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PIM1 promotes hepatic conversion by
suppressing reprogramming-induced
ferroptosis and cell cycle arrest

Yangyang Yuan1,2,7,8, Chenwei Wang 3,8, Xuran Zhuang2,8, Shaofeng Lin 3,8,
Miaomiao Luo1,8, Wankun Deng 3, Jiaqi Zhou 3, Lihui Liu1, Lina Mao1,
Wenbo Peng2, Jian Chen 4,5, Qiangsong Wang1, Yilai Shu 4,5 ,
Yu Xue 3,6 & Pengyu Huang 1,2

Protein kinase-mediated phosphorylation plays a critical role in many biolo-
gical processes. However, the identification of key regulatory kinases is still a
great challenge. Here, we develop a trans-omics-based method, central kinase
inference, to predict potentially key kinases by integrating quantitative tran-
scriptomic and phosphoproteomic data. Using known kinases associated with
anti-cancer drug resistance, the accuracy of our method denoted by the area
under the curve is 5.2% to 29.5% higher than Kinase-Substrate Enrichment
Analysis. We further use this method to analyze trans-omic data in hepatocyte
maturation and hepatic reprogramming of human dermal fibroblasts, unco-
vering 5 kinases as regulators in the twoprocesses. Further experiments reveal
that a serine/threonine kinase, PIM1, promotes hepatic conversion and pro-
tects human dermal fibroblasts from reprogramming-induced ferroptosis and
cell cycle arrest. This study not only reveals new regulatory kinases, but also
provides a helpful method that might be extended to predict central kinases
involved in other biological processes.

Phosphorylation is one of the most important post-translational
modifications (PTMs) in proteins. The process is catalyzed by protein
kinases (PKs), and has been well documented as a fundamental reg-
ulatory mechanism of cellular activities such as signal transduction1,
cell cycle progression2, autophagy3, and cell fate determination4,5. As
rapidly responsive signal transduction processes, changes in protein
phosphorylation are among the early events in response to cell lineage
reprogramming signals4–7. To fully understand the signaling network
of cell lineage determination and reprogramming, it is therefore

necessary to identify key regulatory PKs responsible for modification
of phosphorylation sites (p-sites) in downstream regulators such as
transcription factors (TFs) and other proteins.

PKs are regulated by a variety of cellular mechanisms, such as
transcription, translation, PTMs, and ligands. Thus, kinome kinetics
cannot be fully delineated from a single type of omics data alone,
making it challenging to systematically identify PKs that participate in
regulation of a defined cellular process. In the past years, researchers
have typically conducted functional screens either using small hairpin
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RNAs (shRNAs) or kinase inhibitors to identify potentially important
PKs. For example, Sakurai et al. individually examined the effects of
3686 shRNA lentiviruses that targeted 734 PK genes to screen PKs that
regulates the generation of induced pluripotent stem cell (iPSC). They
successfully determined that TESK1, a serine/threonine PK, promotes
reprogramming of human fibroblasts to iPSCs8. However, such meth-
ods are usually expensive, time-consuming, and labor-intensive6–8, and
only a limited number of PKs crucial for cell lineage reprogramming
have been identified thus far. Amore efficient approach for systematic
analysis is of great importance to facilitate understanding of PK reg-
ulatory mechanisms.

Here, we integrated quantitative transcriptomic and phospho-
proteomic data, and develop a trans-omics-based algorithm, central
kinase inference (CKI), to identify potentially central PKs in regulating
a defined biological process. Using CKI, we predicted 28 potentially
central PKs and successfully validated three catalytic subunits of
cAMP-dependent PKs, Prkaca, Prkacb, and Prkx, to promote mouse
hepatocytematuration. Furthermore, we explored the kinome kinetics
of hepatic lineage conversion by quantifying transcriptomes and
phosphoproteomes of human dermal fibroblasts (HDFs) infected with
lentivirus encoding the hepatic reprogramming TFs, FOXA3, HNF1A,
and HNF4A (FHH). A serine/threonine PK, PIM1, was identified as a key
regulator in promoting hepatic-lineage transition by overcoming cell
fate conversion-induced ferroptosis and cell cycle arrest, and acting as
a protective molecule by antagonizing the reprogramming barrier.
Taken together, this study not only identifies the central PKs, but also
develops a computational method that might be helpful for discovery
of regulatory PKs associated with other key biological processes.

Results
A trans-omics-based method for prediction of central PKs
To infer potentially central PKs in defined biological processes, we
developed CKI, a trans-omics-based computational method to analyze

and integrate transcriptomic data derived fromRNA sequencing (RNA-
seq) and phosphoproteomic data quantified by tandem mass tag
(TMT) labeling coupled with liquid chromatography-tandem mass
spectrometry (LC-MS/MS) (Fig. 1). The basic hypothesis behind CKI
was that molecular changes at both the transcriptomic and phospho-
proteomic levels might be informative in predicting the functional
importanceof PKs. Comparisonsweremadeof the transcriptomes and
phosphoproteomes in paired samples (control vs. treated), taking
three types of changes into consideration to synergistically predict
central PKs in response to treatment: mRNA expression, substrate
p-site intensity, and kinase-substrate network (Fig. 1), as descri-
bed below.

PK expression at the transcriptional level is essential for regulat-
ing its constitutive activity9. Thus, PKs with differentially expressed
mRNAs (DEMs) in response to treatment may be involved in orches-
trating downstream signaling. In this study, differentially expressed
PKs (DEPKs) were directly identified from transcriptomic data (Fig. 1).
Fromthephosphoproteomicdata of each sample, directed relations of
PKs with p-sites, referred to as site-specific kinase-substrate relations
(ssKSRs), were predicted using a previously developed software
package called in vivo Group-based Prediction System (iGPS). This
program integrates sequence and protein-protein interaction (PPI)
information for predicting p-sites specifically modified by 408 human
and 416 mouse PKs10. Then, we hypothesized that a PK with higher
activity might phosphorylate more p-sites with higher modification
levels, and vice versa. We therefore developed an intensity-based
approach to identify potentially central PKs based on differential
intensity of substrate p-sites between paired samples, e.g., treatment
vs. control (Fig. 1).

