. 2) [7, 14]. Observations xt take continuous values and are Gaussian distributed 

(p(xt) =  (xt|μt, σ2)) around a source located at an unknown mean position μt. The 

mean position changes at random times, with probability h (the volatility parameter). 

At these change-points, the source is resampled from another Gaussian distribution 

p μt = N μt ∣ μ, σ0
2 . The goal of an observer is to infer the current position of the source 

μt from the history of observations up to time t (estimation problem), or to predict the 

position of the source at the next time step μt+1 (prediction problem). For each simulation 

and task condition, the parameters μ, σ0, and σ are constant. The ratio (R = σ/σ0) is the noise 

parameter of the process (R = 1/ SNR). The volatility and noise parameters determine the 

statistical difficulty of the inference problem.

The analyses in Fig. 8 and Supplementary Fig. 10 refer to the discrete Bernoulli task. In this 

case, observations are generated from two possible sources: μt = 0 and μt = 1. The first one 

generates observations xt = 0 with probability 0.5 < p < 1 and xt = 1 with probability 1 − p; 

vice versa, the second source generates observations xt = 1 and xt = 0 with probabilities p 
and 1 − p, respectively. At any time, the source can switch to the alternative with hazard rate 

h, according to a Bernoulli process. The goal of an observer is to predict the next source μt+1 

from the history of observations x1:t. For each simulation and task condition, the parameters 

h (volatility) and p are constant. In this task, noise can be quantified as R = 2(1 − p), which 

is a number between 0 and 1: R = 0 implies that observations are always consistent with 

their source, whereas R = 1 implies that observations are independent of the source.

Exact Bayesian inference

For the Gaussian change-point task, we derive expressions for μt
rt and p(rt|x1:t) to obtain 

the optimal Bayesian estimate of the current source position and the optimal Bayesian 

prediction of the next source position (text around Eq. 2) [12].

For Gaussian processes, the posterior probability of the source μt given run-length rt is
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p μt ∣ rt = p μt ∣ xt − rt + 1: t ∝ N μt ∣ χp
νp

, σ2

νp
∏

i = t − rt + 1

t
N μt ∣ xi, σ2

(5)

where we have used the Bayes rule p μt ∣ xt − rt + 1: t ∝ p xt ∣ μt p μt ∣ xt − rt + 1: t − 1

recursively. Note that N μt ∣
χp
νp

, σ2
νp

 is the Gaussian prior distribution 

over μt with mean μ =
χp
νp

 and variance σ0
2 = σ2

νp
. Using the relation 

N μ ∣ μ1, σ1
2 N μ ∣ μ2, σ2

2 ∝ N μ ∣
μ1σ2

2 + μ2σ1
2

σ1
2 + σ2

2 ,
σ1

2σ2
2

σ1
2 + σ2

2  we obtain:

p μt ∣ rt = N μt ∣ μt
rt, σ2

νt
rt (6)

with

μt
rt =

χt
rt

νt
rt

; χt
rt = χp + ∑

i = t − rt + 1

t
xi ; νt

rt = νp + rt (7)

As expected for a Gaussian prior and a Gaussian likelihood, the posterior distribution (Eq. 6) 

is also Gaussian.

The posterior probability of the run-length rt given observations x1:t can be computed 

recursively:

p rt ∣ x1: t = p rt, x1: t
p x1: t

= 1
p x1: t

∑
rt − 1 = 1

t − 1
p rt ∣ rt − 1, x1: t p rt − 1, x1: t

= 1
p x1: t

∑
rt − 1 = 1

t − 1
p rt ∣ rt − 1, xt p xt ∣ rt − 1 p rt − 1, x1: t − 1

(8)

Because rt = 1 if there is a change-point (“cp” below) at time t, rt = rt−1 + 1 if there is no 

change-point, and change-points occur with constant probability h, we can rewrite p(rt|rt−1, 

xt) as:
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p rt = rt − 1 + 1 ∣ rt − 1, xt = p no cp ∣ rt − 1, xt

= p xt ∣ no cp, rt − 1 p(no cp)
p xt ∣ rt − 1

= 1 − ℎ
p xt ∣ rt − 1 ∫

−∞

∞
dμt − 1p xt ∣ no cp, μt − 1 p μt − 1 ∣ rt − 1

= 1 − ℎ
p xt ∣ rt − 1 ∫

−∞

∞
dμt − 1N xt ∣ μt − 1, σ2 N μt − 1 ∣ μt − 1

rt − 1, σ2

νt − 1
rt − 1

= 1 − ℎ
p xt ∣ rt − 1

N xt ∣ μt − 1
rt − 1, σ2 1 + 1

νt − 1
rt − 1

(9a)

p rt = 1 ∣ rt − 1, xt = p cp ∣ rt − 1, xt

= p xt ∣ cp p(cp)
p xt ∣ rt − 1

= ℎ
p xt ∣ rt − 1 ∫

−∞

∞
dμtp xt ∣ μt p μt ∣ cp

= ℎ
p xt ∣ rt − 1 ∫

−∞

∞
dμtN xt ∣ μt, σ2 N μt ∣ μ, σ0

2

= ℎ
p xt ∣ rt − 1

N xt ∣ μ, σ2 + σ0
2

(9b)

p rt ∣ rt − 1, xt = 0 ∀ rt ≠ rt − 1 + 1 ; rt ≠ 1 (9c)

Substituting Eqs. 9 into Eq. 8 we obtain:

p rt ∣ x1: t = 1
C N xt ∣ μt − 1

rt − 1, σ2 1 + 1
νt − 1

rt − 1 ∑
rt − 1 = 1

t − 1
p rt ∣ rt − 1 p rt − 1 ∣ x1: t − 1

(10)

with C being a normalization constant, μt0 = μ, νt0 = νp (for any t) and

p rt ∣ rt − 1 = 1 − ℎ  if  rt = rt − 1 + 1
p rt ∣ rt − 1 = ℎ  if  rt = 1
p rt ∣ rt − 1 = 0  otherwise 

(11)

