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Common methods in mitochondrial research (Review)
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Abstract. Mitochondrial abnormalities are primarily seen in
morphology, structure and function. They can cause damage
to organs, including the heart, brain and muscle, by various
mechanisms, such as oxidative stress, abnormal energy
metabolism, or genetic mutations. Identifying and detecting
pathophysiological alterations in mitochondria is the principal
means of studying mitochondrial abnormalities. The present
study reviewed methods in mitochondrial research and focused
on three aspects: Mitochondrial extraction and purification,
morphology and structure and function. In addition to clas-
sical methods, such as electron microscopy and mitochondrial
membrane potential monitoring, newly developed methods,
such as mitochondrial ultrastructural determination, mtDNA
mutation assays, metabolomics and analyses of regulatory
mechanisms, have also been utilized in recent years. These
approaches enable the accurate detection of mitochondrial
abnormalities and provide guidance for the diagnosis and
treatment of related diseases.
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1. Introduction

Mitochondria are semi-autonomous organelles found in most
eukaryotic cells with a bilayered structure consisting of an outer
membrane, an intermembrane space and an inner membrane.
They serve key roles in a variety of cellular processes, including
cell metabolism, signal transduction and the regulation of cell
death. Mitochondria have numerous biological functions,
including the production of ATP for cellular energy, regula-
tion of the dynamic balance of intracellular Ca**, production
of reactive oxygen species (ROS), the release of cytochrome c
and regulation of intracellular environmental homeostasis. As
an important signaling hub in cells, the mitochondrion serves
a key role in diseases such as aging and obesity. Mitochondrial
biogenesis and mitochondrial homeostasis require the expres-
sion of nuclear genes and mitochondria-nuclear signaling
pathways to be regulated (1). On the one hand, it depends on
the regulatory pathways of nuclear gene transcription and
anterograde signaling. Mitochondria, on the other hand, pass
intracellular signaling molecules, such as Ca?*, mitochondrial
DNA (mtDNA), reactive oxygen species (ROS), adenosine
triphosphate (ATP), coenzyme Q (CoQ) and nicotinamide
adenine dinucleotide (NAD) and then present mitochondrial
abnormalities and cellular metabolic change signals to the
nucleus (retrograde signaling). This triggers the nucleus to
activate important signaling pathways by mobilizing a series of
nuclear transcription factors (2-5), mitochondrial transcription
and mitochondrial biosynthesis. Among them, the activation
of signaling pathways is closely related to inflammation and
tumorigenesis (6). During cellular stress and virus infection,
mtDNA and ROS are released from abnormal mitochondria
and retrogradely presented to the nucleus as danger signals. The
nucleus can promote the expression of PTEN-induced kinase 1
(PINK1) and then upregulate mitophagy to clear abnormal
mitochondria and maintain a stable intracellular environment.
When too many abnormal mitochondria cannot be completely
removed, mtDNA can activate Toll-like receptor 9 (TLR9) and
its downstream inflammatory pathways and lead to inflam-
mation. Excessive ROS can cause DNA damage by oxidizing
nucleic acid bases, which is closely related to tumorigenesis.
Abnormalities in mitochondrial structure and function can lead
to a variety of intracellular signaling cascades, oxidative stress
and the initiation of programmed cell death, thereby contrib-
uting to the development and progression of nearly all diseases.
Therefore, the detection of mitochondrial abnormalities is
crucial and various mitochondrial assays (Fig. 1) developed
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in the last century have contributed substantially to the differ-
ential diagnosis of mitochondrial diseases. The present study
reviewed common experimental methods (Table I) in mito-
chondrial research. In particular, it discussed a wide range of
imaging and detection techniques for i) extraction and purifica-
tion, ii) analyses of morphology and structure and iii) analyses
of function, with a focus on the clinical implications for disease
detection and treatment.

2. Extraction and purification of mitochondria

A suitable method is needed to extract purified mitochondria
from various tissues and cells (7). The basic extraction method
mainly relies on differential centrifugation, while purification
mainly depends on density gradient centrifugation. The speci-
ficity of tissue cells determines the details of the method (8-10).

Extraction of mitochondria. When extracting mitochondria,
because the homogenization process can heat the sample locally,
resulting in protein denaturation and aggregation, the equipment
must be pre-cooled and the temperature kept low throughout
the process (11). Tissue or cell homogenization is followed
by continuous differential centrifugation. Unlysed cells, cell
debris and nuclei are first removed by low-speed centrifugation
(600 x g or 1,000 x g) (12-15). As mitochondria can remain in
flaky precipitates generated by low-speed centrifugation, resus-
pending the pellet and centrifuging it again at low speed increases
mitochondrial yield. The supernatant obtained by two low-speed
centrifugation steps is collected for high-speed centrifugation
(3,500 x g or 10,000 x g) (12-15), resulting in a coarse-lifted mito-
chondria precipitate (16). The purity of these crudely extracted
mitochondria can meet some applications, including the analysis
of the activity of known mitochondrial proteins, the detection of
mitochondrial morphology and mitochondrial apoptosis; however,
they often contain a certain amount of peroxisomes, endoplasmic
reticulum and microsomes. Mitochondrial purity is low; thus,
mitochondrial purification and reduction of membrane fouling
are required when analyzing proteins present in multiple cells
or determining the localization of a protein (17). Furthermore,
although the mitochondrial extraction method is suitable for most
tissues and cells, the extraction efficiency and quantity of mito-
chondria in different tissues and cells are significantly different.
This is determined by the number of mitochondria in the tissue
or cell and the energy consumption of muscles and liver; larger
tissues contain more mitochondria, so these tissues and cells have
higher mitochondrial extraction efficiency than other tissues, such
as the lungs (18-20).

Purification of mitochondria. Purified mitochondria are the
prerequisites for mitochondrial proteomics research. Density
gradient centrifugation emerged in the 1950s and has become
a common method for separating extracts owing to its ease of
operation and low cost (21). For example, sucrose density gradient
centrifugation suspends the cell or a homogeneous tissue slurry
in a uniform suspension medium according to the density of
each cell component and is separated by differential centrifuga-
tion (22-24). The buffered sucrose solution, the most commonly
used suspension medium, is relatively close to the dispersion
phase of the cytoplasm and can maintain the structure of various
organelles and the activity of enzymes to a certain extent (25-28).

