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Abstract 

Objectives:  Evaluating the diagnostic efficiency of deep learning models to diagnose vertical root fracture in vivo on 
cone-beam CT (CBCT) images.

Materials and methods:  The CBCT images of 276 teeth (138 VRF teeth and 138 non-VRF teeth) were enrolled and 
analyzed retrospectively. The diagnostic results of these teeth were confirmed by two chief radiologists. There were 
two experimental groups: auto-selection group and manual selection group. A total of 552 regions of interest of teeth 
were cropped in manual selection group and 1118 regions of interest of teeth were cropped in auto-selection group. 
Three deep learning networks (ResNet50, VGG19 and DenseNet169) were used for diagnosis (3:1 for training and test-
ing). The diagnostic efficiencies (accuracy, sensitivity, specificity, and area under the curve (AUC)) of three networks 
were calculated in two experiment groups. Meanwhile, 552 teeth images in manual selection group were diagnosed 
by a radiologist. The diagnostic efficiencies of the three deep learning network models in two experiment groups and 
the radiologist were calculated.

Results:  In manual selection group, ResNet50 presented highest accuracy and sensitivity for diagnosing VRF teeth. 
The accuracy, sensitivity, specificity and AUC was 97.8%, 97.0%, 98.5%, and 0.99, the radiologist presented accuracy, 
sensitivity, and specificity as 95.3%, 96.4 and 94.2%. In auto-selection group, ResNet50 presented highest accuracy and 
sensitivity for diagnosing VRF teeth, the accuracy, sensitivity, specificity and AUC was 91.4%, 92.1%, 90.7% and 0.96.

Conclusion:  In manual selection group, ResNet50 presented higher diagnostic efficiency in diagnosis of in vivo VRF 
teeth than VGG19, DensenNet169 and radiologist with 2 years of experience. In auto-selection group, Resnet50 also 
presented higher diagnostic efficiency in diagnosis of in vivo VRF teeth than VGG19 and DensenNet169. This makes it 
a promising auxiliary diagnostic technique to screen for VRF teeth.
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Introduction
Vertical root fracture (VRF) is defined as a complete or 
incomplete longitudinal fracture plane that can initiate at 
any level of the root, usually in a buccolingual direction 
and is defined as one of the crack types [1–3]. VRF could 
occurred in both endodontically and non-endodontically 
treated teeth. In the Chinese population, with over 40% 
of the fractures occurring in non-endodontically treated 
teeth [4–6]. The treatment of VRF depends on a precise 
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diagnosis and can vary from partial resection of the root 
to extraction [3]. However, VRF could presents subtle 
signs and symptoms unnoticed by the clinicians until 
major periapical changes occur [6, 7]. The characteristics 
of VRFs may lead to missed diagnosis, delay in treatment 
and made VRF a diagnostic dilemma in dental clinical.

The signs and symptoms are usually nonspecific for 
VRF in clinical [3]. Hence, distinguishing VRF from pul-
pal necrosis and/or periodontal disease is often challeng-
ing [3, 6]. The radiographic techniques such as periapical 
radiographs were developed to diagnose VRF. However, 
due to the overlap of adjacent structures, 2-dimensional 
radiographic images are limited and fracture lines are 
only visible when the X-ray beam is parallel to the frac-
ture plane or when root fragments are clearly separated 
[8]. Recently, cone beam computed tomography (CBCT) 
has become widely used in dentistry and could be used 
in diagnosis of VRF [9]. Nevertheless, according to dif-
ferent authors, the diagnostic efficiency of CBCT is still 
lack of stability (sensitivity and specificity with 53–98% 
and 80–98%, respectively) because the width of frac-
tures varies [10]. Most fractures that cause symptoms 
was reported with width ranging from 60 to 770 μm [11]. 
The voxel size of currently used CBCT system range from 
75 μm to 150 μm. When the width of fractures close to 
the voxel size CBCT system has. The factures on CBCT 
images got blurred, and the diagnosis of fractures became 
challenging and rely on the experience of radiologist [10, 
12]. A method with diagnostic efficiency like experienced 
radiologist for VRF diagnosis using CBCT is needed.

