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Summary

For testing with paired data (for example, twins randomized between two treatments), a simple 

test is the sign test, where we test if the distribution of the sign of the differences in responses 

between the two treatments within pairs is more often positive (favoring one treatment) or negative 

(favoring the other). When the responses are binary, this reduces to a McNemar-type test, and 

the calculations are the same. Although it is easy to calculate an exact p-value by conditioning 

on the total number of discordant pairs, the accompanying confidence interval on a parameter of 

interest (proportion positive minus proportion negative) is not straightforward. Effect estimates 

and confidence intervals are important for interpretation because it is possible that the treatment 

helps a very small proportion of the population yet gives a highly significant effect. We construct 

a confidence interval that is compatible with an exact sign test, meaning the 100(1 − α)% interval 

excludes the null hypothesis of equality of proportions if and only if the associated exact sign 

test rejects at level α. We conjecture that the proposed confidence intervals guarantee nominal 

coverage, and we support that conjecture with extensive numerical calculations, but we have 

no mathematical proof to show guaranteed coverage. We have written and made available the 

function mcnemarExactDP in the exact2x2 R package and the function signTest in the asht 

R package to perform the methods described in this paper.
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1 | INTRODUCTION

Consider a matched pair study of some disease where one member of each pair gets a new 

therapy and one member gets standard therapy. Let the response for each pair be either: new 

therapy is preferred (1), standard therapy is preferred (−1), or no preference (0). In deciding 

which therapy is better for more people, it is reasonable to condition on the pairs that had a 

preference, and the resulting test is a sign test. If the individual responses within each pair 

are binary, one popular version of such a conditional test is McNemar’s test. The sign test 

is based on a conditional statistic which is binomial, so it is straightforward to get exact 

p-values and compatible exact confidence intervals on the conditional parameter, where the 

conditional parameter is the probability of preferring new therapy conditioned on having 

a preference. The issue is that the conditional parameter may not be the most appropriate 

parameter for a public health interpretation. For example, we can get a highly significant 

sign test and a large estimate of the conditional parameter, but if the proportion of pairs with 

a preference is small, the public health impact of the therapy may be small. For example, if 

only 6% of the population has a preference, and the other 94% of the matched-pairs there 

is no preference, then even if the new therapy is substantially better than standard therapy 

in that 6%, the therapy may not have a large public health impact, especially if we cannot 

identify the specific ones in the 6% of the population that will benefit prior to introduction 

of therapy. It is useful to have an effect estimate that measures the potential effect of the 

new therapy on the population, for example, Δ, the proportion of the population that prefer 

new therapy minus the proportion that prefer the standard therapy. The aim of this paper is 

to develop exact confidence intervals for Δ from matched-pair studies that are compatible 

with the exact sign test. By compatibility, we mean that the 100(1 − α)% confidence interval 

excludes Δ = 0 if and only if the exact sign test rejects Δ = 0 at level α. What makes this 

problem difficult is that although the sign test conditions on the pairs that have a preference, 

the parameter Δ is not conditional in that way but refers to the entire population.

There are many versions of the sign test. Of theoretical interest is the exact randomized 

sign test, which has type I error rate exactly equal to its α level and is the uniformly 

most powerful unbiased test, but has the unsatisfying property that two statisticians 

correctly analyzing the same data may disagree on the accept/reject decision because of 

the randomized decision rule1. Asymptotic versions of the sign test are available, but may 

have inflated type I error rate for small sample sizes. In this paper, we focus on the 

non-randomized exact sign test and the compatible confidence intervals, which are exact in 

the sense that for all situations the type I error rate is no more than α and the confidence 

intervals have at least nominal coverage.

The sign test only uses the preference information for each pair, regardless of whether 

the individual responses within a pair are binary, ordinal, or numeric. Thus, the review of 

Fagerland et al2 on different parameters for paired binomial proportions, applies equally to 

parameters for sign tests as for McNemar-type tests. Fagerland et al2 study difference in 

proportions, ratio of proportions, and odds ratios of proportions, but in this paper we study 

only the difference in proportions. Fagerland et al2 reviews 7 different confidence intervals 

on Δ, an exact unconditional method, and 6 other methods. Unlike exact methods, those 6 

other methods are not guaranteed to achieve nominal coverage. In general, unconditional 
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exact tests for pair matched binary studies have better power than the exact sign test, which 

is a conditional exact test2. The improved power likely comes from having less discreteness, 

since the unconditional test allows the number of mismatched pairs (say M) to change. 