Sucrose density gradient centrifugation is a classic method
for extracting mitochondria by separating cellular fractions
of different densities (29). It involves three main processes:
Tissue homogenization, fractionation and analysis (30-32).
Homogenization refers to the disruption of cells or tissues in
a homogenizer by adding sucrose at a low temperature to
form a homogenate containing various organelles and other
substances (33). Fractionation is the sequential settling of
particles of different densities and sizes in the sample by
centrifugation at different speeds. Analysis refers to the use of
biochemical methods to identify the morphological function
of the separated components; it is conducted using the Janus
green live dyeing method, which is easy to operate and stable
in performance. However, at high concentrations, sucrose has
a high viscosity and high osmotic pressure, which can easily
cause repeated shrinkage and mitochondrial expansion.
Compared with sucrose, the price of commonly used density
gradient media (including Percoll, Nycodenz and OptiPrep)
is generally higher, but the morphology of the extracted mito-
chondria is generally complete. Percoll has a low diffusion
constant, the gradient formed is very stable and it does not
penetrate the biofilm; as such, it minimizes organelle rupture
and is often used to isolate platelet mitochondria (12,34,35).
Nycodenz is increasingly widely used owing to its high density,
low viscosity and lack of effect on osmotic pressure (36-38). The
yield of intact mitochondria is significantly higher in Nycodenz
gradients containing sorbitol as an osmotic stabilizer instead
of sucrose (37,38). As a dimer of Nycodenz, OptiPrep has the
advantage of forming automatic gradients in a short period of
time (39-42). Additionally, some researchers use streptavidin
magnetic beads to separate Arabidopsis mitochondria. After the
tissues are lysed, they are mixed with anti-mitochondrial outer
membrane protein 22 (TOM22) magnetic beads and the mixed
samples placed in the sorting column. Only mitochondria
remain on the sorting column after washing, followed by elution,
isolating the complete mitochondria in less than 30 min with a
success rate, purity and integrity significantly higher than the
density gradient centrifugation (43-47). Therefore, the magnetic
bead method can be used to extract mitochondria in tissues
with fewer mitochondria. As such, this approach will probably
become increasingly common in mitochondrial extraction and
purification (48-50). In conclusion, among the current mito-
chondrial extraction and purification methods, the magnetic
bead method has the best effect on eliminating impurities such
as microsomes and peroxisomes and the mitochondrial purity
obtained by the differential centrifugation method is the lowest
and the effect on eliminating these impurities is the worst.

3. Determination of mitochondrial morphology and
structure

Mitochondria are organelles with a complex bi-membrane
structure that regulate the entry and output of proteins, lipids,
solutes and metabolite products and protect the cytoplasm
from harmful mitochondrial products (51-53). Mitochondria
can engulf abnormal mitochondria and remove excess harmful
mitochondrial products to protect the body. This process is
called mitophagy (54-56). Most mitochondria are spherical,
rod-shaped, or tubular; however, mitochondrial morphology
varies widely among tissues and cells depending on the energy
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Figure 1. Commonly used research methods for mitochondria.

requirements of cells and the location of mitochondria within
the cell (53,57). For example, mitochondria are spherical at
synaptic terminals, whereas they appear as highly elongated
rods in axons. In senescent and functionally impaired cells,
mitochondrial morphology is significantly different from that
in normal cells and they can be irregularly shaped (53,58,59).
Therefore, morphological changes can be used in the initial
assessment of mitochondrial function.

After over 50 years since its development, electron micros-
copy (EM) has become the central tool for observing organelles
in eukaryotic cells and is the gold standard for observing mito-
chondrial structure (60). It can reveal mitochondrial swelling,
rupture and other abnormalities of damaged mitochondria.
However, it cannot clearly distinguish mitochondria from
other membranous structures and is occasionally confusing. In
the 1980s, atomic force microscopy, as an emerging observa-
tion method, could study the surface structure and properties
of substances by detecting the extremely weak interatomic
interaction between the surface of the sample to be tested
and a miniature force-sensitive element. Due to the charac-
teristics of resolution and real-time imaging, changes such as
the formation of mitochondrial swelling can also be observed
under liquid conditions but are significantly affected by the
probe; thus, the application range is small (61-64)

The recently developed AiryScan microscope (Zeiss AG)
can acquire images at high speed with high sensitivity to effec-
tively observe the kinetic processes of mitochondrial fission,
fusion and autophagy (65-67). In addition, both wide-field
fluorescence microscopy and high-resolution confocal laser
scanning microscopy can be used for imaging analyses of
morphological changes in mitochondria with higher specificity

than that of EM, but the dynamic changes of the mitochondria
cannot be observed (68-76).

In most cases, microscopy can be used to observe and
analyze two-dimensional mitochondrial morphologies and
quantities. However, although this method is suitable for
analyzing adherent cells with flat morphology, it is not suit-
able for thicker cells (77-83). Three-dimensional confocal
microscopy can be used to observe mitochondrial morphology
by observing specifically labeled mitochondrial proteins at
the 3D level (84-87). In addition, after labeling mitochondria
with specific dyes, mitochondrial morphology can be visual-
ized using a combination of immunofluorescent staining and
computer images (58,88,89).

4. Determination of mitochondrial function

Determination of mitochondrial membrane potential.
Mitochondrial membrane potential (MMP) refers to the
negative potential difference between the two sides of the
inner mitochondrial membrane. It is a sensitive indicator for
evaluating mitochondrial function (90-93). It is closely associ-
ated with cellular homeostasis and is most commonly used to
determine the metabolic state of mitochondria (93-98).
Fluorescent dye probes used for flow cytometry are now
commonly used in MMP assays. For example, rhodamine 123,
a specific stain developed in the 1980s, is widely used in flow
cytometry and MMP assays. In normal cells, rhodamine 123
can selectively enter the mitochondrial matrix depending on
MMP and can emit bright yellow-green fluorescence; when cells
undergo apoptosis or necrosis, the mitochondrial membrane
permeability transition pore (mPTP) is abnormally opened and
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Table I. Continued.

Drawbacks

Advantages

Scope of application

Methods

Area of research

Expensive and complicated to operate

The most direct and effective,
expensive and complicated

operation

Electron spin
resonance

The presence of mtDNA heterogeneity in

the primer binding region

Detectable mtDNA deletions

Tissues and cells

PCR

Mitochondrial DNA

Poor specificity and insufficient

hybridization

Visually detectable under a
fluorescence microscope

FISH

YIN and SHEN: METHODS IN MITOCHONDRIAL RESEARCH

Limited to small scale projects

Gold standard for detecting

heterogeneity

Sequencing

Need real-time observation

Detect mtDNA dynamic changes

Probe method

TMRM, tetramethyl rhodamine methyl ester; TMRE, tetramethyl rhodamine ethyl ester; FRET, fluorescence resonance energy transfer; FISH, fluorescence in situ hybridization; MMP, mitochondrial

membrane potential; mtDNA, mitochondrial DNA.

MMP is unbalanced. Rhodamine 123 is released from mito-
chondria, resulting in a significant decrease in the yellow-green
fluorescence intensity in mitochondria, which reflects the
changes in MMP (50,99-102). 5,5',6,6'-Tetrachloro-1,1',3,
3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1) has
higher sensitivity than that of rhodamine 123. Atlow MMP levels,
JC-1 exists as a monomer and produces green fluorescence; at
high MMP levels, JC-1 aggregates in the mitochondrial matrix
and forms polymeric JC-1. This can be used for qualitative and
quantitative analyses of MMP by fluorescence microscopy or
flow cytometry (50,96,101,103-108). Tetramethyl rhodamine
methyl ester (TMRM) and tetramethyl rhodamine ethyl ester
(TMRE), like JC-1, are specific dyes that have recently become
common tools for measuring MMP (109-112). TMRM can
be excited at 488 nm, showing red-orange fluorescence and
its fluorescence intensity has a linear relationship with MMP.
Compared to thodamine 123 and JC-1, these two dyes are very
soluble, have short loading times (15-20 min) and have extremely
low cytotoxicity, requiring micromolar inhibition of mitochon-
drial function. With staining concentrations in the range of
0.5-30 nM (the concentration of JC-1 needs to be >0.1 M),
the accumulation in mitochondria is limited to the change of
membrane potential and the sensitivity is extremely high; this
is markedly suitable for quantitative analysis of mitochondrial
membrane potential and quantitative flow cytometry (113-118).
However, in quantitative flow cytometry studies, the data must
be corrected for the signal of MitoTracker Green FM, a dye that
is not dependent on mitochondrial membrane potential. It is
worth noting that the above fluorescent probes for measuring
MMP are applicable to most tissues and cells, including plant
cells and bacteria.