Eq. 10 simplifies to:

p rt ∣ x1: t = 1
C (1 − ℎ)N xt ∣ μt − 1

rt − 1, σ2 1 + 1
νt − 1

rt − 1 p rt − 1 = rt − 1 ∣ x1: t − 1 if rt ≠ 1

p rt ∣ x1: t = 1
C ℎN xt ∣ μt − 1

rt − 1, σ2 1 + 1
νt − 1

rt − 1 if rt = 1
(12)
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In conclusion, we can compute:

p μt ∣ x1: t = ∑
rt = 1

t
p μt ∣ rt p rt ∣ x1: t

= ∑
rt = 1

t
p rt ∣ x1: t N μt ∣ μt

rt, σ2

νt
rt

(13)

and the optimal (mean-squared-error minimizing) estimate of the source μt given the history 

of observations x1:t is

μt = μt p μt ∣ x1: t = ∑
rt = 1

t
p rt ∣ x1: t μt

rt
(14)

From p(μt|x1:t) it is straightforward to derive the posterior probability distribution for the 

position of the source at the next time step:

p μt + 1 ∣ x1: t = ∫
−∞

∞
dμtp μt + 1 ∣ μt p μt ∣ x1: t

= ∫
−∞

∞
dμt p μt + 1 ∣ μt, cp p(cp) + p μt + 1 ∣ μt,  no cp p(no cp) p μt ∣ x1: t

= ℎ∫
−∞

∞
dμtp μt + 1 ∣ cp p μt ∣ x1: t + (1 − ℎ)∫

−∞

∞
dμt δ μt + 1 − μt p μt ∣ x1: t

= ℎ N μt + 1 ∣ μ, σ0
2 + (1 − ℎ)∫

−∞

∞
dμtδ μt + 1 − μt ∑

rt = 1

t
p rt ∣ x1: t N μt ∣ μt

rt, σ2

νt
rt

= ℎ N μt + 1 ∣ μ, σ0
2 + (1 − ℎ) ∑

rt = 1

t
p rt ∣ x1: t N μt + 1 ∣ μt

rt, σ2

νt
rt

.

(15)

It follows that the optimal Bayesian prediction of μt+1 given the history of observations up to 

time t is

μt + 1 = μt + 1 p μt + 1 ∣ x1: t = ℎμ + (1 − ℎ)μt . (16)

Building a hierarchy of approximations to Bayesian inference

The Bayesian computation is simplified by considering only a fixed set of run-lengths 

{r1, …, rN} chosen to minimize the mean squared error in the estimator. This reduction 

approximates the full Bayesian model with N computational units, each charged with 

generating an estimate of μt based on a sliding-window integration of past observations 

over the duration ri, combined with prior information on the average value of the source μ:
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μt
ri =

χt
ri

νt
ri

= 1
νp + ri

νpμ + dxt − ri + ∑
k = t − ri + 1

t
xk (17)

We will think of the model run-length ri as being allowed to take non-integer values in the 

mathematical expression to allow greater flexibility, and d = ri −⌊ri⌋ is the decimal part of 

ri. The relative weight of the prior mean with respect to each observation is νp = σ2/σ0
2 = R2: 

the larger the noise, the more the model relies on the prior mean as opposed to the empirical 

mean computed from the observations.

Note that Eq. 17 corresponds to Eq. 7 in the Bayesian model, with rt = ri. Eq. 17 can also be 

expressed recursively as:

μt
ri = μt − 1

ri + αi xt − (1 − d)xt − ri − dxt − ri − 1 ; αi ≡ 1
νp + ri

(18)

with effective learning rate αi and initial condition μ ri + 1
ri = 1

νp + ri
νpμ + dx1 + ∑k = 2

ri + 1xk . 

Estimates computed by each unit are summed with a relative weight set adaptively by 

the posterior probabilities p(ri|x1:t) (see next section). As such, low/high volatility in the 

world will lead to preferential use of long/short Sliding Windows [16, 58]. This Mixture of 

Sliding-Windows model is simpler than the full Bayesian procedure, but implementing it in 

the brain would still require extensive working memory, up to the longest run-length, and 

circuitry to compute the adaptive weights given to different run-lengths.

The working-memory load can be reduced by replacing the Sliding Windows with units that 

weigh past observations according to exponentially decaying kernels

μt
αi = 1 − αi

tμ + ∑
k = 1

t
αie− t − k

τ xk (19)

Expressing the time constant as τ = −1/ln(1 − αi) (~ 1/αi for αi ≪ 1), these units are 

equivalent to the delta rules of reinforcement learning:

μt
αi = μt − 1

αi + αi xt − μt − 1
αi (20)

with learning rates αi in the range [0, 1] and initial condition μ0
αi = μ. The Delta-Rule units 

are approximations of the Sliding-Window units, in which the weighted average of the two 

observations occurring ~ ri time steps back in the past 1 − d xt − ri + dxt − ri − 1 (Eq. 18) 

is replaced by the unit estimate μt − 1
αi  of the mean at time t−1: this approximation reduces the 

working-memory demand to the previous time step only.
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The demand for computational resources in both Sliding-Window and Delta-Rule model 

families is reduced dramatically by making them non-adaptive. This reduction amounts to 

considering a single Sliding Window or a single Delta Rule, each with an optimal fixed 

timescale for integrating evidence. These models do not need to estimate the adaptive 

weights, but still require working memory to carry out the integration.

An even simpler inference strategy estimates the source μt as a weighted average between 

the present observation xt and the average source μ (Dirac-delta kernel):

μt = (1 − α)μ + αxt (21)

This Memoryless model is nested in the Sliding-Window model, from which it is derived 

by choosing an integration window of just one observation. The Memoryless model is the 

minimal model that learns and updates prior biases, or knowledge of stable features of 

the environment μ , based on current evidence from a rapidly changing variable (xt). We 

stress that the name “Memoryless” is used to indicate that this model does not perform 

any integration of evidence over time, thus it does not require any working memory of past 

observations or past inferences; however, the model maintains a long-term memory of prior 

information.

Both the Memoryless and Delta-Rule models can be further reduced to the simple Prior 

model μt = μ  by setting the learning rate to zero. This Prior model represents knowledge 

acquired, after a sufficiently long exposure to a given environment, about the constant or 

slow (stable across many change-points) features of the process generating the observations. 

Inferring and storing the slowly varying structure of the environment presumably still 

requires some cognitive effort and long-term memory resources.