There are ways to improve the power for unconditional exact tests3,4. For example, Lloyd 

and Moldovan4 describe several methods including an unconditional exact test based on a 

method of Berger and Boos5, that depends on using a 100(1 − γ)% confidence interval 

for a nuisance parameter. One can invert a series of unconditional exact tests to create 

exact confidence intervals, but not all such inversions are straightforward. For example, one 

can invert a Berger-Boos5 adjusted test for independent binomials because the difference 

in proportions in that case is increasing in one parameter and decreasing in the other6, 

but the lack of that type of monotonicity makes the application to matched-pair binary 

data difficult. Further, the Berger-Boos adjustment requires specifying γ, and no such 

parameter specification is needed in the method we propose. Nevertheless, there are several 

developed methods to create unconditional exact confidence intervals7,8. A main issue with 

the unconditional exact tests is that they are relatively difficult to calculate compared to 

the exact conditional one (i.e., the exact sign test). Similar computational difficulties arise 

with exact unconditional confidence intervals. Another issue is that the confidence sets 

created from inverting the p-value functions may include more than one disjoint interval9, 

and this means that the associated confidence intervals cannot be compatible10. A similar 

compatibility issue arises when we start with confidence intervals that have optimal widths, 

and examine their compatibility with their associated tests. Wang8 developed an exact 

one-sided interval for Δ that is smallest one within a class of unconditional exact tests. 

Although the Wang interval is typically smaller than our proposed one, the Wang interval 

has no compatible test associated with it.

Fagerland et al2 states that “no simple exact conditional interval is possible for the difference 

between proportions. The only option for an exact interval is an exact unconditional 

interval.” This paper fulfils that need. We develop confidence intervals compatible with 

the exact sign test, and show by extensive computer calculations that the intervals guarantee 

coverage in a wide variety of situations. We create those confidence intervals using a 

modification of melded intervals11. Fay et al11 developed melded confidence intervals 

designed to give guaranteed coverage for an effect parameter for the two sample problem, by 

melding together the two confidence intervals from two independent samples. For example, 

melded one-sided (or central) confidence intervals on a difference in proportion for a two 

sample independent binomial study were developed that are compatible with one-sided 

(or central) Fisher’s exact tests11. Melding uses confidence distributions (see12), which 

are closely related to fiducial methods (see13 and references therein). To avoid problems 

of fiducial inferences, melding as described in Fay et al11, has three restrictions on its 

application. First, it applies to two independent samples. Second, it builds on confidence 

distributions from each sample created from nested confidence interval procedures, where a 

nested confidence interval procedure requires that if two confidence intervals with different 

levels are calculated on the same data set, the interval with the larger level completely 

contains the other interval (e.g., the 96% confidence interval completely covers the 95% 

interval). Third, the parameter of interest is a function of two parameters (one from each 

sample), and the function is required to be increasing in one parameter and decreasing in 
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the other, while holding the other parameter constant (within the range of allowable values 

of those parameters). This work expands the application of melding as described in11 in two 

ways. First, it allows for matched pair sampling. Second, it allows the parameter of interest 

(in this case, Δ), to be a more complicated function of parameters.

Our method is an extension of the melded confidence intervals for independent two-sample 

tests as described in Fay, et al.11. In Section 2 we introduce notation and review the melded 

confidence interval for the difference in proportions for the two sample binary response 

problem without matched-pairs. In Section 3 we develop the confidence interval for Δ from 

the matched-pair problem, and show that it is compatible with the exact sign test. In Section 

4 we present calculations that support the proposition that our proposed confidence interval 

procedure gives intervals with at least nominal coverage. We show that over a fine grid 

covering the full range of possible parameters, and for all sample sizes up to n = 100 

pairs, our proposed 95% two-sided confidence intervals and 97.5% one-sided intervals cover 

with at least the nominal level (up to computer rounding error) in every case. In Section 5 

we compare our proposed confidence interval to the exact confidence intervals of Wang8, 

discussing how although the Wang intervals have typically smaller width than our proposed 

intervals, they do not have a compatible test associated with it. Finally, in Section 6 we 

demonstrate our proposed confidence interval in an application, and Section 7 ends with a 

discussion.

2 | TWO SAMPLE BINOMIAL MELDED INTERVALS

We start by reviewing lower and upper confidence distributions for a single binomial sample, 

and then show how those can be used to get a confidence interval for the difference in 

proportions. This section is a review and was previously covered in Fay, et al.11.