Fluorescence resonance energy transfer (FRET) is a
non-radiative energy transition that transfers energy from the
excited state of the donor to the excited state of the acceptor
through intermolecular electric dipole interactions (119,120).
This process does not involve photons, so it is non-radiative.
This analytical method has the advantages of rapidity, sensi-
tivity and simplicity. Fluorescence resonance energy transfer
molecular pairs (FRET Pairs) have been designed and synthe-
sized to monitor MMPs (121). The FRET donor molecule
(FixD) is constructed by attaching a benzyl chloride group to
a fluorophore with green fluorescence emission. FixD can be
attached to and fixed in mitochondria by sulfhydryl groups of
mitochondrial proteins. The FRET acceptor (LA) is a mito-
chondrial membrane potential-dependent probe with green
absorption and deep red fluorescence emission. When MMP
is at a normal level, both FixD and LA target mitochondria.
When FixD has an excitation wavelength of 405 nm, FRET
occurs between FixD and LA, allowing green fluorescence to
be detected but not deep red LA fluorescence emissions. When
MMP is gradually reduced, LA will gradually fall off from
mitochondria. While FixD is still fixed in mitochondria, the
distance between the molecules gradually blocks the occur-
rence of FRET between FixD and LA molecules, allowing
deep red fluorescence emission to be detected gradually.
The decrease and the gradual increase of green fluorescence
emission can be used to monitor the dynamic changes of
MMPs (122), providing new ideas for the development of
novel MMP fluorescent probes and real-time in situ studies of
MMPs in living organisms, tissues and cells (123,124).
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MMP varies greatly among sites on the mitochondrial
membrane; therefore, accurate measurement of MMP requires
further study (125). In recent years, low concentrations of a
hemicyanine derivative (TPP-CY) have been used to monitor
trace changes in MMP at the subcellular level during apoptosis
with very high sensitivity (125). This approach is a potentially
useful tool for evaluating cell health.

Determination of mitochondrial oxygen consumption. Among
organelles, mitochondria consume the most oxygen in cells and
this oxygen consumption often reflects mitochondrial func-
tion (126-128). In the heart, mitochondrial oxygen consumption
can be measured to determine cardiac mitochondrial func-
tion, providing an indicator of cardiac function (129-131). In
children, mitochondrial dysfunction causes mitochondrial
heart disease with hypertrophic myocardial infarction as the
primary symptom; however, the exact mechanism and etiology
remain to be investigated (129,132).

Oxygen electrode polarography is a common method for
determining mitochondrial oxygen consumption and refers
to the incubation of mitochondria in an oxygen-consuming
medium in a magnetically stirred incubator at 30°C. Briefly,
rotenone is used to inhibit complex I in the electron trans-
port chain, followed by the addition of succinate to measure
mitochondrial state IV respiration (non-phosphorylating
respiration). State III respiration is measured by incubating
mitochondria in the presence of succinate and adenosine
diphosphate. The respiratory control ratio (RCR) is the ratio of
the state I1I respiration rate to state IV respiration rate, with a
normal value of 3-10 (133-135). A low RCR indicates impaired
mitochondrial ATP synthesis and mitochondrial dysfunction
and a high RCR indicates vigorous cellular activity and accel-
erated metabolism (127,136,137).

In addition, the hippocampal analyzer can measure the
changes in oxygen and pH levels through sensors and then
automatically calculate the rate and detect the cellular oxygen
consumption rate (OCR) and extracellular phosphorylation
rate (ECAR) in real time to characterize the metabolic status
of cells. Where OCR is caused by mitochondrial electron
transfer, ECAR is derived from lactic acid fermentation
(glycolytic acidification) and carbon dioxide produced by
mitochondria (mitochondrial acidification) (138-140).

OCR is used to study mitochondrial oxidative phos-
phorylation function, with pMoles/min as the readout
type (141). Generally, basal respiration in a normal state is
measured first and then oligomycin is added to inhibit ATP
synthase. This is a significant decrease in OCR, leaving
only proton leakage (142). The oxygen consumption rate
is caused by proton leakage and the reduced section is the
oxygen consumption rate (ATP production) of oxidative
phosphorylation. With the addition of the uncoupling agent
FCCP, electron transport loses the constraints of the proton
gradient and proceeds at a maximum rate (143). Therefore,
the OCR increases sharply, reaching the maximum oxygen
consumption (maximal respiration); the difference between
this value and the basal respiration is termed the spare
respiratory capacity. Finally, adding an electron transport
inhibitor, such as antimycin A, completely inhibits electron
transport and reduces the oxygen consumption rate to a
minimum (144).

ECAR is often used to study metabolic conditions such as
glycolysis, with mpH/min as the readout type (139,140,142).
The basal value before adding glucose is non-catalytic acid
production, such as mitochondrial acidification caused by
carbon dioxide produced by mitochondrial respiration. Glucose
is then added and the elevated value represents glycolysis. After
the addition of oligomycin, the production of acid increases
because oxidative phosphorylation is inhibited and the cells
are forced to use lactic acid fermentation for energy. The value
at this time is called glycolytic capacity and the difference
from glycolysis is termed glycolytic reserve (140,142,143). Last
added is 2-deoxyglucose, a competitive hexokinase inhibitor
that can block glycolysis, so the curve should return to the
basic value following its addition (144-146).

However, the direct measurement of glycolysis by ECAR
is somewhat biased since the addition of glucose enhances
glycolysis and oxidative phosphorylation. This will lead to
increased mitochondrial acidification, causing the calculated
amount of glycolysis to be high (147-149).

It is worth noting that during the measurement process
of the hippocampal analyzer, the interference of phenol red
should be avoided because it causes errors in the measure-
ment results (141,150,151), but the specific reasons remain to
be elucidated. In conclusion, the hippocampal analyzer can
monitor OCR and ECAR to obtain multiple other parameters
in a single analysis, including basal respiration, ATP-related
respiration, maximal respiration, spare respiratory capacity
and non-mitochondrial oxygen consumption, all of which
can provide information on the mechanism of mitochondrial
dysfunction (152,153).

Determination of mitochondrial Ca®*. Intracellular Ca>*
is primarily stored in organelles, such as the mitochondria
and endoplasmic reticulum, and serves an important role
in biological processes such as signal transduction, blood
coagulation, transmembrane ion transport and cell divi-
sion (154-156). Mitochondrial Ca** is a central regulator
of oxidative phosphorylation and serves a key role in the
control of ATP synthesis (157). A Ca** imbalance can cause
abnormal mitochondrial function and even cell damage and
death, leading to pathological changes and affecting organ-
ismal health (158,159). The accumulation of mitochondrial
Ca® promotes ATP synthesis in mitochondria; conversely,
decreased mitochondrial Ca** leads to a decrease in mito-
chondrial ATP. Impaired ATP synthesis further leads to a Ca**
imbalance (157,159), which in turn leads to endocrine dysfunc-
tion and numerous diseases, such as mitochondrial diabetes
mellitus (160-165).