An alternative hypothesis was that a PK with higher activity may
produce a more positive impact on its regulatory phosphorylation
network, and vice versa. We therefore developed a network-based
method to measure the network change for each PK. From predicted
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Fig. 1 | Schematic diagram of the CKI algorithm. First, the transcriptomes and
phosphoproteomes of control and treated samples in a defined biological process
were quantified by RNA-seq and TMT-based LC-MS/MS technology. Bowtie53,
TopHat54, and Cufflinks55 were used to process the transcriptomic data, then
Cuffdiff in Cufflinks55 or edgeR49 was used to identify differentially expressed

mRNAs (DEMs) and map differentially expressed protein kinases (DEPKs). We
developed an intensity-based method and a network-based method to identify
differentially altered PKs using the phosphoproteomic data. These three types of
data were then combined to synergistically predict potentially central PKs in reg-
ulating a defined biological process.
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ssKSRs mutually quantified in a pair of samples, a kinase-substrate
phosphorylation network was re-constructed with directed relations
of PKs andp-sites. For eachPK, its downstream regulatorynetworkwas
further split into an up-regulated sub-network (up-regulated substrate
p-sites) and a down-regulated sub-network (down-regulated substrate
p-sites). The Yate’s chi-squared test was performed to identify poten-
tially central PKs statistically associated with up- or down-regulated
sub-network modules (Fig. 1). From all pairwise comparisons, the
number of positive hits were counted for each PK as the only measure
to prioritize the final candidate PKs.

CKI is a model-based method, and no prior data were used for
training. To evaluate the performance of CKI, we predicted potentially
central PKs using data from two types of previously published drug-
resistance studies, doxorubicin (DOX) resistance and genistein resis-
tance (Supplementary Note 1, Supplementary Figs. 1, 2 and Supple-
mentary Data 1)11–14. Compared to Kinase-Substrate Enrichment

Analysis (KSEA)15,16, the receiver operating characteristic (ROC) curves
were illustrated, and the area under the curve (AUC) values ofCKIwere
5.2% (0.8278 vs. 0.7871) and 29.5% (0.7912 vs. 0.6112) higher for DOX
and genistein resistance, respectively (Supplementary Fig. 1d, k).

CKI reveals cAMP-dependent PKs as key regulators for hepato-
cyte maturation
To further validate the accuracy of CKI, we analyzed the hepatocyte
maturation process in mouse liver progenitor cells (Fig. 2a). We che-
mically induced liver progenitor cells (CLiPs) frommouse hepatocytes
using a previously established protocol17. The CLiPs could then dif-
ferentiate into either CK19 + biliary epithelial cells (CLiP-BECs) that can
form ductal structures (Fig. 2b, c and e) or ALBUMIN + hepatocytes
(CLiP-Heps, Fig. 2d, e). However, CLiP-Heps generated with this dif-
ferentiation protocol are relatively immature17, meaning that
further CLiP-Hep maturation is required for the application of
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Fig. 2 | CKI-based analysis of mouse hepatocyte maturation. a Experimental
design of the trans-omics-based analysis of immature hepatocytes generated from
liver progenitor cells (CLiP-Hep) andmature hepatocytes (MH) isolated frommouse
liver. Representative image of bile duct structure (b) andCK19 immunofluorescence
staining (c) of biliary epithelial cells induced from liver progenitor cells (CLiP-BEC).
Scale bars = 100 μm. n = 4 biological replicates. d Immunofluorescence staining of
ALBUMIN in hepatocytes generated from CLiPs (CLiP-Hep). Scale bars = 100μm.
n = 3 biological replicates. e Gene expression analysis by RT-qPCR demonstrated
significant differences of hepatic and biliary marker genes between CLiP-BEC and
CLiP-Hep cells for Aat (p = 0.0067), Alb (p = 0.0007), Ae2 (p = 0.0065), Aqp1
(p = 0.0109), Cftr (p = 0.0002), Ck19 (p = 0.0065), n = 3 biological samples. Data are

shown as the mean + SD. *p <0.05, **p <0.01, ***p <0.001 (unpaired two-sided
Student’s t-test). f Number of raw and clean reads sequenced from MH and CLiP-
Hep samples (n = 3 biological samples). Box and whisker plots present the means
(lines inside the boxes), the 1st and 3rd quartiles (bottom and top bounds of the
boxes), and the extents of the data (whiskers). g Number of mapped mRNAs in
mouse cell samples (n = 3). hNumber of up- and down-regulated DEMs in CLiP-Hep
compared toMH. i Number of potentially central PKs predicted from different data
types for CLiP-Hep vs. MH. j Comparison of central PKs predicted with CKI,
KSEA15, 16, and the individual datasets comprising CKI. k Expression levels of liver
metabolic genes in CLiP-Hep cells overexpressing individual candidate central PK as
quantified by qRT-PCR (n = 3). Source data are provided as a Source Data file.
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liver-progenitor-cell-derived hepatocytes. To identify central PKs that
potentially promote the maturation of CLiP-Hep cells, we profiled the
transcriptomes and phosphoproteomes of freshly isolated primary
mouse hepatocytes (MHs) and CLiP-Hep cells (Fig. 2a).