Let X0 ~ Binomial(m0, β0) and independently X1 ~ Binomial(m1, β1), and suppose we 

are interested in a confidence interval on β1 − β0. First, we write the exact central (i.e., 

Clopper-Pearson) confidence intervals for βa for a = 0, 1 using lower and upper confidence 

distributions. Let Lβa(1 − α/2; xa, ma) be the lower confidence limit associated with the one-

sided 100(1 − α/2)% exact confidence interval for βa, and similarly let Uβa(1 − α/2; xa, ma)

be the upper confidence limit associated with the other one-sided 100(1 − α/2)% exact 

confidence interval for βa. Then the exact 100(1 − α)% central confidence interval (i.e., the 

one that bounds the error on each side at α/2) for βa, is

Lβa 1 − α
2 ; xa, ma , Uβa 1 − α

2 ; xa, ma . (1)

Both Lβa and Uβa can be used to create nested one-sided exact confidence intervals, hence 

may be used for melding. An equivalent way to write the Clopper-Pearson interval is 

to use lower and upper confidence distributions. Let BaL = Lβa(A; xa, ma) be a random 

variable, specifically the lower confidence distribution random variable (CD-RV), where 

the randomness comes from A (since xa and ma are fixed), where A is uniformly distributed. 

Similarly, define the upper CD-RV for βa as BaU = Uβa(A∗; xa, ma), where A* is also 
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uniformly distributed and is independent of A. Let q(a, W) be the ath quantile for any 

random variable W. Then we can rewrite equation 1 as

q α
2 , BaL , q 1 − α

2 , BaU . (2)

For the binomial situation, because of the relationship between the cumulative distributions 

of the binomial and the beta distributions (see Appendix A), we can write the 100(1 − 

α)% Clopper-Pearson confidence interval for βa in terms of quantile functions of slightly 

generalized beta random variables. Specifically, that interval is

{Fbeta
−1 (α/2; xa, ma − xa + 1), Fbeta

−1 (1 − α/2; xa + 1, ma − xa)}, (3)

where Fbeta
−1 ( ⋅ ; a, b) is the quantile function of a generalized beta random variable with 

parameters a and b, and the generalization defines Beta(0, c) and Beta(c, 0) for c > 0 as point 

mass distributions at 0 and 1, respectively. Therefore the lower and upper CD-RVs are

BaL = Fbeta
−1 (1 − A; xa, ma − xa + 1)

and
BaU = Fbeta

−1 (A∗; xa + 1, ma − xa) .
(4)

Since A is a uniform random variable, then 1 − A is also uniform, and using the 

probability integral transformation (see e.g.,14, p. 54), we get BaL ∼ Beta(xa, ma − xa + 1)
and BaU ∼ Beta(xa + 1, ma − xa), where both are generalized beta random variables. The lower 

CD-RV, BaL, has a mean of xa/(ma + 1) and is stochastically smaller than the upper CD-RV, 

BaU, which has a mean of (xa + 1)/(ma + 1). In order to guarantee coverage for discrete 

distributions, we need to use those two different CD-RVs for the exact central confidence 

interval, with the stochastically lower RV on the lower limit. In contrast, only one CD-RV is 

needed for continuous distributions (see12).

Equation 2 seems like a convoluted way to write the exact central confidence interval for 

βa, but the notation and ideas are useful for describing the 100(1 − α)% so-called “melded” 

confidence interval for β1 − β0, which is

q α
2 , B1L − B0U , q 1 − α

2 , B1U − B0L . (5)

In order to guarantee that the lower error is not more than α/2, for the lower limit we use the 

lower CD-RV for β1, but we use the upper CD-RV for β0 because of the minus sign in the 

parameter of interest, β1 − β0. Analogously for the upper limit, we use the upper CD-RV for 

β1 but the lower CD-RV for β0. See Fay et al11 for computational details and for showing 

that the interval of equation 5 is compatible with the central Fisher’s exact test. Besides the 

difference function, g(β0, β1) = β1 − β0, we can also apply the melding method to other 

functions. For the binomial case where 0 ≤ βa ≤ 1, we can also apply the method to the ratio, 
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g(β0, β1) = β1/β0 and the odds ratio, g(β0, β1) = {β1(1 − β0)}/{β0(1 − β1)}, giving a 100(1 − α)% 

confidence interval for g(β0, β1) as

q α
2 , g B0U, B1L , q 1 − α

2 , g B0L, B1U .

A key restriction presented in Fay et al.11 on the function g(·, ·) is that for the range of the 

parameters allowed, g(β0, β1) must be decreasing in β0 for all allowable values of β1 and 

increasing in β1 for all allowable values of β0. In this paper, we expand the melding method, 

by working with a parameter function that violates this restriction in a specific way, and by 

working with matched-pair samples.

3 | PROPOSED CONFIDENCE INTERVAL FOR Δ

Now consider the matched-pair data. Within the ith pair let the observed responses be 

yi0 and yi1 representing the two groups of interest. For example, in a study of twins 

randomized to new therapy or standard therapy, the response from the twin randomized 

to new therapy is yi1 and the response from the twin randomized to standard therapy 

is yi0. The responses may be numeric or binary. Let the associated random variables 

be Yi0 and Yi1. In this section, assume that [Yi0, Yi1] for i = 1, …, n are independent 

random variables coming from the bivariate distribution F01. In other words, there may be 

correlation within a pair of responses, but the vectors of paired responses are independent. 