Removing this last cognitive demand leads to a strategy that simply returns the current 

observation xt as both an estimate of μt and a prediction of μt+1. This strategy, which we call 

Evidence, can also be seen as the simplest possible model nested in both the Memoryless 

and the Delta-Rule models, because it is obtained from them by setting the learning rate to 

one.

The hierachical relationships between the models are summarized, in terms of parameter 

reductions, in Supplementary Fig. 1.

The models were optimized by finding the parameters ri and αi that minimized mean-

squared error of the model estimates (or predictions). Specifically, for each combination 

of volatility h and noise νp = R2, we used the Matlab “interior-point” algorithm to find 

the parameter values minimizing mean-squared error over a 5000 time-long instance of the 

Gaussian change-point process. This duration guaranteed that any instance contained a large 

number of change points (on average 100 at the minimum tested volatility h = 0.02 and 

larger numbers at higher h). To reduce dependency on the specific instance, we averaged 

the output of this optimization over 10 different random instances (of 5000 time-steps each). 

The resulting optimal parameters of the Sliding-Window and Delta-Rule models vary with 
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noise and volatility, whereas the optimal parameter of the Memoryless model is α = 1
νp + 1

and is independent of volatility.

Posterior probabilities in the Mixture models

In the Mixture models, the posterior probabilities of the run-lengths {ri}, i = 1, …, N 
are obtained as an approximation of the Bayesian posterior p(rt|x1:t) (compare with Eq. 10 

above)

p ri ∣ x1: t = 1
C N xt ∣ μt

ri, σ2 1 + 1
νt

ri ∑
j = 1

N
p ri ∣ rj p rj ∣ x1: t − 1 , (22)

where the transition probabilities p(ri|rj) approximate p(rt|rt−1) of the exact Bayesian model 

[7, 42]:

p ri ∣ rj = ℎp ri ∣ rj, cp + (1 − ℎ)p ri ∣ rj,  no cp (23)

We sort the N model run-lengths in ascending order: r1 < r2 < ⋯ < rN. When there is 

a change-point, the Bayesian run-length drops to 1. This condition is approximated by 

resetting the model run-length to the smallest possible value r1:

p ri ∣ rj, cp = 1  if  i = 1
0  otherwise  (24)

When there is not a change-point, the Bayesian run-length increases by 1. Given the 

finite number of run-lengths in the Mixture models, the distance between any rj and rj+1 

is in general different from 1. To approximate the Bayesian transition, two cases are 

considered: (1) when rj+1 ≥ rj + 1, the model run-length increases from rj to rj+1 with a 

probability inversely proportional to the distance rj+1 − rj and it remains constant with the 

complementary probability, so that the increase in model run-length is equal to 1 on average; 

(2) when rj+1 < rj +1, transition always occurs. More formally:

For all j < N:

If rj+1 ≥ rj + 1 then:

p ri ∣ rj,  no cp  =

1
rj + 1 − rj

 if i = j + 1

1 − 1
rj + 1 − rj

 if i = j

0  otherwise 

(25)

Else if rj+1 < rj + 1 then:
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p ri ∣ rj,  no cp = 1  if  i = j + 1
0  otherwise  (26)

For j = N:

p ri ∣ rN,  no cp = 1  if i = N
0  otherwise (27)

We have used Mixture models with N = 2 units.

Redundancy and Alignment

In a given environment characterized by parameters {el}, we can quantify a model 

reducibility, or the relative importance of the most vs. least relevant degrees of freedom 

at the optimal parameter values αk , as:

Redundancy = log10
λmax el, αk,
λmin el, αk

(28)

where λmin and λmax are the eigenvalues of the Hessian of the model error function. In this 

study, the environmental parameters are the volatility h and the noise R; the error function E 
is the mean-squared prediction error over 5000 time steps of the process for each choice of 

h and R; both adaptive Mixture models have two parameters {α1, α2} describing effective 

learning rates, which are related to (1) the window length of evidence integration in the 

Sliding Windows (Eqs. 17, 18), and (2) the timescale of the exponential evidence-integration 

kernel in the Delta Rules (Eqs. 19, 20). For both model families, the Hessian is defined as 

H = ∂2E
∂α1∂α2

.

The Alignment is evaluated as the (normalized) angle between the most irrelevant 

eigenvector of H and the direction in parameter space connecting the optimal Mixture 

model to the optimal non-adaptive nested model (Fig. 3A). Let δα = α(1) − α(2), where 

α(2) = α1, α2  is the two-component vector of the optimal parameters of the Mixture model, 

and α(1) = α, α  is the vector with both components equal to the optimal parameter of the 

non-adaptive nested model. The vector δα is directed along the parameter transformation 

collapsing the best Mixture model into the best nested single-unit model. Thus, we can 

define

Alignment  = π/2 − θ(ℎ, R)
π/2 (29)

where 0 ≤ θ ≤ π is the angle between the irrelevant eigenvector and the direction of δα (Fig. 

3A). By definition, 0 ≤ Alignment ≤ 1 and is a function of volatility h and noise R. To reduce 

numerical noise, in Fig. 3, Redundancy and Alignment were averaged over 10 instances of 

the Gaussian change-point process for each volatility and noise value.
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Algorithmic complexity

The algorithmic complexity (Fig. 4 and Supplementary Fig. 2) of an inference strategy 

is defined as the average number of computational and memory operations required to 

implement it:

C(ℎ, R) = Creflex + lim
T ∞

1
T ∑

t = 1

T
Ct

A + Ct
W + Ct

R + Ct
S(ℎ, R) (30)

Here T is the total number of observations, Ct
A denotes the cost of arithmetic operations 

and Ct
W , Ct

R, and Ct
S denote the costs of memory-related operations (writing, reading, and 

storing, respectively) required to make an inference (estimation or prediction) at time t. 
We interpret the sum of these terms as an estimate of the “reflective” cost of making a 

decision, whereas Creflex can be interpreted as a purely reflexive component that represents 

the irreducible cost of an action. This reflexive cost is not known, but because it is an 

equal constant for all models, its value does not influence the conclusions of this study (see 

Supplementary Information).

We computed the reflective costs in two different and complementary analyses.