Methods for the determination of mitochondrial Ca*
include precipitation, electrochemical analysis, EDTA chela-
tion titration, flame photometry and atomic absorption
spectroscopy, among which electrochemical analysis is the
most convenient (87,88,156,166-168). First developed in the
19th century, the electrochemical analysis applies electro-
chemical principles and techniques to a class of analytical
methods that take advantage of the electrochemical properties
of chemical cells in solution and their changes. It can be used
for the detection of both organic and inorganic substances
and is simple in operation. It can be both qualitative and
quantitative, but is susceptible to interference by sodium,
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potassium, phosphate and sulfate. It is suitable for real-time
detection and experiments with low optical sensitivity require-
ments (132,169). In addition, FRET can also detect Ca**; cyan
fluorescent protein (CFP) and yellow fluorescent protein (YFP)
are the most widely used FRET pairs in protein-protein inter-
action studies. The emission spectrum of CFP is similar to that
of YFP. The absorption spectra of CFP overlap and when the
distance between the two proteins is in the range of 5-10 nm,
the fluorescence emitted by CFP can be absorbed by YFP and
YFP is excited to emit yellow fluorescence. Whether the two
proteins interact was determined by measuring the loss of
CFP fluorescence intensity. The closer the two proteins are,
the more fluorescence emitted by CFP is received by YFP
and the less fluorescence is received by the detector. CFP and
YFP are fused to calmodulin and calmodulin-binding peptide,
respectively and expressed in the same cell (170-175). When
the intracellular Ca®* concentration is high, the combination
of calmodulin and the calmodulin-binding peptide can induce
FRET and the receptor protein YFP emits yellow fluores-
cence, so the cells appear yellow. When the intracellular Ca*
concentration is low, FRET hardly occurs, so CFP is excited
and emits green fluorescence during detection and the cells
appear green (170,171,175). FRET can detect intracellular Ca*",
but cannot specifically detect mitochondrial Ca®*. A number of
fluorescent probes have recently been used for the measurement
of Ca* levels, including Quin-2AM, fluo-3AM, indo-1AM,
Rhod-2, Fluo-4, Mag-fluo-4 and calcium-rhodamine 123
(rhodamine 123) (158,176-178). Quin-2AM, fluo-3AM,
indo-1AM, Fluo-4 are cytosolic Ca** indicators. Mag-fluo-4
is an ER Ca*" indicator. The rhodamine 123 complex assay is
suitable for the determination of mitochondrial Ca** concen-
trations in various living cells owing to its simple operation
and stable performance. It can be quantified by fluorescence
spectrophotometry to detect aggregation in mitochondria and
thereby to measure the Ca** content (179-184). At present,
Fluo-3 is a widely used typical single-wavelength fluorescent
indicator with an excitation wavelength in the visible light
range (185,186). The maximum absorption peak and maximum
emission wavelength are located at 506 and 526 nm, respec-
tively. The fluorescence intensity of Fluo-3 combined with Ca?*
is ~40 times higher than that of free cells, thus avoiding the
fluorescence interference of the cells themselves (185,187). As
a long-wavelength indicator, Fluo-3 can be used in confocal
laser imaging studies that can analyze the distribution of Ca?*
in individual intact living cells and distinguish mitochon-
drial Ca** from Ca®* in other organelles within the cell; this
method is suitable for mitochondrial Ca** in various living
cells and is easy to operate, stable in performance and highly
specific (155,187). However, the current mitochondrial Ca*
fluorescent probes cannot distinguish mitochondrial Ca** from
different cells.

Detection of mitochondrial permeability transition pores.
mPTP is a class of protein complexes between the inner and
outer mitochondrial membranes that permit the passage of
substances with a molecular weight of <1.5 kDa and serve as
the structural basis for transitions in mitochondrial perme-
ability (188-191). Additionally, mPTP is very sensitive to
changes in intracellular and extracellular ion concentrations
and serves an important role in signal transduction systems.

It is currently hypothesized that the abnormal opening of
mPTP is closely associated with abnormal changes in Ca*
concentrations, oxidative stress and mitochondrial DNA
(mtDNA) mutations (154,188,189,192,193). By contrast,
MMP and mitochondrial Ca** concentrations are the prin-
cipal drivers of mPTP opening, resulting in the release of
cytochrome c and other substances associated with cell death
into the cytosol (191,192,194-197). This leads to mitochon-
drial swelling and reduced mitochondrial respiratory chain
activity, which can cause various diseases, such as neurode-
generative diseases and cancers (190,198-200). Furthermore,
studies have shown that PINK1 can inhibit mPTP opening
by downregulating intracellular ROS levels, suggesting that
mitochondrial autophagy serves a regulatory role in mPTP
opening (191-193). Various methods have been developed for
detecting mPTP, such as the patch-clamp, spectrophotometric
and active substance labeling methods. The patch-clamp
method is the earliest, originating in 1976 and can reflect ion
channel activity by recording ion channel currents to evaluate
mitochondrial function (188,189,201). As the magnification
of AFM is as high as 1 billion times, the opening of mPTP
can be directly observed, which can serve a guiding role in
the abnormal opening of mPTP (202-205). Fully automated
patch-clamp techniques have recently emerged; these are
simple in operation and have greatly improved efficiency but
are only applicable to the detection of cells in suspension.
Compared to the active substance labeling and patch-clamp
methods, spectrophotometry is simpler and more commonly
used.

The calcein-cobalt fluorescent probe technique is an
emerging technique for the detection of mPTP and is simple in
operation and highly sensitive (Fig. 2). Calcein-AM (190,194,
198,206,207), in which the acetylmethoxy methyl ester (AM)
group enhances the hydrophobicity of the stain for easy penetra-
tion of the living cell membrane, is used to fluorescently label
living cells. Next, calcein-AM is cleaved by intracellular ester-
ases to yield highly fluorescent and polar calcein (208-210).
When cells are incubated with calcein and Co**, both enter the
cytoplasm; however, calcein is further captured by mitochon-
dria (211,212). Calcein that accumulates in the mitochondria
exhibits fluorescent staining, whereas calcein remaining in the
cytoplasm or released from the mitochondria into the cyto-
plasm is rapidly quenched by Co** (213-219). Under normal
physiological conditions, mPTP opens transiently and calcein
that enters the cytoplasm from the mitochondria is rapidly
quenched. In pathological states, such as calcium overload and
oxidative stress, mPTP can appear to be continuously open and
Co in the cytoplasm can enter the mitochondria to quench
the calcein fluorescence, resulting in a gradual decrease in
fluorescence intensity in the mitochondria, thus indicating the
degree of mPTP opening (195,196,220-222).

Determination of mitochondrial ATP. ATP is often considered
the primary energy currency of cells and is primarily derived
from the mitochondria (137,223-228). It serves major roles
in material transport, energy conversion and information
transfer. Mitochondria are sensitive to external environmental
stimuli, such as hypoxia, oxidative stress, toxic substances and
high glucose. Once mitochondria are damaged, ATP produc-
tion decreases and free radical production increases, which
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Figure 2. The working mechanism of calcein-AM probe when mPTP is abnormally opened: D Calcein-AM and Co?* enter the cell, @ Calcein-AM is
then cleaved by intracellular esterase, 3 Calcein is quenched by Co** and @ Co* quenches calcein through abnormally open mPTP. mPTP, mitochondrial

membrane permeability transition pore.

affects a number of cellular processes and contributes to the
development of a number of diseases, such as Parkinson's
disease, cancer, cardiovascular disease and endocrine dysfunc-
tion (224-227). Therefore, ATP levels are a key indicator of
the status of cellular energy metabolism and mitochondrial
function.