Let Si = Yi1 − Yi0 be the sign of the difference for the ith pair. Let ∑i = 1
n I(Si = 1) = X and 

∑i = 1
n I(Si = 1 or Si = − 1) = M, where I(A) = 1 if A is true, and 0 otherwise. Because of 

the independence of the paired responses, this implies that the S1, …, Sn are independent 

as well. Let the distribution of Si for each i = 1, …, n be a trinomial distribution, with 

parameters defined as follows:

s Pr[Si = s] # {Si = s}

−1 θ(1 − β) M − X

0 1 − θ n − M

1 θβ X

In terms of these parameters, Δ = E(Si) = θ(2β − 1). Let d(t, b) = t(2b − 1), so that d(θ, β) = 

Δ. We have

M ∼ Binomial(n, θ)
and
X ∣ M ∼ Binomial(M, β) .

with β ∈ (0, 1) and θ ∈ (0, 1). The parameter function d(t, b) does not follow the typical 

restriction required for melding; it is increasing in t when b > 0.5, but decreasing in t when b 
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< 0.5 and constant when b = 0. Thus, we must modify the usual construction of the melding 

intervals.

We are interested in testing hypotheses about Δ. We begin with a one-sided hypotheses:

H0 : Δ ≥ 0
H1 : Δ < 0 .

Because Δ = θ(2β − 1) and θ ∈ (0, 1), these hypotheses are equivalent to

H0 : β ≥ 0.5
H1 : β < 0.5 .

Let pU(x, m) be the p-value for the exact sign test of those one-sided hypotheses, and

pU(x, m) = Pr[X ≤ x ∣ m, β = 0.5] .

We use CD-RVs to rewrite the p-value, and to define the associated one-sided confidence 

interval. We use the lower and upper confidence distribution random variables (CD-RVs) 

associated with the binomial parameters. Let the lower and upper CD-RVs for θ be

TL ≡ TL(m, n) = Fbeta
−1 (1 − A; m, n − m + 1) ∼ Beta(m, n − m + 1)

TU ≡ TU(m, n) = Fbeta
−1 (A∗; m + 1, n − m) ∼ Beta(m + 1, n − m)

and let the lower and upper CD-RVs for β be

BL ≡ BL(x, m) = Fbeta
−1 (1 − C; x, m − x + 1) ∼ Beta(x, m − x + 1)

BU ≡ BU(x, m) = Fbeta
−1 (C∗; x + 1, m − x) ∼ Beta(x + 1, m − x),

where A, A*, C and C* are independent uniform random variables. Recall, these 

distributions are interpreted as point masses when x=0 or x=m.

In terms of CD-RVs, we can rewrite pU(x, m) for the exact sign test of either H0 : Δ ≥ 0 or 

H0 : β ≥ 0.5, as

pU(x, m) = Pr X ≤ x ∣ m, β = 1
2 = Pr BU(x, m) ≥ 1

2 (6)

which does not depend on n (see Appendix A). In equation 6, x and m are fixed constants 

that define the CD-RV, BU(x, m), whose randomness comes from an independent uniform 

random variable, C*.

We define our proposed melded one-sided 100(1 − α)% upper confidence limit for Δ as:
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UΔ(1 − α; x, m, n) =
q{1 − α, d(TU, BU)} if pU(x, m) > α
q{1 − α, d(TL, BU)} if pU(x, m) ≤ α . (7)

(Recall that d(θ, β) = Δ.) Figure 1 helps motivate UΔ. When β > 0.5 then Δ increases with 

θ, while if β < 0.5 then Δ decreases with θ. So if 1 − α of the distribution of BU is less 

than 1/2, then pU(x, m) ≤ α, and we use TL to get a larger (and conservative) value for UΔ, 

otherwise we use TU to get the larger, conservative, value for UΔ.

Now consider the other one-sided hypotheses for Δ,

H0 : Δ ≤ 0
H1 : Δ > 0 .

Denote the associated exact sign test p-value as pL(x, m). Analogous to equation 6,

pL(x, m) = Pr BL(x, m) ≤ 1
2 . (8)

Following analogous reasoning to the motivation of UΔ, we define the lower limit. Let the 

one-sided lower 100(1 − α)% confidence limit be LΔ(1 − α; x, m, n), given by

LΔ(1 − α; x, m, n) =
q{α, d(TL, BL)} if pL(x, m) ≤ α
q{α, d(TU, BL)} if pL(x, m) > α . (9)

We define a two-sided 100(1 − α)% central confidence interval by taking the intersection of 

the two 100(1 − α/2)% one-sided intervals, to get

LΔ 1 − α
2 ; x, m, n , UΔ 1 − α

2 ; x, m, n . (10)

The associated exact central two-sided p-value for the sign test for testing H0 : Δ = 0 versus 

H1 : Δ ≠ 0 is

pC(x, m) = min {1, 2pL(x, m), 2pU(x, m)} . (11)

Expanding the definition of Fay, et al11, we call these proposed intervals melded confidence 
intervals for Δ. We now state some properties of the confidence intervals and the associated 

exact sign test p-values.