SIMPLE ALGORITHMIC IMPLEMENTATION.—In the analysis of Fig. 4, for simplicity, 

we assigned cost = 1 to each arithmetic and memory operation. Thus, in this case, the 

reflective cost reduces to the total mean number of operations per inference: 〈NA〉+〈NW〉

+〈NR〉+〈NS〉, where we use the notation 〈Ni〉 to indicate limT ∞
1
T ∑t = 1

T Nt
i, with Nt

i

number of operations of type i ∈ {A, W, R, S} required in the t-th iteration (returning 

one inference) of the algorithm implemented by each model. More precisely, for memory 

operations, we define Nt
W  as the number of variables that have to be written into memory 

(at iteration t), Nt
R as the number of times each variable has to be read from memory (at t), 

summed over all variables, and Nt
S as the number of iterations (starting at t) during which 

each variable has to be kept in memory to make future inferences, summed over all stored 

variables.

Supplementary Table 1 lists 〈NA〉, 〈NW 〉, 〈NR〉, and 〈NS〉 for the estimation problem, for 

each of the seven models derived from the exact Bayesian strategy (Fig. 1). Below we 

explain how we determined these values, and how they can be readily converted into the 

corresponding values for the prediction problem. We will only indicate operations that are 

performed by the models in every inference, because limT ∞
1
T ∑t = 1

T Nt
i = 0 for one-off 

operations.

The Evidence model returns each instantaneous piece of evidence μt = xt, and does not 

require any computation or memory operation.

The Prior model stores the prior mean μ for one iteration at every t (〈NS〉 = 1) and reads it 

from memory (〈NR〉 = 1).

Tavoni et al. Page 21

Nat Hum Behav. Author manuscript; available in PMC 2023 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The Memoryless model estimates the source position as μt = μ + α xt − μ , which requires 

〈NA〉 = 3 (1 sum, 1 subtraction, 1 multiplication), 〈NS〉 = 2(to store μ and α), and 

〈NR〉 = 3(to read μ,  twice, and α,  once ).

The Delta Rule computes μt = μt − 1 + α xt − μt − 1 , which involves the same number 

of algorithmic and memory operations as the Memoryless model estimate, with the 

addition of one writing operation per iteration (〈NW〉 = 1), because the computation is 

recursive, requiring to write μt into memory at every t to compute μt + 1. This one-time-

step dependence allows the Delta Rule to integrate the evidence over time, unlike the 

Memoryless model.

The Sliding Window computes μt = μt − 1 + α xt − (1 − d)xt − r − dxt − r − 1  (with 

α = 1
νp + r), which requires 〈NA〉 = 7 arithmetic operations (1 sum, 3 differences, 3 products); 

〈NW〉 = 2 operations to write, at every t, μt (necessary to compute the estimate at t + 1) and 

xt (necessary to compute the estimates at t + ⌊r⌋ and t + ⌊r⌋ + 1); 〈NR〉 = 6 operations to read, 

at every t, μt − 1, α, d (twice), xt−⌊r⌋ and xt−⌊r⌋−1); finally 〈NS〉 = ⌊r⌋ + 4 operations to store, 

at every t, α, d, μt (for one iteration), and xt (for a duration of ⌊r⌋ + 1 iterations). Because 

of the dependence on r(h, R) (the time scale of the Sliding-Window integration of past 

evidence that minimizes mean squared error), this model and its Mixture have complexity 

that depends on the environmental noise and volatility; for example, complexity increases 

with increasing noise to integrate observations over longer time scales, which allows more 

accurate estimates of the source. All the other models have complexity that is independent of 

noise and volatility, because they retain either no memory of past evidence (Evidence, Prior 

and Memoryless models), or only a memory of the previous estimate (Delta-Rule models), 

regardless of environmental statistics.

In the Mixture models, each of the N units performs the same computations as the 

corresponding single-unit models. Thus, the contribution to the complexity of the Mixture 

models coming from the computations taking place in the single units reduces to the 

complexity of the single Delta Rule and single Sliding Window, respectively, when N = 1 

(Supplementary Table 1, first line of the respective slots). However, the largest contribution 

to the complexity of the Mixture models comes from the computations that combine the 

estimates provided by the N units into a single inference of the source (Supplementary 

Table 1, second line of the respective slots, where the Heaviside function H2 = H[N 
− 2] vanishes for N = 1). These computations are necessary to obtain the adaptive 

probabilities p(ri|x1:t) of the N run-lengths at each iteration t of the algorithm, which are 

then used to weigh the estimates of the single units. In particular, for both Mixtures, the 

leading-order term of NA (7N2) comes from 2 summations, over N terms each, required to 

compute each of the N adaptive p(ri|x1:t) (Eq. 22): (1) the summation over N run-lengths 

j appearing at the numerator of Eq. 22 (which involves 6N−1 algorithmic operations), and 

(2) the summation necessary to compute the normalization constant (which involves N −1 

algorithmic operations). The leading-order term of 〈NR〉 (6N2) comes from reading the 

terms in the same summations. 〈NW〉 scales as ~ N (not as ~ N2) because only the N 
probabilities p(ri|x1:t) are carried forward to the next iteration of the algorithm to compute 
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the new p(ri|x1:t+1), whereas the individual addends of the summations mentioned above 

do not need to be memorized. Finally, the leading-order term of 〈NS〉 (2N2) arises because 

computation of the adaptive p(ri|x1:t) requires maintaining in memory, at every iteration, the 

N×N matrices of the transition probabilities p(ri|rj, cp) and p(ri|rj, no cp) (Eqs. 24 through 

27).

The differences between the complexities of the Mixture of Delta Rules and the Mixture 

of Sliding Windows only involve terms of order (N) and (1), and come entirely from 

the computations taking place in the single units (note that the second line in the slots of 

Supplementary Table 1 corresponding to the two Mixture models are identical).

The complexities in the prediction problem can be readily obtained from the complexities in 

the estimation problem, as follows. For the Evidence and Prior models, predictions coincide 

with estimations, thus their complexity is the same as in Supplementary Table 1. For all 

the other models, predictions are computed from estimations as μt + 1 = (1 − ℎ)μt + ℎμ. Thus, 

each prediction requires 4 more algorithmic operations than each estimation, 3 more reading 

operations (to retrieve from memory h, twice, and μ, once), and either 2 more storing 

operations for the Delta Rule and Sliding Window (to store both h and μ), or just 1 more 

storing operation for the Memoryless model (to store h, as this model already requires to 

store μ to obtain the estimate μt) and for the Mixture models (to store μ, as h is already 

stored to estimate μt).