From the transcriptomic profiling, we detected 2136 DEMs out of
23,558 quantified genes (Fig. 2f–h and Supplementary Data 2). Using
pathway and biological process annotations from the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG)18 and Gene Ontology (GO)19,
respectively, we performed functional enrichment analyses of the
DEMs. CLiP-Hep cells were deficient in metabolic pathways compared
to MHs (Supplementary Fig. 3a, b). From the phosphoproteomic data,
we obtained 10,818 quantified p-sites, including 9478 pS (87.61%), 1251
pT (11.57%), and 89 pY (0.82%) residues in 3575 proteins (Supplemen-
tary Fig. 3c, d). To test the quality of the rawMS/MSdata,we found that
4128 (44.41%) phosphopeptides could be traced by ≥ 2 spectral counts,
with an average spectral count of 2.19 counts per phosphopeptide
(Supplementary Fig. 3e). Based on the localization probability (LP)
score derived from MaxQuant20, we identified 9110 class I (LP > 0.75,
84.21%), 1452 class II (0.5 < LP≤0.75, 13.42%), and 256 class III (0.25 ≤
LP ≤0.5, 2.37%) p-sites (Supplementary Fig. 3f). From eight public
p-site databases, we found that 9839 (90.95%) of the p-sites identified
in our data were annotated in at least one database (Supplementary
Fig. 3g). The distribution of fragments per kilobase of exon per million
fragments mapped (FPKM) values of mRNAs and TMT intensities of
p-siteswere similar acrossdifferent samples (Supplementary Fig. 3h, i),
suggesting that neither transcriptomes nor phosphoproteomes
markedly changed during hepatocyte maturation. Two-way hier-
archical clustering was performed by calculating Spearman’s correla-
tion coefficient for the transcriptomic or phosphoproteomic data
between pairs of samples. The results indicated that CLiP-Hep andMH
cells could be unambiguously distinguished (Supplementary Fig. 3j, k).

Using CKI, we predicted 28 potentially central PKs that may pro-
mote the maturation of CLiP-Hep cells, and each of the three types of
data contributed to the final predictions (Fig. 2i, j and Supplementary
Data 2). Again, we found that only one PK activity-associated p-site,
Cilk1 T157, was up-regulated in CLiP-Hep cells (Supplementary Fig. 3l,
m). Prior to further validations, Nrk3 was removed because it is too
large to be packaged into lentivirus, and Eif2ak2was removed because
it induced robust cell death. We then screened the 26 remaining can-
didates by overexpression of individual PKs in liver progenitor cells
before induction of hepatic differentiation. Quantitative real-time PCR
(qRT-PCR) showed that Prkaca, Prkacb, and Prkx, all of which encode
catalytic subunits of cAMP-dependent PKs, promoted the expression
of several liver-enriched metabolic genes (Fig. 2k). Previous reports
demonstrated that cAMP is critical for thematuration of hepatocytes21,
and our results further identified Prkaca, Prkacb, and Prkx as the key
genes in cAMP signaling during hepatocyte maturation. We also ana-
lyzed the phosphoproteomic data using KSEA15,16, which predicted 19
potentially functional PKs, amongwhich the three newly identified PKs
were not included (Fig. 2j and Supplementary Fig. 3n). The successful
identification of cAMP-dependent PKs as key regulators for hepatocyte
maturation further supported the reliability of CKI.

Trans-omic analyses of early regulatory events during hepatic
reprogramming
Next, we set out to investigate central PKs regulating a less studied
biological process, hepatic reprogramming. We converted human
dermal fibroblasts (HDFs) to hepatocyte-like cells (hiHep cells) by
overexpression of FOXA3, HNF1A, and HNF4A (FHH) as previously
described22 (Supplementary Note 2 and Supplementary Fig. 4). We
thenperformed the trans-omicprofiling andCKI-basedprediction, and
validated the candidates to identify potentially central PKs in regulat-
ing hepatic reprogramming (Fig. 3a). To systematically interrogate the
early regulatory events of hepatic reprogramming, we quantified
transcriptomes andphosphoproteomesofHDFs2.25 days (FHH-2.25d)

and 5 days (FHH-5d) after FHH transduction. These time points were
chosen because liver-specific genes were starting to be induced in
FHH-2.25d cells and were induced at much higher levels in FHH-5d
cells. However, the expression levels of ALBUMIN and E-Cadherin in
HDF + FHH (5d) are far below those in HDF + FHH (14d), and are not
detectable by immunofluorescence staining (Supplementary Fig. 4e).
It is impossible to isolate hiHep cells by FACS sorting during the early
stage of hepatic conversion. Thus, the pooled cells were used for the
study. HDFs transduced with GFP for 2.25 days (GFP) were used as the
control for the trans-omic profiling (Fig. 3a).

From the transcriptomic data, we identified 136, 1044, and 767
DEMs in comparing FHH-2.25d vs. GFP, FHH-5d vs. GFP, and FHH-5d vs.
FHH-2.25d, respectively (Supplementary Fig. 5a–d, and Supplementary
Data 3, p <0.01, 2-sided negative binomial test). Interestingly, we
observed that the numbers and expression levels of DEMs increased
over time after FHH infection (Supplementary Fig. 5c, d). From the
phosphoproteomic profiling, we quantified 5031 unique phospho-
peptides from HDFs transduced with FHH or GFP (Supplementary
Fig. 5e and Supplementary Data 3). We found that 2477 (49.23%) of the
phosphopeptides were supported by ≥2 MS/MS spectra with an aver-
age spectral count of 2.89 (Supplementary Fig. 5f). We mapped these
phosphopeptides to human protein sequences, and detected 5660
non-redundant p-sites in 2260 phosphoproteins, including 4985 pS
(88.08%), 646 pT (11.41%), and 29 pY (0.51%) residues (Supplementary
Fig. 5g and Supplementary Data 3). Based on the LP score20, we
obtained 4845 class I (85.60%), 674 class II (11.91%), and 141 class III
(2.49%) p-sites (Supplementary Fig. 5h). Using data from nine public
p-site databases, we found that 5392 (95.26%) of the p-sites identified
in our data were annotated in at least one database (Supplementary
Fig. 5i).Moredetailed analyses of the trans-omicdatawerealsopresent
(Supplementary Note 2 and Supplementary Fig. 5j–p).