Analyzing ATP levels requires freshly extracted mito-
chondria, as mitochondria must remain intact and in a coupled
state (229). Several techniques are available to measure
mitochondrial ATP levels, including chromatography, electro-
phoresis, high-performance liquid chromatography (HPLC)
and enzymatic analysis (225,227,229-232). Chromatography
and electrophoresis are chemical methods that were developed
in the 18 and 19th centuries and have gradually improved.
Classic liquid chromatography uses a large-diameter glass tube
column and a difference in liquid levels at room temperature
and atmospheric pressure to force the mobile phase (231,232).
However, this technique has low column efficiency and is very
time-consuming (often requiring several hours). HPLC was
developed based on classic liquid chromatography following the
introduction of gas chromatography theory in the late 1960s.
The differences between HPLC and classic liquid chromatog-
raphy include a faster analysis speed, smaller and more uniform
particles as packing material and high column efficiency of
the small particles. However, this causes high resistance and
requires high pressure to force the mobile phase; therefore,
this technique is also known as high-speed liquid chromatog-
raphy (233-235). HPLC can be used to determine differences in
cellular energy substances in different states, is easy to operate
and has high sensitivity (233-236). The enzymatic method is
based on spectrophotometry, where ADP production is assessed
by measuring the absorbance of NAD* in phosphoenolpyru-
vate (237-240). Fluorescence analysis techniques have been
improved in recent years and are commonly used to determine
mitochondrial ATP synthesis activity (241-244). For example,

in the luciferin-luciferase luminescence method, luciferin
is rapidly oxidized under the action of luciferase, producing
green fluorescence and the amount of luminescence is linearly
correlated with the level of ATP (245,246). This is a fast and
accurate method; however, fluorescein is an amphiphilic
molecule whose carboxyl group is charged at physiological pH
and thus does not easily cross the cell membrane (244-246). A
novel synthetic fluorescent probe called Mito-Rh can specifi-
cally identify ATP in mitochondria with high sensitivity and a
detection range of 0.1-10 mM. In another method, the level of
ATP can be determined directly by measuring the amount of
inorganic phosphate based on the principle that ATP gives rise
to ADP and inorganic phosphate (225). In addition, FRET can
also be used to detect the level of ATP synthesis after labeling
the ATP synthase subunit. When CFP and YFP are labeled
on ATP synthase subunits, when the ATP synthase activity is
enhanced, the interaction between the subunits is enhanced, the
shortened distance between the subunits brings CFP and YFP
closer to each other and FRET occurs and CFP excites YFP
to emit yellow fluorescence. The lower the green fluorescence
intensity received by the detector, the higher the ATP synthase
activity and the higher the ATP level. When ATP synthase
activity is low, the interaction between subunits is weakened,
FRET hardly occurs and CFP is excited at this time and the cell
emits green light.

In addition, a multi-color ATP indicator has appeared in
recent years. Different from the previous indicators that can
only specifically detect intracellular ATP, the multi-color ATP
indicator is based on a single fluorescent protein indicator
with red, green and blue colors (247-249). Alternatively, it can
simultaneously detect ATP in different organelles in the same
cell and simultaneously detect ATP dynamics in the mito-
chondria of mammalian, plant and even worm cells and will
have an assured role in promoting energy metabolism research
in the future (225,226).
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Detection of mitochondrial respiratory chain complexes. The
mitochondrial respiratory chain, with functions in energy
production, the regulation of cell death and calcium metabo-
lism (183,250-253), is located on the inner mitochondrial
membrane and consists of five complexes. Mitochondrial
respiratory chain complex I (NADH oxidase) and mitochon-
drial respiratory chain complex II (succinate dehydrogenase)
are the major elements for electrons entering the mitochon-
drial electron transport chain (ETC). Complex I oxidizes
NADH and transfers electrons to coenzyme Q (254-257).
Complex II transfers electrons from succinate to coenzyme Q,
a process that does not involve proton transport (258-260).
Mitochondrial respiratory chain complex III (cytochrome
c reductase) is an essential protein for mitochondrial oxida-
tive phosphorylation, the gatekeeper of the mitochondrial
respiratory chain and a major source of third reactive oxygen
species. Complex III transfers electrons from coenzyme Q to
cytochrome ¢ while using the released energy to pump protons
into the intermembrane space. The mitochondrial respiratory
chain complex IV (cytochrome c oxidase) is the terminal
electron acceptor of the mitochondrial electron transport
chain. Complex IV transfers electrons from cytochrome c
to oxygen, half the number of protons is synthesized into
water and the other half is pumped into the intermembrane
space. Mitochondrial respiratory chain complex V and the
above four complexes complete oxidative phosphorylation
to generate ATP, which is called ATP synthase, also known
as FIFO-ATPase (254,260-265). The energy released by
complex V through the electron transport chain during respira-
tion or photosynthesis is first converted into a transmembrane
proton (H*) gradient and the proton then flows along the
proton gradient and passes through ATP synthase to enable
ADP+Pi to synthesize ATP (266-269). It is also hypothesized
that abnormalities in mitochondrial complexes are closely
associated with mitochondrial encephalopathy, mitochondrial
liver disease and mitochondrial nephropathy (265). It should
be noted that the mitochondrial respiratory chain complex
is closely related to the occurrence of tumors (251,270-272).
Therefore, mitochondrial complex inhibitors may be used as
a new treatment for tumors (252,253,260,273). Therefore, the
accurate detection of mitochondrial complexes is essential
and spectrophotometric assays remain the first-line technique
for detecting the activity of mitochondrial respiratory chain
complexes I-V (266,274,275).

Samples are generally selected from purified mitochondria
and 4-40 pug of mitochondrial protein is required per respi-
ratory chain complex assay (257,269,276-279). To compare
the activity of mitochondrial respiratory chain complexes
in different cells or tissues, the activity of citrate synthase
in the Krebs cycle is measured simultaneously as a control
and the reaction system is carried out at 30°C in a volume of
200 pl or 1 ml. The activity of complexes I and V is directly
proportional to, and can be determined by measuring, the
oxidation rate of NADH, which is measured as the decrease in
absorbance at 340 nm (280). In the oxidation of succinate cata-
lyzed by complex 11, 2,6-dichlorophenolindophenol (DCPIP)
is used as a dye and absorbance at 600 nm decreases as
DCPIP decreases (259,281,282), which is used to measure the
activity of complex II (283-287). The activity of complexes III
and IV can be determined by measuring cytochrome activity

(absorbance at 550 nm) (268,288-294). However, the spectro-
photometric method is susceptible to external biochemical
interference that can lead to changes in enzyme kinetics
(chemicals in the liquid or gas phase react with the sample
resulting in a change in the absorbance of the sample), which
can have serious effects on the sensitivity and accuracy of the
assay (255,258,280,295-298). In addition, western blotting
can directly reflect the expression level of respiratory chain
complexes I-V in the band by using the specific antibody
reaction of the complex, which has been widely used in
experiments related to mitochondrial research (274,296,297).
However, the protein expression level and protein activity are
occasionally not correlated and spectrophotometry is still
the preferred method for detecting mitochondrial respiratory
chain complexes. In recent years, great progress has been made
in the non-invasive measurement of mitochondrial complexes
using near-infrared spectroscopy. This method is similar
to spectrophotometry in principle but is less affected by the
external environment (265-268). The fundamental reason why
near-infrared light can achieve non-invasive optical measure-
ment is that in the near-infrared light region of 600-900 nm,
biological tissue is relatively transparent because the absorp-
tion of water and hemoglobin in this wavelength region is
very small. As an ‘optical window’, some studies have used
it to detect the activity of complex IV to judge the severity
of depression. Myoglobin is essential for oxygen metabolism
in muscle tissue, including a group of blood cells similar to
hemoglobin. The most important of which is complex 1V,
which has been used to detect the activity of complex IV to
judge the severity of depression (299,300). However, due to the
large amount of samples required for near-infrared spectros-
copy and different instrument models, it has severe limitations
and has not been widely used (183,250-253).