Theorem 1 (Compatibility). The upper limit UΔ(1 − α; x, m, n) (equation 7) is compatible 

with pU(x, m) (equation 6), the lower limit LΔ(1 − α; x, m, n) (equation 9) is compatible with 

pL(x, m) (equation 8), and the central confidence interval given in equation 10 is compatible 

with pC(x, m) (equation 11).
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See Appendix B for proof.

Proposition 1 (Validity). The one-sided 100(1 − α)% confidence intervals 

{−1, UΔ(1 − α; x, m, n)} and {LΔ(1 − α; x, m, n), 1}, as well as the two-sided 100(1 − α)% 

central confidence interval (equation 10) are valid (i.e., the coverage for each is at least 1 − 

α).

This proposition is not yet proven, but we support it with calculations in Section 4.

4 | VALIDITY CALCULATIONS

To check the coverage of the melded confidence intervals, we did some numeric calculations 

using the mcnemarExactDP function in the exact2x2 (version 1.6.4) R package. For n = 

1, 2, …, 100, we calculate the 95% melded confidence interval for Δ for all possible values 

(m = 0, 1, …, n and within each m the values x = 0, 1, …, m). Then we checked the lower 

error (i.e., Pr[Δ < LΔ]) and upper error (i.e., Pr[Δ > UΔ]) for all values (θ, β) with θ ∈ {0, 

0.01, 0.02, …, 1} and β ∈ {0, 0.01, 0.02, …, 1}. In all cases, none of the errors were greater 

than the nominal 0.0250, within computer rounding error. (For each of n = 71 and n = 72, 

two of the (θ, β) values gave errors greater than 0.025 by less than 3.2 × 10−5, probably due 

to computer numerical integration rounding error). For each n > 5 the maximum calculated 

one-sided error over the entire parameter space was greater than 0.024, so the maximum 

error is close to the ideal 0.025. The R code for the calculations is available in the demo 

directory of the exact2x2 (version 1.6.4) R package. As an example, Figure 2 plots the 

lower and upper errors from the melded confidence intervals when n = 26.

5 | AN ALTERNATIVE EXACT INTERVAL WITHOUT A COMPATIBLE TEST

We have proposed melded confidence intervals for Δ that are compatible with the exact 

McNemar’s test and the exact sign and given numerical calculations showing that they 

have at least nominal coverage for the two-sided 95% level or one-sided 97.5% level. For 

completeness we compare the melded intervals with the confidence intervals of Wang8. 

Wang8 derived exact one-sided intervals that are proven to have the smallest width among 

intervals with a specific sample space ordering, an inductive method designed to give 

smallest width confidence intervals; however, there is no explicit proof that there is not 

some other (as yet unknown) ordering that may give smaller width intervals. A central 95% 

two-sided exact interval can be created as the intersection of two 97.5% one-sided Wang 

intervals. These properties of the Wang intervals depend on ideal computer implementation, 

but the algorithm is a double grid search algorithm, so depending on the parameters of the 

grid searches, the resulting intervals may not be the smallest width. Despite these caveats, 

the Wang exact central intervals are expected to have smaller width than the (suspected 

to be exact) central melded interval. In Figure 3, we give the 95% confidence intervals 

for Δ using both methods for all 378 possible outcomes when n = 26. The graph has a 

sawtoothed pattern because of the way we sorted the data (first by Δ, then by LΔ(0.975)), 

and because there are many sets of tied values of Δ = x − (m − x)
n , so that among each set 

there are different m values giving different confidence intervals. For n = 26, the Wang 
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method always has smaller width (within computer error, ≈ 10−4) than the melded method, 

and on average the melded method confidence interval width is only 9.9% larger. The lower 

and upper error for the 95% central intervals of Wang are plotted in Supplemental Figure 

S1. Here the maximum lower and upper errors are both 2.499%, within rounding error of the 

target 2.5%.

An advantage of the proposed melded intervals are that they are faster to calculate. The 

calculation time on a PC (64 bit processor, 3 GHz, 16 GB RAM) for the 378 confidence 

intervals of Figure 3 averaged about 0.1 second for each melded confidence interval, 

compared to averaging 17 seconds for each Wang interval. For Figure 4 (described later) 

that has n = 67 the difference is even larger: the melded intervals averaged about 0.1 seconds 

again, but Wang’s interval averaged about 3 minutes per interval.