Through pairwise comparisons of transcriptomes or phospho-
proteomes of GFP, FHH-2.25d, and FHH-5d samples, CKI integrated all
predictions from the nine pairwise comparisons and prioritized 15 PKs
that were detected in ≥5 pairwise comparisons as the final candidates
(Supplementary Fig. 5q, and Supplementary Data 4). For the 15 can-
didate PKs, the corresponding p values were calculated for changes in
mRNA expression, substrate p-site intensity, and kinase-substrate
network (Fig. 3b). The mRNA levels of the 15 PKs were not markedly
altered in the early stage of hepatic reprogramming (FHH-2.25d vs.
GFP), and did not contribute to the final predictions (Fig. 3b). Addi-
tional analyses wereperformed to test the reliability of CKI predictions
(Supplementary Note 2 and Supplementary Fig. 5r, s).

Prior to further experimental validation, we excluded KALRN and
MAPK4 from the study, becauseKALRN is too large to be packaged into
lentivirus and MAPK4 transcripts were not detected during hepatic
reprogramming.Weoverexpressed eachof the remaining 13 candidate
PKs in HDFs together with FHH to analyze their effects on hepatic
conversion. We found that PIM family genes, including PIM1, PIM2 and
PIM3, showed potent effects on the induction of hepatic-lineage genes
(Fig. 3c). We also performed ALBUMIN immunofluorescence staining
and validated four PKs that showed statistically significant regulation
of ALB expression upon overexpression (Fig. 3d).

Moreover, shRNA-mediated knockdown of PIM1or PIM2markedly
decreased the expression of hepatic-lineage genes, further confirming
that twomembers of the PIM family of PKs were important regulators
for hepatic reprogramming (Fig. 3e and Supplementary Fig. 6a).
Overexpression of PLK1, PLK2 or NEK2 did not have an obvious effect
on the expression of hepatic-lineage genes (Fig. 3c). However, knock-
down of PLK1, PLK2 or NEK2 led to significant inhibition of hepatic
conversion (Fig. 3e and Supplementary Fig. 6a–d). Although most of
the candidate central PKs showed more or less effects on the regula-
tion of hepatic-lineage genes, two of the 15 predicted central PKs, PIM1
and PIM2, were validated to regulate all examined three hepatic-
lineage genes in both overexpression and knockdown experiments.
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PLK1, PLK2 and NEK2 are also important for hepatic reprogramming,
though overexpression of these genes cannot further improve the
efficiency.

PIM1 promotes hepatic reprogramming
There are three human PIM family genes that encode serine/threonine
PKswithmultiple protein substrates9. Previously, PIM1was reported to

act as a downstream effector of interleukin (IL)−6 to enhance repro-
gramming to iPSCs23. In this study, we observed that during the early
stage of hepatic reprogramming, PIM1 wasmarkedly induced five days
after introduction of FHH to HDFs (Fig. 4a, b). Importantly, inhibition
of PIM1 by shRNA significantly suppressed induction of hepatic genes,
storage of glycogen, and uptake of acetylated low density lipoprotein
(ac-LDL) (Fig. 4c, d).
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To interrogate the roles of PIM1 in hepatic reprogramming, we
overexpressed PIM1 in HDFs before induction of hepatic conversion.
After FHH infection, HDFs expressing PIM1 showed significantly
increased expression of hepatic functional genes, including the

secretory protein genes ALB and TTR, lipid metabolism gene APOA2,
drugmetabolismgeneCYP3A4, urea cycle geneARG1, and gap junction
gene GJA5 (Fig. 4e). Importantly, increased activation of endogenous
HNF4A, a member of FHH and amaster regulator of hepatic functional

Fig. 3 | CKI-based analysis of hepatic reprogramming. a Experimental design of
the trans-omics-based analysis of HDFs undergoing hepatic reprogramming by
overexpression of FHH. b Heatmap of 15 potentially central PKs predicted by CKI
using a threshold of ≥5 of 9 pairwise comparisons; the minus-log transformed p
valueswere calculated for the indicated comparisons. c Expression levels of hepatic
functional genes in HDFs overexpressing FHH and individual candidate central PKs
for 5days asquantifiedbyqRT-PCR (n= 3).OverexpressionofPIM1 (ALBp <0.0001,
AAT p <0.0001, ARG p = 0.0020), PIM2 (ALB p = 0.0043, AAT p = 0.0071, ARG p =
0.0133), PIM3 (AAT p =0.0022,ARGp <0.0001),TRIB2 (ALB p =0.0017),TSSK2 (ALB
p = 0.0163, AAT p = 0.0027), TSSK3 (ALB p = 0.0077, AAT p = 0.0048), PSKH1 (AAT
p = 0.0199), or CAMKV (AAT p = 0.0081) showed significantly changed transcript
levels of hepatic functional genes. d Representative image of ALBUMIN