Following exactly the same approach described above, we also computed the algorithmic 

complexity of the two additional models in Supplementary Fig. 9. The Kalman Filter 

(algorithm of [59, 60]) requires 〈NA〉 = 9, 〈NW〉 = 4, 〈NR〉 = 12, and 〈NS〉 = 2 mean 

operations per inference. A Hierarchical Gaussian Filter with nl levels (algorithm of [30, 61, 

62]) requires 〈NA〉 = 29nl − 22, 〈NW 〉 = 6nl − 3, 〈NR〉 = 31nl − 22, and 〈NS〉 = 6nl − 1. We 

used nl = 2 in our analyses.

NEURAL-SPIKING PARALLEL IMPLEMENTATION.—In Supplementary Fig. 2, we 

considered plausible neural-network implementations of the 4 arithmetic operations 

(addition, subtraction, multiplication, division). These neural circuits, called Neural-Spiking 

Parallel Systems, and their operating principles are presented in [24].

We obtained the neural cost of each arithmentic operation by computing the number of 

spikes that the circuit consumes to perform the operation. If x, y are the inputs to the circuits 

(e.g., the addends for the addition operation), these neural costs are:

Addition: 4(x + y) + 3 spikes (31a)

Subtraction: 4(x + y) + 7 spikes  (31b)

Multiplication: 2(x + y) + 8xy + 9x + 9 spikes  (31c)
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Division: 4x + 16y + 11(y + 1) * x/y + 9 spikes (31d)

We obtained the neural cost of the square root operation ( 1 + α) from the costs of the other 

4 operations using the Taylor expansion of the square root up to second order. We assigned a 

cost of 2 spikes to exponential operations, because in neural-spiking P systems any output is 

encoded in 2 spikes, and an exponential can be implemented through the integration kernel 

of a single neuron. The same encoding cost was assigned to each memory operation.

The number of spikes for each operation depends on the inputs (i.e., the specific numbers 

being summed, multiplied etc. (Eqs. 31). Thus, to compute the average cost of each 

operation, we sampled a large number (1010) of random inputs in the typical range in which 

the algorithmic inputs vary and computed the average number of spikes for each operation 

over those inputs.

Finally, to readily compare results with those of Fig. 4, we considered addition as the unit of 

cost (i.e., we normalized all costs by the average number of spikes consumed by the addition 

operation).

We emphasize that this analysis is not meant to be a calculation of the actual brain 

computational costs (that are unknown), but a proof of concept that these algorithms 

could be implemented in the brain and that, if the costs are computed based on plausible 

neural-spiking costs, the scaling of inaccuracy vs. complexity would still be power-law with 

exponent changing with noise and volatility in the same way as in Fig. 4.

Measures of model performance

We used different measures of model performance. In Figs. 4, 5, 7A, 8A, and Supplementary 

Figs. 2, 4, 9A–C we used the “inaccuracy” of the models. Inaccuracy is defined as the 

difference in mean squared error (computed over ten 5000-time-long instances of the 

Gaussian or Bernoulli change point process) between the predictions of the model and 

those of the Bayesian ideal observer, normalized by the Bayesian benchmark, for each 

combination of volatility h and noise R:

ℐ(ℎ, R) = E(ℎ, R) − EBayes(ℎ, R)
EBayes(ℎ, R) (32)

A vanishing inaccuracy implies that the inference strategy performs as well as the Bayesian 

model. In Fig. 4 and Supplementary Fig. 2, across task conditions, we fit the log-inaccuracy 

of the parametric models of Fig. 1 (with optimally chosen parameters) versus their log-

complexity and found a power-law relationship between the two quantities

ℐ(ℎ, R) = a(ℎ, R)C(ℎ, R)−b(ℎ, R) (33)

with an exponent that depends on volatility (h) and noise (R) in the underlying change-point 

process.
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To better visualize this effect, we also defined the Accuracy as the ratio

A(ℎ, R) = EBayes(ℎ, R)
E(ℎ, R) (34)

By definition, 0 ≤ (h, R) ≤ 1.

In Fig. 6 and Supplementary Fig. 5, we used the “performance” of the models, a smooth 

decreasing function of inaccuracy. For Fig. 6:

P(ℎ, R) = 2
π

1
σr

e− ℐ(ℎ, R)2

2σr2
(35)

See Supplementary Information for other examples of performance functions and associated 

results. Combining Eqs. 33 and 35, then dividing by the complexity associated with a given 

level of inaccuracy from the power-law fits, yields Eq. 3.

Psychophysics experiments

We performed two psychophysics experiments: in the first one, we tested subjects’ estimates 

in the continuous Gaussian change point-task; in the second one, we tested subjects’ 

predictions in the discrete Bernoulli change-point task. All participants gave informed 

consent and the protocol was approved by the University of Pennsylvania. Participants were 

compensated at a rate of $10 per hour.

In the first experiment, we recruited 169 subjects using the Amazon Mechanical Turk 

crowdsourcing website. The subjects performed an estimation task (which from pilot studies 

was less confusing than a Gaussian prediction task). The task was presented as a card game. 

On each trial, the subject was shown a card number (corresponding to an observation xt 

in Fig. 2) drawn from a card deck with Gaussian noise centered around the deck number. 

The deck number (corresponding to the mean μt in Fig. 2) was hidden to the subjects and 

changed at random times with a constant rate h. At the change-points, the deck number was 

resampled from a normal distribution with constant mean at 2500 (μ in Fig. 2). Non-integer 

values for card and deck numbers were approximated to the nearest integer. Subjects were 

asked to guess, on each trial, from which deck the card was being picked (i.e., to estimate 

the generative mean). The ratio between the standard deviation of the card numbers around 

their deck number and the standard deviation of the deck numbers around their mean 

represents the noise parameter R.

Before starting the game, subjects were given written instructions about the statistics of card 

and deck numbers. First, they were informed that deck numbers were picked in a 0–5000 

range, that decks in the middle of the range (around 2500) were most likely, and decks at the 

extremes (around 0 and 5000) were least likely. Second, they were informed that each deck 

had cards with numbers that were near but not always the same as the deck number. Third, 

they were informed that: (1) the randomness of the numbers in each deck, and (2) how often 

the decks switched without notice were both held constant within each block of trials but 

could change in the different blocks. The values of the randomness (noise) and the switching 
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rate (volatility) were both explicitly indicated to the subjects via thermometer screen icons 

during task performance.