Mitochondrial respiratory chain function can also be
determined by RCR, which reflects both mitochondrial
integrity and mitochondrial oxidative respiratory chain
function (256,265,267,301).

Measurement of ROS. As the central organelle for cellular
oxidative phosphorylation, mitochondria are the principal
site of ROS production (3,302-305). Under physiological
conditions, the intracellular antioxidant defense system is in
equilibrium with oxygen radicals. The levels of intracellular
ROS, including superoxide radicals, hydrogen peroxide and its
downstream products (peroxides and hydroxyl radicals), are
maintained at low physiological ranges. Under pathological
conditions, the balance between the intracellular antioxidant
system and oxygen radicals is disrupted. When intracellular
ROS levels are too high, mitochondrial structure and function
are impaired and cytochrome c is released through mPTP,
resulting in damage to mitochondrial enzymes, lipids and
nucleic acids as well as oxidative stress (303,306-310). ROS
can also attack mitochondrial DNA (mtDNA) to produce
oxidative damage, resulting in reduced mitochondrial ATP
synthesis and MMP damage. Therefore, the functional status
of mitochondria can be determined by measuring ROS
levels (311-313).

Common methods for detecting ROS include the chemical
reaction method, selective electrode method, spectrophotom-
etry and direct detection by kits. ROS shows high reactivity and
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can react with different compounds to produce various prod-
ucts, which can be analyzed quantitatively or qualitatively. The
chemical reaction method is characterized by high sensitivity,
low cost and simple operation; however, it has poor specificity
and measurement results are easily affected by some redox
reactions or enzyme-catalyzed reactions. Tetranitromethane,
nitrotetrazolium blue chloride (NBT), cytochrome c,
epinephrine and reduced coenzyme I are commonly used
for spectrophotometric methods; these react with superoxide
anion radicals to produce ferrous cytochromes with a specific
absorbance (detectable at a wavelength of 550 nm), which can
be used to directly measure ROS levels (307,314-317). The
NBT assay is highly sensitive and is commonly used for the
histochemical localization of oxygen radicals; however, it is
difficult to measure dynamic changes in oxygen radicals in
cells or aqueous systems. Cytochrome ¢ has oxidative activity
and can be used to detect the production of oxygen radicals.
However, cytochrome c is easily reduced by other reducing
agents and is therefore limited for the accurate localization
of oxygen radicals. In the last decade, a number of ROS kits
have been developed to detect intracellular or mitochondrial
ROS (mtROS) levels directly. Intracellular ROS are usually
measured using the fluorescent probe DCHF-DA, which
is non-fluorescent and can freely cross the cell membrane.
After DCHF-DA enters cells, it is hydrolyzed by intracellular
esterases to generate DCHF, which cannot enter or exit the
cell membrane, thus allowing the probe to easily label the
cell. In the presence of ROS, DCHF is oxidized to produce
the fluorescent substance DCF, whose fluorescence intensity
is directly proportional to intracellular ROS levels. mtROS is
usually measured using the fluorescent probe MitoSOX, which
is highly specific to mitochondrial ROS and is characterized
by simple operation, low background signals, wide linear
range and high detection efficiency; however, it requires the
immediate imaging of assay results and protection from light
to prevent fluorescence quenching. Prior to the widespread
use of kits, ROS levels were indirectly measured by detecting
products of oxidative damage. Levels of malondialdehyde
(MDA) reflect the degree of lipid peroxidation in the body and
can be measured using the thiobarbituric acid (TBA) chemical
colorimetric method. Condensation under acidic conditions
generates the MDA-TBA complex, a red product with a
maximum absorption peak at 535 nm, which can be used to
indirectly determine the MDA content by spectrophotometry,
indicating ROS levels. However, this technique has poor sensi-
tivity and is prone to contamination. Fluorescent protein-based
ROS detection methods are designed by combining fluorescent
proteins and prokaryotic redox-sensitive proteins (318,319).
The recombinant proteins are introduced into cells via
plasmids or adenoviruses and target organelles to detect intra-
cellular redox status (320,321). Redox-dependent fluorescence
spectral changes of recombinant proteins are achieved through
structural changes of disulfide bonds and part of the backbone
under oxidative conditions (319,321).

Electron spin resonance (ESR) technology has emerged in
recent years. Also known as electron paramagnetic resonance
(EPR), its principle is similar to nuclear magnetic reso-
nance (322-325). The sample is controlled in a fixed frequency
microwave and the applied magnetic field is then changed so
that the electron energy level difference is the same as the

microwave energy (326,327). Unpaired electrons can move
between the two energy levels and the net absorption energy of
the microwave can be measured to obtain the ESR spectrum.
Due to the high reactivity and short lifespan of ROS, the ESR
signal is not easy to detect directly. The combination of ESR
and spin traps can make up for this defect. The spin-electron
trapping agent reacts with free radicals to generate relatively
stable free radical addition products that are easily detected
by ESR, which is then determined by ESR technology. This
powerful and reliable technique can unambiguously measure
the presence of free radicals in biological samples. ROS
is the most direct and effective method for detecting free
radicals and is widely used in physics, chemistry and biomedi-
cine (328-331).

Detection of mtDNA. Human mitochondria carry a small
circular double-stranded genome of 16569 bp known as
mtDNA, which encodes mitochondrial 16S and 12S ribosomal
RNA, 22 mitochondrial tRNA molecules and 13 respiratory
chain proteins. Each organism contains only one type of
mtDNA and mutations such as the conversion, inversion, inser-
tion, or deletion of one or several bases of mtDNA, resulting
in more than one type of mtDNA within an individual, are
referred to as mtDNA heterogeneity (332-335). Owing to the
lack of protective histones and effective DNA repair systems,
the mutation frequency of mtDNA is ~10 times higher than
that of nuclear DNA (336-339). Moreover, mutated mtDNA
gradually accumulates and can cause irreversible damage
to the nervous, cardiovascular, respiratory and reproductive
systems after reaching a certain threshold (60-80%). In addi-
tion to these diseases, studies have also shown that mtDNA
mutations are closely associated with the development of
infertility (308,339-342). mtDNA dysfunction can be both
quantitative (e.g., mtDNA copy number variation and dele-
tions) and qualitative (e.g., strand breaks, point mutations and
oxidative damage) (343-345).