immunofluorescence staining in HDFs overexpressing the indicated genes after
infection with FHH for 12 days. Scale bars = 100 μm. n = 2 biological replicates.
e Expression levels of hepatic functional genes in HDFs overexpressing FHH and
shRNAs of candidate central PKs for 5 days as quantified by qRT-PCR (n = 3).
Knockdownof PLK1 (ALB p =0.0011,AAT p =0.0104,ARGp =0.0227), PLK2 (ALB p =
0.0038, AAT p = 0.0084, ARG p = 0.0010), PLK4 (ALB p = 0.0001, AAT p = 0.0070),
PIM1 (ALB p = 0.0006, AAT p = 0.0113, ARG p = 0.0002), PIM2 (ALB p = 0.0398, AAT
p = 0.0010, ARG p = 0.0222), TRIB2 (ALB p = 0.0392), ROCK2 (ALB p = 0.0125, ARG
p = 0.0010), or TSSK3 (AAT p = 0.0459, ARG p = 0.0101) showed significantly
changed transcript levels of hepatic functional genes.Data are shownas themean +
SD. *p <0.05, **p <0.01, ***p <0.001 (unpaired two-sided Student’s t-test). Source
data are provided as a Source Data file.
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Fig. 4 | Experimental analysis of PIM1 roles in hepatic reprogramming.
a Transcript levels of PIM1 significantly increased during hepatic reprogramming as
quantifiedbyRT-qPCR (2.25dp =0.0251, 5dp <0.0001,n= 3).b Immunoblotting of
PIM1 inHDFs infectedwith FHH for the indicated number of days. GAPDHwas used
as the referenceprotein. n = 3 biological replicates. c Expressionof hepatic genes in
HDFs infected with FHH and PIM1 shRNA as quantified by qRT-PCR (n = 3). A non-
targeted shRNA (shNT) was used as the control. Knockdown of PIM1 showed sig-
nificantly decreased transcript levels of ALB (3d p = 0.0026, 4d p = 0.0002, 5d
p <0.0001), TTR (4d p = 0.0009, 5d p = 0.0055), APOA2 (4d p = 0.0012, 5d p =
0.0028).d PAS staining andDiI-ac-LDL uptake assay of HDFs infectedwith FHH and
either PIM1 shRNA or non-targeted shRNA for 12 days. Scale bars = 100 μm. n = 3
biological replicates. Expression of hepatic functional genes (e) and endogenous

FHH TFs (f) in HDFs infected with FHH and either PIM1 or GFP for 5 days as
quantified by qRT-PCR (n = 3). Overexpression of PIM1 increased the transcript
levels of ALB (p <0.0001), AAT (p = 0.0002), ARG2 (p = 0.0002), CYP3A4 (p =
0.0292), TTR (p = 0.0109), APOA2 (p = 0.0003), GJA5 (p = 0.0321), endogenous
HNF4A (p = 0.0007). g Quantification of ALBUMIN+ cells by immunofluorescence
staining in GFP- or PIM1-overexpressing HDFs after infection with FHH for 12 days
(p <0.0001, n = 5). h PAS staining and DiI-ac-LDL uptake assay of GFP- or PIM1-
overexpressingHDFs after infectionwith FHH for 12 days. Scale bars = 100μm.n= 3
biological replicates. Data are shown as the mean + SD. *p <0.05, **p <0.01,
***p <0.001 (unpaired two-sided Student’s t-test). Source data are provided as a
Source Data file.
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genes, was detected in HDFs five days after infection, suggesting an
accelerated activation of the endogenous TF (Fig. 4f). Immuno-
fluorescence staining also showed that the proportion of ALBUMIN
positive cellswas increased in response toPIM1overexpression (Fig. 4g
and Supplementary Fig. 7). Overexpression of PIM1 additionally pro-
moted glycogen storage and Dil labelled acetylated low-density lipo-
protein (DiI-ac-LDL) uptake of hiHep cells (Fig. 4h). These results
demonstrated that PIM1 efficiently promotes hepatic reprogramming.

PIM1 promotes cell proliferation and suppresses ferroptosis
To interrogate how PIM1 regulates hepatic reprogramming, we pro-
filed the transcriptomes of HDFs undergoing hepatic conversion with
PIM1 or GFP overexpression (Fig. 5a and Supplementary Data 5). In
total, we identified 2123 DEMs (Supplementary Fig. 8a and Supple-
mentary Data 5). The similar distribution of FPKM values in the two
transcriptomes suggested that PIM1 overexpression did not induce a
global change in mRNA expression (Supplementary Fig. 8b). Two-way
hierarchical clustering of the transcriptomic data demonstrated that
FHH-transduced HDFs with PIM1 or GFP overexpression could be
clearly distinguished from one another (Supplementary Fig. 8c).
Among the 45 genes most significantly up-regulated in response to
PIM1 overexpression, 21 were liver- or fetal liver-enriched genes
(according to the Molecular Signature Database [MSigDB]24; Fig. 5b
and Supplementary Data 5). No liver- or fetal liver-enriched genes were
found among the down-regulated genes. This result further supported
a critical role of PIM1 in hepatic reprogramming.

The early stage of cell fate conversion is crucial for successful
generation of target cell types. It has been reported that several
molecular barriers are activated during the early stage of cell fate
conversion to block robust epigenetic remodeling in response to
enforced expression of lineage-specific TFs, induce cell cycle arrest
and cell death, and inhibit cell fate conversion25,26. Here, we performed
KEGG- andGO-based enrichment analyses, and found that 17 pathways
were significantly changed upon PIM1 overexpression (Fig. 5c and
Supplementary Fig. 8d). Fifteen were liver-enriched metabolic or
functional pathways (e.g., the PPAR signaling pathway, drug metabo-
lism, pentose and glucuronate interconversions, and other similar
pathways). Aswe found that PIM1 promotes hepatic reprogramming, it
is not surprising thatpathways related to liver functionswereenriched.
Interestingly, we observed that two non-metabolic pathways, cell cycle
(KEGG ID: hsa04110) and ferroptosis (KEGG ID: hsa04216), were enri-
ched in response to PIM1 overexpression (Fig. 5c), which is consistent
with a previous report26. We also observed a relatively reduced cell
number of HDFs expressing FHH, which could be rescued by PIM1
overexpression (Fig. 5d).