Deep learning (DL) is a subset of artificial intelligence 
(AI). The term “deep” refers to complex neural networks 
with multiple neural layers between the input and output 
layers [13]. Of these deep learning neural networks, Con-
volutional neural networks (CNNs) are the most widely 
used in medical image analysis, it could achieve the same 
outcome as medical professionals within a much shorter 
time frame [14–17]. It employs a convolutional process 
to learn features contained within data and could extract 
abundant pixel level information of images [18]. In den-
tistry, CNNs could be used in tooth morphological iden-
tification [18, 19], disease classification [20–22], aesthetic 
evaluation [23]. Attributing to the features of CNNs, 
they could be prospective technique for VRF diagno-
sis. Fukuda et  al. [24] used a CNN-based deep learning 
model (DetectNet) to detect VRFs on panoramic radiog-
raphy images. The inclusion criteria is clearly identified 
VRF teeth on panoramic images. However, due to the 
2-dimensional imaging of panoramic radiography, the 
information of images CNNs could extract is limited and 
the diagnostic efficiency of CNN using panoramic radi-
ography is unsatisfactory. CBCT, due to its 3-dimensional 
and high-resolution imaging, could provide much more 

detailed image information of tooth than panoramic radi-
ography. So, CNNs based CBCT image analyzing could 
be adopt for VRF diagnosis. However, as far as we know, 
there is no research using neural network to diagnose 
in vivo VRF on CBCT images.

This study aimed to investigate the feasibility of CNN 
models in diagnosing non-endodontically treated VRF 
teeth on CBCT images in vivo. Moreover, an auto-tooth 
selection model was built before the CNN models to 
explore the feasibility of automatically diagnosing and 
screening to VRF using AI system.

Materials and methods
Patients and datasets
A radiology graduate student searched the picture 
archiving and communication system (PACS) for CBCT 
images between 2019 and 2021. The inclusion crite-
ria for CBCT images of VRF teeth were as follows: (a) 
non-endodontically treated tooth; (b) images with good 
quality and without artefacts such as motion artefacts 
or beam harden artefacts. (c) fractures were recorded if 
a hypodense line was presented on at least two consecu-
tive axial images. For CBCT images of non-VRF teeth, 
three types of teeth were randomly included: (a) apical 
periodontitis teeth caused by caries; (b) healthy teeth; 
(c) periodontitis teeth with horizontal bone loss. Before 
final inclusion, the VRF or non-VRF teeth were reevalu-
ated and confirmed by two radiologists with more than 
10 years of experience (radiologist A and radiologist B). 
After three months, the same radiologists reconfirm 
the included teeth, and intra-examiner agreement was 
analyzed.

In total, 216 patients (126 males and 90 females; 
mean age, 52.03 ± 14.29  year; range, 19 ~ 86  years) were 
included in the study. Of them, 138 VRF teeth were con-
firmed and 138 non-VRF teeth were confirmed. The 
approval from the Ethics Committee of the Nanjing 
Stomatological Hospital, Medical School of Nanjing Uni-
versity [2018NL-044(KS)] was obtained prior to perform 
this retrospective study and the requirement for written 
informed consent was waived by the Ethics Committee.

All CBCT images were performed using NewTom 
VG scanner (QR SRL, Verona, Italy) with a voxel size of 
0.15 mm, 110 kV, 3.6–3.7 mA, field of view of 12 × 8 cm 
and acquisition time of 5.4 s.

Image processing
Region of interest (ROI) selection
There were two experimental groups: auto-selection 
group and manual selection group. Two experimental 
groups used the same patients’ images. For auto-selection 
group, a radiologist with 5 years of experience manually 
cropped ROI of dentition. For each VRF and non-VRF 
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tooth, two axial dentition images were cropped. The den-
tition images were used as data to tooth selection model. 
For manual selection group, the same radiologist manu-
ally cropped the ROI of VRF and non-VRF teeth which 
are confirmed by radiologist A and radiologist B using 
the same dentition images (Fig. 1).

Tooth selection model
The tooth selection model were built through 5 steps 
(Fig. 2): (a) The dentition images were firstly got Gaussian 
blurred to reduce image detail [25]. (b) The blurred den-
tition images were self-adaption binaryzated to get gray-
scale foreground dentition images using modified Otsu 
algorithm [26]. The open  operation and close operation 
were also performed to get the grayscale foreground 
dentition images smooth. This procedure is to select the 
dentition image to get the shape of foreground dentition. 
(c) The skeleton of grayscale foreground dentition image 
were extracted using K3M algorithm and the extracted 
skeleton were used as moving line of selection boxes [27]. 
(d) 170 × 170 pixels tooth selection boxes were placed 
on the moving line every 60–80 pixels and the tooth in 
selection boxes were cropped along the outline of selec-
tion boxes using algorithm (The tooth selection model 
was built and performed in Python 3.6).