All 169 subjects were exposed to 40 training trials, in which we gave them the correct 

answer to familiarize them with the task. Training was followed by 360 test trials, in which 

we did not show the correct answer. To increase the subjects’ motivation to perform as 

well as possible over many trials we provided feedback, after each trial, about the subject’s 

error relative to six different competitors (the Bayesian model, the two Mixture models, 

the Sliding-Window, Delta-Rule, and Memoryless models) in a game-like setting. The same 

type of feedback was given for all noise/volatility conditions. Each subject performed 3 

blocks of 400 trials in total (training + test). The blocks differed in terms of their values of 

noise or volatility (Fig. 7A): 85 subjects performed 3 blocks at constant volatility (h = 0.1) 

and variable noise (R = 0.01, R = 0.8, R = 4), and 84 subjects performed 3 blocks at constant 

noise (R = 1) and variable volatility (h = 0.08, h = 0.38, h = 0.8). Trials in which subjects 

input a number outside the 0–5000 range prescribed for the card decks, or responded in less 

than 100 ms, were excluded from further analyses.

In the second experiment, we recruited 53 subjects using the Amazon Mechanical Turk 

crowdsourcing website. The subjects performed the Bernoulli prediction task, in the 

following game setting. Two jars (the two sources) contained beads of different colors: 

the first jar contained white/black beads in the p/(1 − p) proportion (with 0.5 < p < 1), and 

the second jar contained black/white beads in the same proportion. On each trial, a bead 

(observation) was drawn from an unknown jar, and the jar changed from the previous trial 

with probability h. Subjects had to guess the color of the next bead. Before starting the 

game, they were exposed to examples of the task as part of the instructions and were told 

that, to predict the color of the next bead, they had to infer and track the jar that was most 

likely going to produce the next bead. Each subject performed 4 blocks of 300 trials each, 

corresponding to the following 4 conditions: (1) h = 0.05 and p = 0.98; (2) h = 0.05 and 

p = 0.86; (3) h = 0.05 and p = 0.57; (4) h = 0.4 and p = 0.86 (conditions (1), (2), (3) 

had fixed volatility and increasing noise; conditions (2), (4) had fixed noise and increasing 

volatility). Trials in which subjects responded in < 100 ms were excluded from further 

analyses. No statistical methods were used to pre-determine sample sizes but our sample 

sizes are substantially larger than those reported in previous publications [3, 5, 63] and large 

enough to ensure validity of the t-tests used in Fig. 7.

Data analysis

GAUSSIAN CHANGE-POINT TASK.—Values of adaptivity and working-memory load 

for subjects and models (Fig. 7B–E) were obtained with the following analyses:

Integration kernels.: For each subject and noise/volatility condition, we computed an 

integration kernel (linear weighting function) for each set of trials having the same lag 

from a change-point. Thus, we considered the set of subject responses Rtq  from all trials 

tq = tqcp + Δt, with Δt a fixed lag, tqcp the q-th change-point trial, and q running from 1 to M 

(number of change-points in a given block occurring at tqcp > n − Δt, see below). From the 

Tavoni et al. Page 26

Nat Hum Behav. Author manuscript; available in PMC 2023 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



response set Rtq  we estimated the subject integration kernel for the lag Δt, by finding the 

weights {Kp, K0, …, Kn} of the multiple linear regression model

Rtq = Kpμ + ∑
τ = 0

n
Kτxtq − τ + ϵtq ; q = 1, …, M (36)

Kp (the weight given to the prior μ) and K0, …, Kn (the weights given to the n + 1 

most recent observations) were obtained using the Matlab lsqlin function, which minimizes 

the sum of squared residuals ∑qϵtq
2  for the system of linear equations, with constraints 

Kp + ∑τ = 0
n Kτ = 1 and 0 ≤ Ki ≤ 1, i = {p, 0, …, n}. We used n + 1 = 15 predictors (in 

addition to the prior) for the results in Fig. 7. Our conclusions were robust against changes 

in the number of predictors (Supplementary Fig. 7). We estimated one integration kernel 

(set of weights) for each subject, block, and lag Δt. We excluded only a few cases in which 

the linear regression model had fewer equations than predictors (because of an insufficient 

number of change-points at tqcp > n − Δt), yielding underconstrained weights.

Integration time scales.: For each integration kernel, we computed the normalized 

cumulative weight of the most recent τ observations

C(τ) =
∑i = 0

τ Ki

∑i = 0
n Ki

(37)

and the time scale at which this normalized cumulative weight reaches a fixed threshold θ

τθ = min τ ∣ C(τ) > θ (38)

τθ represents an integration time scale. For the results of Fig. 7, we used θ = 0.8, so that τθ 
is the time scale that explains 80% of the subject’s integration over recently observed data. 

Conclusions were in general robust against changes in the threshold θ (Supplementary Fig. 

7). We computed one value of τθ for each integration kernel; i.e., for each subject, block, 

and lag Δt. We estimated the standard error on each τθ by bootstrapping the regression 

model, Eqs. 36. We used 200 bootstrap samples of the form b = Rti1, xi1 , …, Rtim, xim , 

with xik = μ, xtik, …, xtik − n , i1, …, im a random sample (with replacement) of the integers 1 

through M (see [64] for more details about the bootstrap procedure).

Adaptivity.: For each subject and each block of trials, we computed adaptivity as the 

variance of τθ across all lags 0 ≤ Δt ≤ n (because the integration time scale τθ can not 

be larger than the time scale n in the linear regression model). This metric of adaptivity 

quantifies how much the integration time scale changes as more and more card numbers 

are observed from the same card deck, in a given block of trials. To capture changes 

in individual adaptivity values across noise/volatility levels, we normalized each subject’s 

adaptivity in any given condition by the maximum adaptivity for the same subject across the 

three conditions, then we averaged the normalized values across subjects. The few subjects 
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(3 for the variable noise conditions, 1 for the variable volatility conditions) for whom 

adaptivity was zero in all the three conditions were excluded from the analyses, because the 

normalized adaptivity was undefined. Standard errors on the average normalized adaptivity 

were computed as SEM = ∑i
∂ norm. adaptivity

∂τθ, i
2

SE τθ, i
2 with the sum running over all 

the τθ obtained for different subjects and lags Δt.