The major advantage of the melded method is its compatibility with McNemar’s exact 

test. The Wang interval has no compatible associated test, because its one-sided confidence 

intervals are not nested. Fay and Hunsberger10 show (Theorem 4.1) that exact confidence 

intervals that are not nested cannot be compatible with their associated test.

We show this with a counterexample. Let LΔ
W (1 − α; x, m, n) be the 100(1 − α)% one-sided 

confidence interval of Wang. Consider the one-sided test, H0 : Δ ≤ 0 versus H1 : Δ > 

0. Suppose there is a p-value associated with H0 that is from a test compatible with 

the Wang interval, and let that be pL
W (x, m). Then compatibility means that whenever 

LΔ
W (1 − α; x, m, n) > Δ0 then we reject H0 at level α, meaning pL

W (x, m) ≤ α, and whenever 

LΔ
W (1 − α; x, m, n) ≤ Δ0 then we fail to reject H0 at level α, meaning pL

W (x, m) > α. Consider 

the case when x = 9, m = 11, and n = 67. We calculate two one-sided confidence intervals 

using Wang’s method using the ExactCIdiff R package (version 1.3, R version 4.0.0, 

using default arguments), one with α = 0.017 and one with α = 0.027. In the first case 

the 100(1 − 0.017)% = 98.3% lower limit is LΔ
W  (0.983; 9, 11, 67) = 0.0016 > 0, and we 

reject H0 at level α = 0.017, implying pL
W (9, 11) ≤ 0.017. This implies that we reject at the 

traditional one-sided 2.5% level as well. In the second case the 100(1 − 0.027)% = 97.3% 

lower limit is LΔ
W  (0.973; 9, 11, 67) = −0.0043 < 0, and we fail to reject H0 at level α = 

0.027, implying pL
W (9, 11) > 0.027 and we fail to reject at the traditional one-sided 2.5% 

level. This implies that 0.027 < pL
W (9, 11) ≤ 0.017, which is impossible and shows that there 

cannot exist a compatible test of H0 with Wang’s confidence interval procedure. In Figure 4 

we plot the 100(1 − α)% one-sided lower limits for Δ by α for the counterexample case: x 
= 9, m = 11 and n = 67. The melded limits (black dots) are typically lower than the Wang 

limits (gray dots), but notice the non-nestedness of the Wang limits.

The counterexample was chosen to highlight that there is not compatible associated test with 

the Wang intervals. For other examples (e.g., x = 9, m = 11, n = 26), many of the data points 

have intervals that are closer to monotonic in the confidence level for parts of the range (see 

Supplemental Figure S2). The Wang intervals are based on a double grid search algorithm 
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and may change slightly if the number of elements in the grid searches in the maximization 

algorithm are changed, but we kept the default to mimic the typical user.

A similar lack of a compatible test may arise when using unconditional exact tests. An 

unconditional exact test may be formulated using any “ordering function”, a function that 

orders the sample space (see e.g.,10). The lack of a compatible test may occur if the ordering 

function depends on Δ0 (i.e., the parameter value that is on the boundary between the 

null and alternative hypotheses). This is an issue when using score test statistics to order 

the sample space, as in the example in Fagerland et al2. For analogous examples in the 

independent two-sample binomial case see15 and10. We did not explore those unconditional 

exact tests further, because we could not find an R package to do these calculations, and 

because the unconditional exact test using the score statistic is not straightforward to define 

(e.g., there is not a clear definition of the ordering function when the squareroot term in the 

denominator is negative).

6 | APPLICATION

For illustration we consider data comparing low versus high dose of an analgesic for the 

treatment of dysmennorrhea given in Table 1 (reproduced from16, Table IV). In the trial, 

each individual was given both a low dose and a high dose of an analgesic at different 

times, and for the purposes of illustration only we assume no period effects and no crossover 

effects (see Jones and Kenward17 a more complete description and analysis that does not 

make these assumptions).

The exact two-sided sign test gives a p-value of p = 0.15. The effect is not significant at 

the two-sided α = 0.05 level. To get a more complete picture we look at effect estimates 

and confidence intervals. We first look at the confidence interval on β. Conditional on a 

preference, we have β= 16/(8+16) = 0.667 prefer the high dose, and the 95% exact central 

confidence interval (i.e., the Clopper-Pearson interval) on β is (0.447, 0.844). So it looks like 

there is a possibility of a fairly strong effect, since we cannot rule out as high as 84% of 

those with a preference preferring the high dose. If we define the net benefit for those with a 

preference as

(proportion who prefer high dose) − (proportion who prefer low dose) = β − (1 − β),

then there is a net benefit of 33.3% with 95% confidence interval of (−10.6%, 68.7%).