mtDNA can be released from the cell as circulating free
mitochondrial DNA (CCF-mtDNA) via extracellular vesicles
(EVs) (346,347). CCF-mtDNA can serve as a damage-associ-
ated molecular pattern leading to the activation of inflammatory
pathways, a process closely associated with TLR9. Numerous
reports have shown that elevated levels of CCF-mtDNA are
associated with various TLR9-dependent pathologies, such as
rheumatoid arthritis, atherosclerosis, hypertension, acute liver
injury and nonalcoholic steatohepatitis (48,348).

mtDNA damage can be detected using PCR, fluorescence
in situ hybridization (FISH), DNA sequencing technology
and the probe method, among others. The principle of DNA
sequencing is to use DNA polymerase to extend the primers
bound to the template of the undetermined sequence until a
chain-terminating nucleotide is incorporated. Termination
of replication and detection with isotopic labeling is the gold
standard for detecting heterogeneity, but speed is limited when
working on large-scale projects. The speed of large-scale proj-
ects was not guaranteed until the advent of high-throughput
sequencing. PCR, as a molecular biology technology that
emerged in the 1980s, is a method for enzymatically synthe-
sizing and amplifying specific nucleic acid fragments in vitro
based on the semi-conservative replication mechanism of
DNA. This can purposefully amplify target regions and
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is especially suitable for enriching small-scale genomes
such as mtDNA (349-353). However, mtDNA is present in
primer-binding regions, but accuracy is not sufficient due to
heterogeneity. Over time, reverse transcription-quantitative
(RT-q) PCR is able to monitor the number of amplified DNA
molecules in real time, facilitating the determination of
mtDNA in individual cells, along with the copy number and
other impairments (deletions) (350-352). As a contempora-
neous product of PCR, FISH is also a classic specific detection
method. Ituses fluorescently labeled specific nucleic acid probes
to hybridize with corresponding target DNA or RNA molecules
in cells. Fluorescent signaling with relatively poor specificity
and insufficient hybridization compared to PCR is not the
method of choice for the detection of mtDNA (149,354-362).
Moreover, after the mitochondria are separated from cells or
tissues, the DNA in the remaining material is extracted (kits
can be used) and the DNA of the sample can be sequenced.
qPCR or chromatin immunoprecipitation (ChIP) experimental
methods can be used to detect the level of CCF-mtDNA, among
which ChIP is often used to verify the binding of mtDNA to
downstream signaling pathways, such as TLR9Y inflammatory
pathway or cGAS signaling pathway (335,363-371). As a DNA
sensor in the cytoplasm, cGAS can recognize CCF-mtDNA
and then catalyze the formation of the second messenger
cGAMP (2'3'-cGAMP) to activate the interferon-stimulated
gene-dependent signaling pathway. In addition, CCF-mtDNA
containing unmethylated DNA (CpG DNA) fragments can be
recognized by TLRY, causing TLR9 dimerization and activa-
tion of MyD88-mediated inflammatory pathway.

Unrepaired depurinated/depyrimidinated sites (AP sites) in
mtDNA lead to the misbinding of nucleotides, which can have
serious downstream effects (372-374). Therefore, the rapid and
accurate quantification of AP sites in mtDNA is crucial for the
real-time assessment of mtDNA oxidative damage. Researchers
have used a specific fluorescent probe (BTBM-CN2) for the
real-time detection of mtDNA (375-378). At ~20 sec after
contact with AP sites, red fluorescence is detectable at 598 nm
and after ~100 sec, green fluorescence is detectable at 480 nm.
More AP sites result in green fluorescence with greater
intensity and duration and the degree of mtDNA damage can
be quantified based on the time of appearance and intensity
of fluorescence at 480 nm. Doxorubicin (Dox), a common
anticancer drug, not only causes damage to the nuclear DNA
of cells but can also be rapidly inserted into the mtDNA of
living cells, causing the aggregation of mtDNA nucleoids
and changing the distribution of nuclear proteins (375-382).
Therefore, after Dox induces mtDNA damage, morphological
changes of mtDNA can be tracked in real time using the
two-photon fluorescent probe CNQ, which emits red fluores-
cence and is localized to mtDNA. When incubated with Dox,
dynamic changes in mtDNA can be observed, providing a new
method for studying mtDNA damage in real time (383,384).

5. Treatment of mitochondrial diseases

In addition to primary mitochondrial disease caused by mtDNA
damage, mitochondrial dysfunction occurs in a number of
infectious and non-infectious diseases (262,385,386), such as
inflammation, neurodegeneration, diabetes, obesity and cardio-
vascular disease and several therapies targeting mitochondria

have been developed (Table II). Mitochondrial transplantation
and mitochondrial replacement can fundamentally address
the inadequate energy supply in pathological states and have
been applied in clinical settings for the treatment of pediatric
congenital heart disease (385).

Leber hereditary optic neuropathy (LHON), the most
common primary mitochondrial disease, is a maternally-inher-
ited bilateral-blinding optic neuropathy mainly caused
by mtDNA mutations, including m.3460G>A (MT-NDI),
m.11778G>A (MT-ND4) and m.14484T>C (MT-ND6), of
which m.11778G>A is the most common mutation (387,388).
These mutations can affect the mitochondrial respiratory
chain complex I of retinal ganglion cells, impair mitochon-
drial function and increase the production of reactive oxygen
species, leading to apoptosis and optic nerve degeneration
and atrophy, which further leads to rapidly progressive loss
of binocular vision (389-391). Treatment of LHON is mostly
based on ectopic expression, that is, intravitreal injection of
adeno-associated viral vectors with mitochondrial targeting
sequences and then guiding the translated protein into mito-
chondria to restore mitochondrial function, which has been
successfully and safely applied to cell models. Transplant
into an inducible LHON animal model that preserves retinal
ganglion cells and visual function (392,393).

The mitochondrial diseases associated with mtDNA
deletion mainly include chronic progressive external
ophthalmoplegia (CPEO), Kearns-Sayre syndrome (KSS)
and Pearson syndrome. CPEO is mostly associated with
m.3243A>G(MT-TL1) deletion, which manifests as progressive
paralysis of the ocular muscles, resulting in ocular movement
disorders and ptosis, which usually appear in late childhood
or early adulthood (394,395). KSS is a more severe syndrome
than CPEO and is mostly associated with m.8993T>G (APT6)
deletion. Its main clinical manifestations are progressive
external ophthalmoplegia and retinitis pigmentosa, usually
occurring before the age of 20 (396-399). Other symptoms may
include mild skeletal muscle weakness, hearing loss, cognitive
impaired cognitive function and diabetes. Pearson's syndrome
is a syndrome caused by sideroblastic anemia and pancreatic
exocrine insufficiency. There are very few cases (~100 cases
worldwide) that may be related to the deletion of ATPase 6
and 8. Most patients die during infancy; however, a minority of
patients who survive into adulthood tend to develop symptoms
of KSS syndrome. Due to the double-membrane structure of
mitochondria and the inability of foreign nucleic acids to recom-
bine on endogenous mtDNA (168,400,401), there is currently
no effective method to directly import nucleic acids into mito-
chondria and the localization of proteins to mitochondria is a
routine practice in the treatment of mitochondrial diseases. In
principle, expression of mitochondrial-targeted DNases that
specifically recognize mutated sequences can remove mutated
mtDNA, or at least reduce its abundance in a heterogeneous
background. Restriction endonucleases, zinc finger nucleases
and transcription activator-like effector nucleases have been
tested and proven effective; these specific enzymes can be
used to eliminate aberrant mtDNA and thereby reduce the rate
of aberrant mtDNA in cells (402-406).