To compare the diagnostic efficiency of manual selec-
tion group with auto-selection group. The teeth in man-
ual selection group were identified and the corresponding 

teeth cropped through tooth selection model were 
selected as the dataset of auto-selection group. Because 
the selection box is larger than the manual selection ROI, 
a tooth may be located at two or three continue selection 
boxes. So, for the VRF or non-VRF tooth in each denti-
tion image, one or two tooth images were cropped.

Imaging preprocessing
For manual selection group, A total of 552 cropped 
CBCT images (276 VRF teeth images and 276 non-VRF 
teeth images) were finally obtained. For auto-selection 
group, A total of 1118 cropped CBCT images (555 VRF 
teeth images and 563 non-VRF teeth images) were finally 
obtained.

Before putting images into CNN models, a sharpen 
algorithm (gray level transformation [28]) was performed 
to the images in both manual selection group and auto-
selection group. The processed images were used as the 
datasets of CNN models.

CNN models
When building the CNN models, a series of enhance-
ments were performed on the input images to obtain 
more data by reducing overfitting of the model. These 
enhancements included random horizontal and vertical 
flipping, random image rotation within 90° and random 
brightness, contrast and saturation adjusting. After pro-
cessing, the images was used as input data for the CNN 
models.

Fig. 1  The workflow of the deep learning framework. Firstly, the same tooth on dentition images were manually selected in manual selection 
group and auto-selected using tooth selection model in auto-selection group. The images in two groups were then preprocessed in the same way 
and used as datasets to three CNN models. Finally, the three CNN models output the diagnostic result of manual selection group and auto-selection 
group



Page 4 of 9Hu et al. BMC Oral Health          (2022) 22:382 

The CNN models were implemented on hardware with 
following specification: intel processor i7, 64  GB RAM 
with NVIDIA Tesla V100 GPU, 1 TB hard disk for imple-
menting. Three CNN models were used to classify VRF 
teeth from teeth without VRFs based on CBCT images. 
The CNN models: VGG19, DenseNet169, ResNet50, 
were used as a backbone model pretrained on the Ima-
geNet database [29–31]. A simple workflow scheme for 
this process is shown in Fig. 1. Three CNN models were 
trained in the same training sample (75% as training data-
sets and 25% as testing datasets). All training sessions 
were carried out using deep learning package Pytorch 
1.11 (pytorch.org/) of Python software. The batch size 
was set to 16 and the learning rate to 5e-3, decreasing by 
a factor when no further decrease was observed in the 
validation dataset. We have selected the models with the 
best accuracy in the validation set for each algorithm. 
Fivefold cross-validation was used to establish the CNN 
models. The result was the mean of the fivefold cross-val-
idation for the validation group. The diagnostic efficiency 
of manual selection group and auto-selection group were 
compared.

Diagnosis of VRFs on CBCT images by radiologist
After development of the AI models were complete, A 
radiologist with 2  years of experience (radiologist C) 

manually diagnose VRFs using the same CBCT images in 
manual selection group. The radiologist did not take part 
in the model training process and was blinded to patient 
inclusion. Radiologist C was also unaware of patient 
names, clinical and imaging findings, or final diagnosis. 
After three months, radiologist C re-diagnose VRFs using 
the same CBCT images in manual selection group to 
analyze intra-examiner agreement.

Statistics
The diagnostic accuracy, sensitivity, specificity and posi-
tive predictive value (PPV) of the three CNN models 
were calculated in manual selection group, auto-selection 
group and radiologist C. The receiver operating char-
acteristic (ROC) curves and the area under the curve 
(AUC) of the three networks in manual selection group, 
auto-selection group were constructed and calculated 
using Pandas package (pandas.pydata.org/) of Python 
software. Kappa analysis was used to assess inter- and 
intra-examiner agreement. Statistical analysis was con-
ducted using the SPSS 23.0 software (IBM SPSS Statistics 
Base Integrated Edition 23, Armonk, NY, USA).