Previously, PIM1 was shown to promote proliferation of several
cell lineages both in vitro and in vivo9. Thus, we investigated whether
PIM1 could rescue reprogramming-induced cell cycle arrest. We per-
formed EdU staining, which demonstrated significantly suppressed
proliferation of HDFs after infection with FHH (Fig. 5e, f and Supple-
mentary Fig. 8e, f). However, PIM1 overexpression rescued FHH-
induced suppression of cell proliferation, and particularly promoted
the proliferation of ALBUMIN + cells (Fig. 5g, h and Supplementary
Fig. 8e–g)26. PIM1 has been found topromote cell proliferation through
various downstream signaling pathways, including phosphorylation of
4E-BP1 to promote cap-dependent translation, phosphorylation on
Ser62 to stabilize MYC protein, and activation of mTOR signaling9,27.
Here, we also found that increased protein and phosphorylation levels
of 4E-BP1 andMYC occurred with increased expression of PIM1 during
hepatic reprogramming (Fig. 5i). Overexpression of PIM1 further
increased the phosphorylation levels of 4E-BP1, MYC, and an mTOR
substrate P70S6K (Fig. 5j). The increased MYC phosphorylation on
Ser62 possibly stabilizedMYC protein as previously reported28. 4E-BP1
has also been reported to be stabilized by multiple kinases29. Whether
4E-BP1 couldbe stabilizedbyPIM1 shouldbe further investigated in the

future. Furthermore, we also observed a decrease in MYC expression
and phosphorylation after PIM1 knockdown during hepatic repro-
gramming (Supplementary Fig. 8h).

Another important function of PIM1 is to promote cell survival30.
Thus, we investigated whether PIM1 could rescue hepatic
reprogramming-induced cell death. Consistent with a previous
report26, we observed increased cell death during hepatic repro-
gramming (Fig. 6a, b and Supplementary Fig. 9a). Ferroptosis-related
genes were significantly induced during hepatic reprogramming
(Fig. 6c), and knockdown of PIM1 further increased hepatic
reprogramming-induced cell death and expression of ferroptotic
genes (Fig. 6d, and Supplementary Fig. 9b, c). In contrast, PIM1 over-
expression significantly suppressed cell death and decreased expres-
sion of ferroptotic genes (Fig. 6e, and Supplementary Fig. 9d, e). The
cell death induced by FHH could be inhibited by ferroptosis inhibitors
ferrostatin-1 and liproxstatin-1, but not necroptosis inhibitor Nec-1s or
apoptosis inhibitor z-VAD. This supported the hypothesis that fer-
roptosis contributed to hepatic reprogramming-induced cell death
(Fig. 6f, Supplementary Fig. 9f).

To investigate whether PIM1 is involved in suppressing ferropto-
sis, we investigated the effect of PIM1 in a widely used ferroptosis
experimental system. U-2 OS cells overexpressing GFP or PIM1 were
treated with RSL3, an inhibitor of glutathione peroxidase 4 (GPX4), to
induce ferroptosis. We observed that PIM1 significantly suppressed
ferroptosis in U-2 OS cells (Supplementary Fig. 9g). Thus, the sup-
pressing role of PIM1 in ferroptosis is not restricted to hepatic
conversion.

To investigate whether suppression of ferroptosis promoted
hepatic reprogramming, we treated HDFs with ferroptosis inhibitors,
namely N-acetyl cysteine (NAC), ferrostatin-1 (Fer-1), and liproxstatin-1
(Lip-1), after infection with FHH. We found that all three tested fer-
roptosis inhibitors significantly promoted the expression of hepatic
functional genes (Fig. 6g). These results supported the conclusions
that cell reprogramming-induced ferroptosis suppressed hepatic cell
fate conversion and that PIM1 functioned as a ferroptosis suppressor
during hepatic reprogramming.

Ferroptosis is characterized by the depletion of glutathione in
cells31. Thus, the expression of Slc7a11 is usually increased to generate
more glutathione in response to ferroptotic stimuli32. Treatment of
cells with the glutathione precursor NAC can inhibit ferroptosis33. PIM1
has been shown to increase glucosemetabolism34, whichmaypromote
generation of NADPH and glutathione. Indeed, we observed increased
generation of NADPH and glutathione after overexpression of PIM1 in
HDFs (Supplementary Fig. 9h, i). Next, we examined HDFs expressing
GFP or PIM1 after FHH infection, and found that NADPH and glu-
tathione were significantly increased in response to PIM1 over-
expression (Fig. 6h, i). Knockdown of PIM1 also decreased the NADPH/
NADP + ratio and the generation of glutathione (Supplementary Fig. 9j,
k). These results suggest that PIM1 promotes generation of NADPH
independent of the hepatic reprogramming process.

Together, these results suggest that PIM1 suppresses ferroptosis
by increasing generation of glutathione. Overall, PIM1 rescued hepatic
reprogramming-induced cell cycle arrest and ferroptosis by activating
MYC and increasing glutathione generation.

Network analysis of the signal web during hepatic
reprogramming
Theoretically, enforced expression of FHH would transcriptionally up-
regulate numerous target genes, including TFs and central PKs, in
either a direct or indirect manner. Transcriptionally-induced central
PKs could be activated to phosphorylate protein substrates, including
TFs. Thus, key genesmaybedoubly regulatedbyTFs and central PKs at
both the transcription and phosphorylation levels to drive hepatic
reprogramming. Here, we modeled a transcription-phosphorylation
collaborative web (TPCW) that contained the regulatory relationships
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among FHH, 24 FHH-regulated TFs, two screened central PKs, and 60
curated genes related to hepatic lineage, ferroptosis, and cell cycle
that are potentially modulated by these regulators (Fig. 7a and Sup-
plementary Data 6).

In the TPCW, 24 downstream TFs that were predicted to be
directly regulated by FHH were found to be significantly up-regulated
during the early stage of hepatic conversion (Fig. 7a). We counted
predicted transcription factor binding sites (TFBSs) in the upstream
and downstream regions of the 24 TFs; one TF, MAFF, had only one
predicted TFBS (Supplementary Fig. 10a). Of the 24 TFs,MAFF andHLF
have previously been reported to contribute to hepatic lineage
determination in a massively parallel protein activity assay35. SOX17 is

also a critical TF for specification of the endodermal lineage36. In par-
ticular, many hepatic lineage genes, ferroptosis genes, and cell cycle
genes were also transcriptionally regulated by FHH and other TFs.
Thus, FHH seems to trigger hepatic cell fate in concert with the TFs
they activate downstream.