The theoretical estimates of adaptivity were obtained by considering the most-efficient 

model in each tested condition (Fig. 7A) and using the model simulated outputs, under the 

same sequences of observations shown to the subjects, in place of Rtq in Eq. 36; τθ and 

normalized-adaptivity values were then obtained in the same way as the subject’s values. For 

the main bars in Fig. 7B, the most-efficient model was defined as the simplest model in our 

hierarchy with inaccuracy ℐ < 0.1 (as in Fig. 5B); theoretical predictions were qualitatively 

conserved across a relatively wide range of tolerance levels (e.g., between 0.02 and 0.2, see 

Fig. 7B, dashed gray lines).

Working-memory load.: For each subject or most-efficient model and each block of trials, 

we computed working-memory load as the maximum τθ across all possible lags 0 ≤ Δt ≤ 

n; i.e., the maximum integration time scale (relative to the threshold θ) used for any given 

condition of noise and volatility. We then normalized this value by the maximum working-

memory load across conditions for each subject and averaged the normalized values across 

subjects. Error bars were computed as for adaptivity.

The probabilities that each of the models of Fig. 1 generated the data of a randomly selected 

subjects (Fig. 7FG) were obtained with the following method:

Model fitting.: We assumed that a given subject in a given condition made inferences μt
(s)

using one of the models of Fig. 1 with Gaussian decision noise: μt
(s) = μt

(m) + ηt, where ηt 

= ;(0, σnoise) and μt
(m) are the model’s deterministic inferences. For each subject, model 

(M), and condition, we identified the values of the model parameters θ maximizing the 

log-likelihood of the subjects’ responses under the model:

log p μ1:T
(s) ∣ M, θ = − ∑

t = 1

T μt
(s) − μt

(m) 2

2σnoise 
2 − T  log σnoise  − T

2 log 2π (39)

Parameters are: σnoise for the Evidence, Prior and Bayesian models; σnoise and one learning 

rate for the single Delta-Rule, single Sliding-Window, and Memoryless models; σnoise and 

two learning rates for the Mixture models. We used an upper bound on decision noise of 

500 (1/10 of the maximum response range and approximately the mean plus one standard 

deviation of the models’ residuals in the training phase). Higher upper bounds would reduce 

overall model distinguishability.

To generate Supplementary Fig. 9, we included the Kalman Filter (KF) and a 2-level 

Hierarchical Gaussian Filter (HGF) in the analysis. Parameters for the KF are: σnoise and 

Tavoni et al. Page 28

Nat Hum Behav. Author manuscript; available in PMC 2023 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the process noise (i.e., the variance of the diffusion process) [59, 60]. Parameters for the 

HGF are: σnoise, the prior mean and variance for each level, two parameters controlling the 

process noise of the first level, and one parameter controlling the process noise of the second 

level [30, 61, 62].

Model log-evidence values.: The maximum log-likelihood values were used to compute the 

BIC approximation of the log-evidence for each model and subject:

log p μ1:T
(s) ∣ M = 2 log p μ1:T

(s) ∣ M, θ − k log T (40)

with k the number of parameters.

Model probabilities.: We aggregated the model log-evidence values across subjects using 

the method developed in [65], which uses a variational Bayesian approach to estimate the 

parameters of a Dirichlet posterior distribution over model probabilities. Fig. 7FG shows 

the expected model probabilities under the estimated posterior distribution. Unlike other 

methods (such as the Group Bayes Factor), this approach does not assume that all the 

subjects’ data are generated by the same model and is robust to the presence of outliers.

Confusion analysis.: The confusion matrices of Supplementary Fig. 8 were generated 

as follows. (1) We simulated each of the eight models of Fig. 1 using parameter values 

(including decision noise) fit to the subjects’ data. For each model, we run a number of 

simulations equal to the number of subjects, with each simulation composed of the same 

number of trials as in the experiment. (2) We fit each of the eight models to data from 

each simulation. (3) We computed the probabilities p(x|y) that a given model x best fit the 

data of a randomly chosen simulation generated with model y, applying the same Bayesian 

model-selection method for group-level analyses that we used in Fig. 7FG.

BERNOULLI CHANGE-POINT TASK.—We identified the best-fitting model for each 

subject in two ways. In Fig. 8, we defined “best-fit” as the model that minimized the sum of 

squared residuals for a given subject. This definition is justified by the non-parametric nature 

of the three models considered for this task (Fig. 8A); p(model) in Fig. 8BC is the fraction 

of subjects that were best-fit by each of the models. In Supplementary Fig. 10, we used the 

same Bayesian model-selection criterion described for the Gaussian change-point task, after 

introducing decision-noise (parametrized by σnoise) in model inferences.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. A hierarchy of cognitive functions maps to a hierarchy of inference strategies.
Two nested families of inference strategies of decreasing algorithmic complexity can be 

derived from the exact Bayesian approach by progressively reducing requirements of 

memory and adaptivity (see also Supplementary Fig. 1). We illustrate this approach in the 

context of inference from noisy observations (blue dots) of a latent variable μt (red dashed 

lines). See text for model descriptions and Methods for model details. The decrease in 

algorithmic complexity over this hierarchy of strategies mirrors a corresponding decrease in 

cognitive load (legend on the right-hand side).
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Figure 2. Gaussian change-point processes.
Observations xt (blue dots) are generated from a source positioned at μt (dashed red line) 

with Gaussian noise (SD = σ). The source is hidden to the observer and undergoes change-

points at random times with probability h (volatility). At the change-points, μt is resampled 

from a Gaussian distribution centered at μ (dashed black line, stable over time) and with SD 

= σ0 = 1. Different panels show processes with different volatility (increasing from left to 

right) and noise R = σ/σ0 (increasing from bottom to top): (A): h = 0.06, R = 0.45; (B): h = 

0.24, R = 0.45; (C): h = 0.06, R = 0.05; (D): h = 0.24, R = 0.05.
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Figure 3. Adaptive models reduce to calibrated simpler strategies when variability is low or high.
(A): Computation of the Alignment. (Left) Two-dimensional parameter space of the 