Fig. 2  The schematic diagram of tooth selection model. A shows the original dentition images. B shows the dentition images got Gaussian 
blurred. The detail in image got reduced. C shows binary dentition images. the shape of dentition got extracted. D shows the moving line has been 
extracted and placed on the original dentition image in corresponding position. E shows the identification boxes has been placed on the dentition 
every 60–80 pixels. F is the cropped image original image along the outline of identification box
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Result
Diagnostic performance of manual‑tooth selection group 
and radiologist
The classification performances of three networks in 
manual selection group and radiologist C were shown 
in Table  1. The accuracy of ResNet50, VGG19 and 
DenseNet169 in manual selection group was 97.8%, 
96.3%, 94.9% and 95.3%, respectively (Table  1). The 
accuracy of radiologist C was 95.3%. The ROC curves 
of the three networks were shown in Fig. 4. The AUC of 
Resnet50, VGG19 and DenseNet169 to diagnose VRF 
teeth were 0.99, 0.97 and 0.98, respectively (Fig. 3).

Diagnostic performance of auto‑selection group
The accuracy, sensitivity and specificity, PPV of three 
CNN models in auto-selection group were shown in 
Table  2. ResNet50 had the highest diagnostic accuracy 
and sensitivity (91.4% and 92.1%) for diagnosing VRF 
teeth.

Inter and intra‑examiner agreement
Inter and intra-examiner reproducibility (kappa value) 
were shown in Table  3. Radiologist A and radiologist B 
had almost perfect inter- and intra-examiner agreement 
for confirming the VRF teeth, and the radiologist C had 
substantial intra-examiner agreement for diagnosing the 
VRF teeth.

Discussion
VRFs in non-endodontically and endodontically treated 
teeth share common factors, such as age-related micro-
structural changes, the specific anatomies of the suscep-
tible roots, biting pain, deep periodontal pockets and 
periodontal or periradicular radiolucency [6]. Moreover, 
the diagnostic result of endodontically treated teeth for 
radiologists will be affected by beam-hardening artefacts 
generated by gutta-percha. So, in this study, the VRF 
teeth included are non-endodontically treated.

Johari et  al. [32] used feature extraction based proba-
bilistic neural network to detect VRF on CBCT images 
ex  vivo. It achieved accuracy, sensitivity and specific-
ity as 96.6%, 93.3% and 100%, respectively. However, the 
root fractures in the study were artificially generated. The 

structure of true fractures could be more complicated 
[33]. Moreover, because of the motion artefacts gener-
ated when living objects breathing and heart-beating, and 
increased when the X-ray beam passing through a greater 
volume of hard and soft tissues in the body [10], the accu-
racy of CBCT in detecting VRFs was significantly lower 
compared to the ex vivo accuracy in most situation [10].

Although CBCT is a feasible radiographic technique 
to detect VRF, but the diagnostic efficiency of CBCT for 
VRF diagnosis could be unstable and affected by many 
factors, such as radiologist’s experience, width of frac-
ture, CBCT system used, settings in scanning and recon-
struction [9, 10, 34–39]. Of these factors, radiologist’s 
experience could be a crucial one. A CBCT system with 
80 μm voxel size showed blurry images of VRF teeth with 
fracture widths of approximately 100 μm [40]. Moreover, 
the artefacts in in vivo CBCT scanning could also affect 
the diagnostic efficiency for a radiologist or clinician to 
diagnose VRF teeth. The radiology graduated student 
showed a significantly lower accuracy in diagnosis of VRF 
teeth than experienced radiologist [12]. In this study, the 
diagnostic efficiency of CNNs was compared with radiol-
ogist with 2 years of experience. Resnet50 achieved rela-
tively higher accuracy, sensitivity and specificity than the 
radiologist. It could provide a stable auxiliary diagnosis 
tool for clinicians.

Of three CNNs models, the ResNet model could 
employ the entire image and is capable of retaining image 
information more completely than many CNN networks 
[31]. It exhibits high diagnostic efficiency for medi-
cal imaging analyzing [41–44]. In our study, Resnet50 
achieved the best diagnostic efficiency in manual tooth 
selection group with accuracy, sensitivity and specificity 
as 97.79%, 97.06% and 98.53% respectively. Resnet 50 also 
showed a good stability in detection of teeth with compli-
cated symptoms (such as non-VRF tooth with large bone 
loss as VRF teeth usually have, VRF tooth with less bone 
loss, VRF without bone loss, VRF tooth with subtle frac-
tures [12]) (Fig. 4).