The TPCW also included a central kinome of two PKs that were
experimentally confirmed to significantly regulate the hepatic con-
version process in this study. Both of the PKs were predicted to be
transcriptionally regulated by FHH and/or the other 24 TFs, either by
direct or indirect mechanisms (Fig. 7a). In return, the two PKs could
regulate FHH and the other TFs, and at least 10 TFs were predicted to
be phosphorylated by one or both central PKs (Fig. 7a). In addition, the
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Fig. 6 | PIM1 suppresses hepatic reprogramming-induced ferroptosis.
a Representative image of FHH-induced cell death of HDFs on day 5. Scale bars =
100 μm. n = 4 biological replicates. b FHH-induced cell death was analyzed by
Annexin V/7-AAD staining on day 5. Proportions of 7-AAD/Annexin V positive cells
were quantified (p <0.0001, n = 5). c Expression levels of ferroptosis-related genes
were increased on day 5 of hepatic transdifferentiation (SLC7A11 p = 0.0009, PTGS2
p = 0.0007, ACSL4 p = 0.0013, HMOX1 p <0.0001, n = 3). d Knockdown of PIM1
increased the transcript levels of ferroptosis genes on day 5 of hepatic transdif-
ferentiation (SLC7A11 p = 0.0015, PTGS2 p = 0.0002, ACSL4 p = 0.0121, HMOX1 p =
0.0002, n = 3). e Overexpression of PIM1 decreased the transcript levels of fer-
roptosis genes on day 5 of hepatic transdifferentiation (SLC7A11 p = 0.0062, PTGS2
p =0.0011,ACSL4 p =0.0025,HMOX1p =0.0080,n= 3). The sampleswere the same

with those used in Fig. 4e, f. f Propidium iodide (PI) staining assay showing that
treatment with the ferroptosis inhibitors ferrostatin-1 and liproxstatin-1 inhibited
FHH-induced cell death in HDFs. Scale bars = 100 μm. n = 2 biological replicates.
g Treatment of NAC, Fer-1, or Lip-1 increased the transcript levels of liver-specific
genes on day 5 of hepatic transdifferentiation (NAC treatment: ALB p = 0.0041,
CYP3A4 p = 0.0004; Fer-1 treatment: ALB p = 0.0008, CYP3A4 p = 0.0001; Lip-1
treatment: ALB p = 0.0198, CYP3A4 p = 0.0404; n = 3). h Cellular NADP/NADPH
levels on day 3 of hepatic transdifferentiation with GFP or PIM1 overexpression
(NADPH p = 0.0015, NADPH/NADP+ p =0.0041, n = 3). iCellular GSH levels on day 5
of hepatic transdifferentiation withGFP or PIM1 overexpression (p = 0.0002, n = 3).
Data are shown as the mean + SD. *p <0.05, **p <0.01, ***p <0.001 (unpaired two-
sided Student’s t-test). Source data are provided as a Source Data file.
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two central PKs were predicted to phosphorylate three hepatic lineage
proteins, 11 ferroptosis proteins, and seven cell cycle proteins. Thus,
the network of transcription and phosphorylation regulation repre-
sented amolecular landscape for the early stage of hepatic conversion.
The effects of the two PKs in hepatic conversion were experimentally
assessed by overexpression or shRNA-mediated gene knockdown.
Also, PIM1 and PIM2 were found to promote hepatic conversion
(Fig. 3c, e), possibly by phosphorylating downstream TFs and other
signaling proteins involved in hepatic conversion.

Based on experimental results, the most potent central PK was
PIM1 (Fig. 3c, e). PIM1 was not predicted to be directly regulated by
FHHat the transcriptional level, because therewasno FHHbinding site
found in the promoter region of PIM1. However, up to 11 TFs down-
stream of FHH were predicted to transcriptionally regulate PIM1
(Fig. 7b and Supplementary Fig. 10b), which may explain the relatively
late activation of PIM1onday5 of hepatic conversion (Fig. 4a, b). Direct
regulation of PIM1 by SOX17 or BCL6 has previously been reported in
different experimental systems37,38. Importantly, the TPCW indicated
that PIM1 may reciprocally phosphorylate 10 TFs, including NKX-3.1,
SMAD3, and MAFF, possibly reinforcing the functions of these TFs
(Fig. 7a, b). Indeed, previous studies have reported that PIM1 can
phosphorylate and stabilize NKX-3.139. PIM1 may also directly phos-
phorylate downstream proteins, such as MYC, to promote the hepatic

conversion process. Overall, TF-activated PIM1 functioned together
with FHH and 24 additional TFs to trigger hepatic conversion by
inducing hepatic-lineage genes, promoting cell cycle progression, and
suppressing ferroptosis (Fig. 7c).

Discussion
PKs catalyze protein phosphorylation to regulate numerous biological
processes. Due to the complex regulation mechanisms driven by PKs,
it remains a great challenge to identify functionally important PKs that
regulate a defined biological process in a high-throughput way or at
the whole genome level.