In addition, mitochondrial neurogastrointestinal
encephalomyopathy, a rare mitochondrial disease, is often
associated with TYMP gene mutations, manifesting as
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Table II. Continued.

Application

Effect on
mitochondria

Representative

Treatment

Mitochondrial

intervention Mechanism status (Refs.)

method

diseases

Author, year

Lee et al,2019
Wallace, 2018

Strobbe and Campanella, 2018

Wang et al, 2018
Kim et al, 2017

Graphene

Lleonart et al, 2017
Tian et al, 2021
Kim et al, 2017

YIN and SHEN: METHODS IN MITOCHONDRIAL RESEARCH

Chen et al, 2017
Jung et al, 2017

Roth et al, 2020
Nash et al, 2021

mtDNA, mitochondrial DNA; MSC-EVs, mesenchymal stem cell-derived extracellular vesicles; TPP, triphenylphosphine; MMP, mitochondrial membrane potential.

splanchnic neuropathy and marked motor impairment, often
combined with CPEO, sensorimotor polyneuropathy and
white matter encephalopathy (407-409). With advances in
gene editing technology, CRISPR/Cas9 has been proposed for
the treatment of mitochondrial diseases, aiming to eliminate
abnormal mtDNA sequences through the principles of bacte-
rial immunology (410,411).

To treat primary mitochondrial diseases, gene therapy
based on ectopic expression is still the first choice; however,
the application of viral vectors in live animals to correct any
gene mutation still has the following significant problems:
High cost (390,412-415), carcinogenicity and immunogenicity.
Non-viral vector-mediated in sifu mitochondrial gene therapy
may be a promising approach to overcome the bottleneck
of existing gene therapy LHON, such as liposome-based
nanoparticles, which require further investigation (416-421).

Mesenchymal stem cell-derived EVs are a promising nano-
therapeutic strategy to effectively attenuate mitochondrial
damage and the inflammatory response by promoting mito-
chondrial transcription factor A expression and preventing
mtDNA damage and leakage from target cells (422).

Oxidative stress caused by mitochondrial dysfunction is
one of the etiologies of metabolic disease and is a potential
target for the treatment of metabolic and neurodegenerative
disorders (55,168,423-426). A number of antioxidants, such
as vitamin E, ubiquinone, N-acetylcysteine, glutathione and
melatonin, can effectively scavenge mitochondrial ROS
and regulate redox processes, thus alleviating or curing
disease. Antibiotics (e.g., tetracyclines and actinomycins),
drugs (e.g., creatine and ursodeoxycholic acid) and exer-
cise can significantly improve oxidative stress and balance
mitochondrial fission and fusion, thus increasing the
number of mitochondria, contributing to the treatment of
cancer (400-406,426-442). SS31 and mitoTEMPO are novel
mitochondrial-targeted antioxidants that have a scavenging
effect on ROS (443-446). In addition, SS31 accumulates
in the mitochondrial membrane to protect and restore the
mitochondrial structure without affecting healthy mito-
chondria (162,447-453). Thus, SS31 and mitoTEMPO have
protective effects on a variety of diseases, including heart
and kidney-related diseases, as well as sepsis and diabetes,
which have been demonstrated in a variety of animal
models (454-457). The use of nanomaterials for mitochon-
drial targeting therapy has become a recent focus of research.
Nanomaterials are materials with at least one of three spatial
dimensions at the nanometer scale (1-100 nm). They are a
new generation of materials composed of nanoparticles with
sizes between atoms, molecules and macroscopic systems
and are widely used in the medical field owing to their
large specific surface area and excellent biocompatibility.
Ideally, medical nanomaterials should remain quiescent in
normal tissues but accumulate precisely and act in mito-
chondria under pathophysiological conditions (404,458,459).
Delocalized lipophilic cations (DLCs), such as triphe-
nylphosphine (TPP) and mitochondria-penetrating peptides
(MPPs), serve a major role in mitochondria-targeted thera-
pies. DLCs can accumulate specifically in the mitochondria
of tumor cells and increase their MMP, leading to altered
mitochondrial membrane permeability and inducing apop-
tosis (56,130,400,403,428,458-470). Studies have shown that
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Figure 3. The development of mitochondrial research methods. MPP, mitochondria-penetrating peptides; mPTP, mitochondrial membrane permeability

transition pore; ROS, reactive oxygen species.

graphene has a large specific surface area, good targeting and
high biocompatibility, making it a promising nanodelivery
system (441,471-473). Mitochondrial biogenesis is driven by
PCG-1a, which can increase the number of mitochondria in
the cell and thus meet the evolving energy demands of the
cell, alleviating ATP deficiency in patients with mitochon-
drial diseases. Promoting mitochondrial biogenesis is also
an important component of mitochondrial therapeutics (474).
Resveratrol, 5-aminoimidazole-4-carboxamide riboside,
epicatechin and RTA-408 have significant pro-mitochon-
drial biogenesis effects; the treatment of mice with these
drugs enhances the expression of mitochondrial electron
transport chain proteins and mitochondrial transcription
factors and increases the abundance of mitochondrial
cristae (54,401,402,405,406,441, 471-478).

6. Summary and outlook

As the powerhouses of the cell, mitochondria are at the
center of cellular oxidative phosphorylation and are critical
for growth and development as well as the development
of a number of diseases. Mitochondrial abnormalities can
cause disturbances in the intracellular environment and can
lead to a variety of diseases, such as mitochondrial heart
disease, mitochondrial encephalopathy, mitochondrial
myopathy and even various pathologies of the reproductive
and respiratory systems. Therefore, the accurate detection
of mitochondrial abnormalities is essential for clinical
guidance.

Since the beginning of the last century, a number of methods
for mitochondrial research have been developed (Fig. 3), from the
discovery of mitochondria as intracellular granular structures to
the observation of mitochondrial microstructures via EM and
the use of fluorescent probes to detect physiological indicators
within mitochondria. The application of these methods has
provided theoretical foundations for the detection and treat-
ment of mitochondrial diseases. Accordingly, the treatment of
mitochondrial diseases has gradually evolved from drug-based
therapy to multidisciplinary combination therapies, such as the
use of nanomaterials to precisely transport therapeutic drugs
into mitochondria for targeted drug delivery, substantially
improving therapeutic efficiency. However, the methods by
which therapeutic efficacy is achieved still warrant investiga-
tion. The combined application of biomedicine and material
science may be a promising means of detection and treatment.
Notably, the specific molecular mechanism underlying the
pathogenesis of the mitochondrial disease remains unclear.
Current monitoring and treatment strategies cannot completely
cure mitochondrial disease but only alleviate symptoms or slow
disease progression. Therefore, methods for detection and treat-
ment that are specific to the molecular mechanisms are needed.
Using multi-omics and artificial intelligence, artificial mitochon-
drial models can be established through molecular co-assembly
technology and mitochondria-targeted drugs can be screened to
conduct in-depth discussions on abnormal mitochondria, which
may elucidate the pathogenesis of mitochondrial diseases at the
molecular level and provide new treatments for mitochondrial
diseases.
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