Due to nonspecific signs and symptoms, VRF tooth 
may got miss diagnosed [7]. Root fractures could progress 
to get gingival sulcus inflammatory and periodontium 
destructed, and may finally result in alveolar bone loss in 
almost all teeth [45]. An auto-diagnosis model could help 
clinician be aware of some non-symptom teeth. In our 
study, auto-selection group achieved accuracy, sensitivity 
and specificity as 91.37%, 92.09% and 90.65% respectively. 
We noticed the diagnostic efficiency of auto-selection 
group is lower than manual selection group. The center 
of auto-selection area may deviate so the tooth could not 
be located at the center of the cropped CBCT images. 
Deviated attention center could disturb CNN models 
analyzing and therefore cause misdiagnosis. However, 

Table 1  The diagnostic performance of three CNN models in 
manual selection group and radiologist

Accuracy (%) Sensitivity 
(%)

Specificity 
(%)

PPV (%)

Resnet50 97.8 97.0 98.5 98.5

Densenet169 96.3 94.1 98.5 98.5

VGG19 94.9 92.7 97.0 96.9

Radiologist 95.3 96.4 94.2 94.3
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Fig. 3  ROC curve of three CNN models in two experimental groups. ResNet50 presented the highest AUC in both manual selection group and 
auto-selection group with AUC of 0.99 and 0.96, respectively
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this phenomenon will become less as the sample size 
is getting larger [46].

This study still has several limitations. Firstly, the VRF 
data included needs to be further expanded to get a 
more stable result for neural network models. Secondly, 
the teeth in our study are non-endodontically treated. 
Artefacts generated by root filling materials and metal 
post on CBCT images could also affect the diagnostic 
accuracy for VRF. The diagnostic efficiency for CNNs 
to endodontically treated VRF teeth on CBCT images 
could be explored in the future. Thirdly, auto-selection 
group showed a lower accuracy than manual selection 

group. The auto-selection algorithm may need to be fur-
ther optimized. Fourthly, the VRF teeth included in our 
study are observable by experienced radiologist. Hidden 
fracture unobservable on CBCT images may need to be 
included for future clinical applications.

Table 2  The diagnostic performance of three CNN models in 
auto-selection group

Accuracy 
(%)

Sensitivity 
(%)

Specificity 
(%)

PPV (%)

Resnet50 91.4 92.1 90.7 90.8

Densenet169 87.1 80.6 93.5 92.6

VGG19 87.8 89.2 86.3 86.7

Table 3  Repeatability analysis of VRF teeth confirming and 
diagnosis

Radiologist A and B: more than 10 years of experience;

Radiologist C: 2 years of experience

Kappa Value Interpretation

Inter-examiner agreement
(radiologist A and B)

1 Almost perfect
agreement

Intra-examiner agreement
(radiologist A)

1 Almost perfect
agreement

Intra-examiner agreement
(radiologist B)

1 Almost perfect
agreement

Intra-examiner agreement
(radiologist C)

0.711 Substantial
agreement

Fig. 4  Teeth in dataset with complex symptoms. A1, B1 and C1 are VRF teeth. A2, B2 and C2 are non-VRF teeth. A1 shows an arch low-density area 
(bone loss) at one side of the fracture on the CBCT image. A2 also shows an arch low-density area (bone loss) at the lingual side of distal root on the 
CBCT image. However, this tooth is a non-VRF tooth. B1 and B2 show a low-density area around the mesial root on the CBCT image. However, B1 
is VRF tooth and B2 is non-VRF tooth. C1 shows a subtle fracture. C2 shows a tooth with horizontal bone loss. Low-density area is large and around 
the tooth. All teeth above were correctly diagnosed in manual selection group
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Conclusion
In manual selection group, ResNet50 presented higher 
diagnostic efficiency in diagnosis of in  vivo VRF teeth 
than VGG19, DensenNet169 and radiologist with 2 years 
of experience. In auto-selection group, Resnet50 also pre-
sented higher diagnostic efficiency in diagnosis of in vivo 
VRF teeth than VGG19 and DensenNet169. This makes 
it a promising auxiliary diagnostic technique to screen 
for VRF teeth.
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