Mixture models with two units defined by learning rates α1 and α2, and the embedded 

unidimensional space of the nested single-unit models (diagonal line α1 = α2). The optimal 

Mixture model and optimal single-unit model (black dots) are indicated along with the 

parameter deformation leading from one to the other (gray line). (Right) Relevant and 

irrelevant parameter deformations that maximally or minimally change the prediction error 

moving away from the optimal adaptive Mixture model. Alignment is defined as the 

normalized angle θ between the irrelevant deformation and the direction to the best non-

adaptive single-unit model. The prediction error used to compute Alignment is estimated 

over 5000 time steps of the process for each h/R values. (B): Redundancy of the adaptive 

Mixture models (left: Mixture of two Sliding Windows; right: Mixture of two Delta Rules) 

for a range of volatility and noise values in a change-point detection task (Fig. 2). The 
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same error function as in (A) is used to compute Redundancy. Slices through the red 

inset windows are shown to the left and right (red lines: 4th-order polynomial fits). (C): 

Alignment of the irrelevant parameter deformation towards the non-adaptive nested single-

unit model, plotted as in B. (D): Probability distribution of Alignment values conditioned on 

Redundancy, sampled over tested volatility and noise values.
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Figure 4. Diminishing returns from increasing complexity.
(A): Algorithmic complexity (Eq. 30) for models in Fig. 1. The exact Bayesian model has 

infinite complexity by our measure and is not shown. (B): Inaccuracy (Eq. 32) decreases 

as a power law in the complexity (Eq. 30), shown here for volatility and noise levels h 
= 0.1 and R = 1. Inset: linear fit on a log-log scale. See also Supplementary Fig. 3A–C 

for goodness-of-fit statistics. The exponent in the power law varies with (C) noise and 

(D) volatility. Inaccuracy is computed over ten 5000-time-long instances of the change 

point process. (E): Scaling of inaccuracy and accuracy (Eq. 34) with complexity for fixed 

volatility and varying noise (Eq. 33). Color code and scaling exponents for each condition 

taken from panel (C). Horizontal black lines indicate the threshold for performance within 

10% of the Bayesian optimum. Intercept with the scaling curve for each task condition 

indicates the minimum model complexity required to reach the performance threshold. (F): 
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Same as panel (E) for fixed noise and varying volatility. Color code and scaling exponents 

taken from panel (D).
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Figure 5. Simple inference strategies are usually sufficient.
The color map shows the simplest strategy achieving performance within 10% of the 

Bayesian optimum (inaccuracy < 0.1) for each combination of volatility and noise in the 

prediction (A) and estimation (B) tasks. See also Supplementary Fig. 4.
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Figure 6. Optimal cognitive engagement.
The colormaps show log10 opt (Eq. 4) as a function of volatility and noise, for the 

prediction (A) and the estimation (B) tasks; σr = 0.1. High cognitive engagement is optimal 

only at low volatility and intermediate noise.
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Figure 7. Subjects switch between simple and complex strategies as predicted by the theory in 
the Gaussian estimation task.
(A): Map of the volatility/noise conditions probed in this experiment compared to conditions 

probed in previous experiments (see legend). Background colors indicate the simplest model 

with inaccuracy ℐ < 0.1 (i.e., the most efficient model for tolerance = 0.1) at each point 

of the volatility/noise plane for the estimation task performed by the subjects. (B) and (C): 

Mean normalized adaptivity ± SEM (small error bars) for the theoretical most-efficient 

model (B) and 82 human subjects (C) performing the estimation task for each of the 

three noise (R)/volatility (h) conditions. Normalized adaptivity values were computed by 

fitting multiple linear regression models to data from 360 trials per subject and volatility/

noise condition (details in Method). SEM were obtained by propagating the errors on the 

integration time scales estimated from the linear regressions (Methods). For the colored 

bars, the most-efficient model was defined as the simplest model with ℐ < 0.1; dashed gray 

lines represent the range of values obtained using different tolerances (0.02 – 0.2; note the 
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broad range for high noise). Thin error bars in C represent the standard deviation of the 

normalized adaptivity across subjects. Both the theory and data showed peak adaptivity at 

intermediate noise (left, one-tailed t-test, p = 7 · 10−12 for the intermediate vs. low and 

p = 0.0038 for the intermediate vs. high noise comparisons) and low volatility (right, p = 

10−6 for the low vs. intermediate and p = 10−28 for the low vs. high comparisons). (D) and 

(E): Mean normalized working-memory load from theory (D) and 82 human subjects (E) 

performing the estimation task for each of the three noise/volatility conditions (plotted as 

in (B) and (C)). For both the theory and the data, the working-memory load is smaller at 

low noise (one-tailed t-test, p = 4·10−12 for both low vs. intermediate and low vs. high noise 

comparisons) and decreases with increasing volatility (one-tailed t-test, p = 5 · 10−13 for low 

vs. intermediate, p = 2·10−24 for low vs. high, p = 3·10−5 for intermediate vs. high volatility 

comparisons). (F) and (G): Probabilities that each of the eight models of Fig. 1 (color code 

as in (A)) generated the data of a randomly chosen subject, in each noise (F) and volatility 

(G) condition. Bars indicate results for the best-performing subjects (with inaccuracy ℐ < 

75th percentile across all tested conditions); dotted lines represent the values obtained for all 

subjects.
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Figure 8. Subjects switch between simple and complex strategies as indicated by the theory in the 
Bernoulli prediction task.
(A): Theoretical predictions for this task. Three models of decreasing complexity are 

considered: the Bayesian model, the constant Prior, and the Leaky-Accumulator model. 

The colormap indicates the simplest model with inaccuracy ℐ < 0.1 (i.e., the most efficient 

model for tolerance = 0.1) at each point of the volatility/noise plane. Three conditions 

of increasing noise (R = 0.04, R = 0.28, R = 0.86, red circles) and two conditions of 

increasing volatility (h = 0.05, h = 0.4, red diamonds) were tested in the experiment. (B) 

and (C): Probabilities that each of the three models (color code as in (A)) minimized the 

sum of squared residuals of a randomly chosen subject, in each noise (B) and volatility (C) 

condition. Data from 53 subjects, 300 trials per subject and condition.
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