Another related question is: what is the net benefit to the entire study population (not just 

those with a preference)? In other words, what if we used Δ, and defined the net benefit 

for the population as Δ? For the calculation of the proposed melded confidence interval 

(equation 10), we use the mcnemarExactDP function in the exact2x2 R package, and we 

get Δ= 0.093 as our estimate of the proportion who prefer the high dose over the low dose 

minus the proportion who prefer the low dose over the high dose, with 95% confidence 

interval (−0.030, 0.214). In other words, there is a net benefit of high dose over low dose of 

9.3%, with 95% confidence interval (−3.0%, 21.4%). Because there is a high proportion of 
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the pairs with no preference, the net benefit of the entire study population is much smaller 

from the net benefit of those that have a preference.

7 | CONCLUSION

We have developed a confidence interval procedure for Δ, the difference in proportions 

(proportion with positive sign minus proportion with negative sign) from a matched-pair 

study. We have shown that our proposed melded confidence interval is compatible with the 

exact sign test (for both one-sided versions as well as the central version). This ensures that 

when the exact sign test is used, a researcher may present a useful confidence interval for 

Δ that will not contradict the test. Thus, for example, our proposed 95% confidence interval 

will always exclude 0, whenever the exact test shows a significant difference from 0 at the 

5% level. The exact sign test and these compatible confidence intervals are easy to calculate 

for any sample size.

We have provided extensive numerical calculations suggesting that our confidence interval 

is valid (i.e., exact). These calculations cover the parameter space with a fine grid for all 

samples sizes up to n = 100. Thus, the calculations are much more than the typical set of 

simulations of a small subset of possible situations. Nevertheless, we have not proven the 

validity of our confidence intervals, and this essential mathematical proof is left to future 

work.

Although there are simpler asymptotic methods that do not guarantee coverage, and more 

complicated exact methods that can have better power2 or smaller confidence intervals8, our 

proposed confidence intervals have a compatible test and are easier to calculate than the 

exact ones, and like the other exact ones, our intervals are designed to guarantee coverage 

for all sample sizes. Although we have shown that the Wang8 interval has no compatible 

test, there are other exact unconditional confidence intervals2,7 which may possibly have a 

compatible associated test, but because they are unconditional there is no expectation that 

they will be compatible with the exact sign or McNemar’s tests.

We have expanded the definition of melding to allow paired data and functions of 

parameters that have a special kind of monotonicity (see e.g., Figure 1). The melding 

method uses two nested confidence intervals associated with two parameters (e.g., θ and 

β), that combine through a function of those parameters to define a parameter of interest 

(e.g., Δ = θ {2β − 1}). There were two ways we expanded the original definition. First, we 

no longer require the random variables that estimate the two parameters to be independent. 

Specifically, M, which estimates θ, is not independent of X, which estimates β given M. 

Second, we now allow that the function of the two parameters to create the parameter of 

interest only needs to be monotonic within the two different partitions of the parameter 

space (e.g., when β < 0.5 and when β > 0.5). We leave to future work the full extent to 

which the definition of melding may be expanded to other applications.

We provide R functions for these methods on CRAN. For binary data, use the 

mcnemarExactDP function of the exact2x2 R package (available at https://CRAN.R-
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project.org/package=exact2x2), and for orderable data, use the signTest function of the 

asht R package (available at https://CRAN.R-project.org/package=asht).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

A EXPRESSIONS OF THE CLOPPER-PEARSON CONFIDENCE INTERVALS

Let X ~ Binomial(m, β). The 100(1 − α)% Clopper-Pearson confidence interval on β is 

{Lβ(1 − α/2; x, m), Uβ(1 − α/2; x, m)}, where

Lβ(1 − α/2; x, m) = 0 if x = 0
{β : Pr[X ≥ x ∣ m, β] = α/2} if x > 0

By using integration by parts, one can show (see e.g., Casella and Berger14, p. 82) that for x 
> 0,

Pr[X ≥ x ∣ m, β = b] = Fbeta(b; x, m − x + 1)

where Fbeta(b; x, m − x) is the cumulative distribution function (cdf) of a beta random 

variable (RV) with parameters x and m−x+1 evaluated at b. Therefore when x > 0 we can 

write Lβ(1 − α/2; x, m) = Fbeta
−1 (α/2; x, m − x + 1), where Fbeta

−1 (q; x, m − x + 1 is the qth quantile 

of a beta RV with parameters x and m − x + 1. The upper limit is defined analogously, to 

get equation 3. This is not a new result, and in fact, this is the way that the Clopper-Pearson 

confidence interval is calculated in the binom.test function in R18.

B COMPATIBILITY PROOF

Proof of Theorem 1. First we prove the result for the pU and UΔ.

Step 1, show pU ≤ α UΔ ≤ 0: If pU(x, m) ≤ α then m > 0 and by definition 

Pr[BU ≥ 0.5] ≤ α. Further Pr[TL(m, n) > 0] = 1 for all m > 0. Thus,
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Pr[BU ≥ 0.5] ≤ α Pr[TL 2BU − 1 ≥ 0] ≤ α
Pr[d(TL, BU) ≥ 0] ≤ α
Pr[d(TL, BU) < 0] ≥ 1 − α
0 ≥ q{1 − α, d(TL, BU)}
0 ≥ UΔ .

Step 2, show UΔ ≤ 0 p ≤ α: First consider the case when m = 0. When m = 0 then pU(0, 0) 

= 1 and UΔ = q(1 − α, d(TU, BU)). Also, BU is a point mass at 1 so that d(TU, BU) = TU, but 

when m = 0 then Pr[TU > 0] = 1 so q(1 − α, TU) > 0 and UΔ > 0. Now consider when m > 0. 

Let T be either TL or TU, since both TL and TU will always be positive because neither will 

be a point mass at 0 when m > 0.

UΔ ≤ 0 q(1 − α, d(T , BU)) ≤ 0
1 − α ≤ Pr[d(T , BU) ≤ 0]
α ≥ 1 − Pr[d(T , BU) ≤ 0]
α ≥ Pr[T(2BU − 1) > 0]
α ≥ Pr[BU > 0.5]
α ≥ Pr[BU ≥ 0.5] = pU(m, n) .

where the last step comes because BU is continuous unless it is a point mass at 1.

Proof for the lower limit is analogous and is not given.

Now we prove the compatibility in the central case. Let the central confidence interval be 

given by

CΔ(1 − α) = {LΔ(1 − α/2), UΔ(1 − α/2)} .

Step 1, show pC ≤ α 0 ∉ CΔ(1 − α): Since α < 1,

pC ≤ α min 2pL, 2pU

either
Case 1: pL ≤ α/2, or
Case 1: pU ≤ α/2 .

Case 1 implies that LΔ(1 − α/2) > 0 by the compatibility of LΔ with pL, and that implies 

that 0 ∉ CΔ(1 − α) by the definition of CΔ(1 − α). Analogously, Case 2 implies that 

UΔ(1 − α/2) < 0 by the compatibility of UΔ with pL, and that implies that 0 ∉ CΔ(1 − α) by the 

definition of CΔ(1 − α).

Step 2, show 0 ∉ CΔ(1 − α) pC ≤ α: The statement 0 ∉ CΔ(1 − α) implies either Case 1: 

LΔ(1 − α/2) > 0 or Case 2: UΔ(1 − α/2) < 0. So by the definition of CΔ and the compatibility 

of the one-sided intervals, we have either Case 1: pL ≤ α/2 or Case 2: pU ≤ α/2, which means 

that pC = min(1, 2pL, 2pU) ≤ α.
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Data Availability Statement

Data sharing is not applicable to this article as no new data were created or analyzed in this 

study.

Abbreviations:

CD-RV confidence distribution random variable
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FIGURE 1. 
Contour plot of Δ = θ(2β − 1) as β by θ. Δ goes from −1 (white) to 1 (black).
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FIGURE 2. 
Lower and upper errors from the 95% central melded confidence interval for Δ (equation 

10) when n = 26 for all values of β, θ ∈ {0, 0.01, 0.02, …, 1}. The maximum of all the 

calculated errors for both the lower and upper errors was 0.0242, less than the nominal 

0.025.
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FIGURE 3. 
For the case n = 26, we plot Δ and the two confidence intervals for all possible 378 

outcomes, sorted by Δ, then within tied values of Δ, sorted by LΔ(0.975). The thick gray 

lines define the 95% confidence intervals by the proposed melded method, and the thin black 

lines define the 95% confidence intervals by the Wang method. The x-axis only represents 

the rank of each of the 378 estimates, so it is not labeled.
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FIGURE 4. 
Lower 100(1 − α)% confidence limits by α ∈ {0.001, 0.002, …, 0.100} for the data x = 9, m 
= 11 and n = 67. Black dots are the lower limit for the melding interval, LΔ(1 − α), and gray 

dots are the lower limit for the Wang interval, LΔ
W  (1 − α). The point outlined by a square is 

Wang’s one-sided 97.3% limit, LΔ
W  (0.973; 9, 11, 67) = −0.0043, and the point outlined by a 

triangle is the one-sided 98.3% limit, LΔ
W  (0.983; 9, 11, 67) = 0.0016.
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TABLE 1

Low dose versus high dose analgesic for treatment of dysmennorrhea in a crossover trial. Success is pain 

relief, and failure is no pain relief.16,17.

High Dose

Success Failure

Low Success 53 8 61

Dose Failure 16 9 25

69 17 86
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