To resolve this problem, we developed CKI to integrate quanti-
tative transcriptomic and phosphoproteomic data for prediction of
potentially central PKs. The algorithm was tested by predicting PKs
regulating DOX resistance, genistein resistance, mouse hepatocyte
maturation, and FHH-mediated direct hepatic reprogramming. Using
PKs known to be associated with DOX or genistein resistance as
independent testing sets, our results demonstrated that CKI had a
higher accuracy than other methods that did not integrate different
types of data (Supplementary Fig. 1d, g, k, n). We also validated a total
of five predicted central PKs involved in regulating hepatocyte
maturation and hepatic reprogramming (Figs. 2k and 3c, e), indicating
the reliability of CKI.
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In processing the phosphoproteomic data, the directionality of
phosphorylation events (activation vs. inhibition) was not considered,
because this information was not available for most of the p-sites.
Previously, it was reported that the activity of a PK could bemonitored
by measuring its activity-associated p-sites40. For example, the phos-
phorylation level of PLK1 at T210 is positively correlated with its PK
activity40. However, due to the relatively low coverage of phospho-
proteomic profiling, we only detected two PK activity-associated
p-sites that were up-regulated after DOX treatment (ATM S198141) or in
CLiP-Hep cells (Cilk1 T15742) (Supplementary Fig. 2b, d, Supplementary
Fig. 3l, and Supplementary Fig. 5r). We did not find any PK activity-
associated p-sites to be differentially regulated in genistein resistance
or hepatic reprogramming. Using all pairwise comparisons of the
transcriptomic and phosphoproteomic data for each biological pro-
cess, we analyzed correlations between PK gene expression and the
intensity of the corresponding substrate p-sites basedon thepredicted
ssKSRs. The average Spearman’s correlation coefficients were calcu-
lated as 0, −0.02, 0.14, and 0.10 for DOX resistance, genistein
resistance, hepatocyte maturation, and hepatic reprogramming,
respectively (Supplementary Fig. 11a–d), implying a weak correlation
between PK gene expression and phosphorylation of the target p-sites.

In CKI, the p-site intensity was directly used, without considering
thepotential impact ofprotein expression. Toevaluate the influenceof
protein expression on the CKI accuracy, we additionally conducted
proteomic quantifications for mouse hepatocyte maturation and
human hepatic reprogramming. Then, the CKI predictions were
compared, using p-sites with or without normalization by their cor-
responding protein expression level (Supplementary Note 3, Supple-
mentary Figs. 12, 13). From the results, we found that only one
validated PK, PIM1, could still be predicted if normalized by proteomic
data (Supplementary Figs. 12f, 13f), indicating proteomic normal-
ization didn’t increase the CKI accuracy for our study.

Molecular barriers that antagonize cell lineage reprogramming
have been reported in hepatic reprogramming and in many other
reprogramming scenarios25,26,43. In this study, we also showed robust
cell death and cell cycle arrest of HDFs after enforced expression of
FHH (Figs. 5e, 6a, b). Specifically, our experiments showed that PIM1
facilitated hepatic conversion by promoting cell cycle progression and
suppression of ferroptosis. Knockdown of PIM1 by shRNAs further
demonstrated that PIM1 was required for efficient hepatic conversion.
PIM1 is a serine/threonine PK that is involved in cell cycle progression,
cell survival, glucose metabolism, and several other signal transduc-
tion pathways34,44. We here found that PIM1 suppressed ferroptosis of
HDFs undergoing hepatic reprogramming. Ferroptosis is a form of
regulated necrosis31. A previous study showed that ferroptosis was
induced during direct neuronal conversion43. Thus, induction of fer-
roptosis is not restricted to hepatic reprogramming, but also occurs in
other cell lineage reprogramming processes.

In this study, 17 pathways were enriched upon PIM1 over-
expressing during hepatic reprogramming (Fig. 5c). We only validated
two of them, including “cell cycle” and “ferroptosis”. Thus, there could
be other downstream signaling pathways for PIM1 during hepatic
reprogramming. Overall, PIM1 functions as an important cell lineage
reprogramming signaling molecule to antagonize cell fate change-
inducedmolecular barriers. The competitionbetween reprogramming
signals andmolecular barriers eventually determines the final decision
of a cell’s fate.

There are some limitations of this study that should be noted.
First, we only considered transcriptomic and phosphoproteomic data
for prediction of potentially central PKs. However, protein expression
levels are also important for regulating PK activity9. Indeed, we found
that one validated PK, Prkx, was significantly up-regulated in CLiP-Hep
against MH cells, at the proteomic expression level (Supplementary
Fig. 12e, p < 0.01), supporting the usefulness of proteomic data. Fur-
thermore, epigenetic mechanisms45 play a critical role in regulating

gene expression in many biological processes, especially cell lineage
reprogramming. Thus, it could reasonably be expected that incor-
poration of quantitative proteomic data, DNA methylomic data, and
genome-wide histone modification data would improve model accu-
racy. Second, thedirectionality of phosphorylationwasnot considered
due to limitations in the available data. Including perturbation or prior
functional data to distinguish between activating and inhibiting
phosphorylation events is also expected to improve prediction per-
formance. Finally, we tested the accuracy of CKI in only four biological
processes. More processes will be considered in the future to further
evaluate the reliability and accuracy of CKI.

Methods
Cell lines and cell culture condition
293FT cells (Invitrogen, R70007) were maintained in DMEM high-
glucose media (Gibco) supplemented with 10% FBS (Ausbian). U-2 OS
cells (ATCC, HTB-96) were maintained in McCoy’s 5 A (Modified)
Medium (Gibco) supplemented with 10% FBS (Ausbian). Human adult
fibroblasts were derived from skin biospies of two 35-year-old healthy
male individuals with approval for collection and use of human sam-
ples by institutional ethical committees of Eye & ENT Hospital, Fudan
University (2020035, 2021007-1). Human skin biopsy tissues were cut
into about 1mm × 1mm × 1mm pieces, and placed on 60mm dishes
(Corning) precoatedwith 15 µg/cm2 collagen type I from rat tail (Sigma-
Aldrich) in 6mlDMEMhigh-glucosemedia (Gibco) supplementedwith
10% FBS (Ausbian) and 5 ng/ml bFGF (PeproTech), and put in the 37 °C
incubator. After 3 weeks’ incubation, fibroblasts that migrated out of
the tissues were passaged to new collagen-I-coated dishes.

Isolation of mouse hepatocytes
All animal experiment procedures were conducted in compliancewith
the approval of the Animal Ethics Committee at ShanghaiTech Uni-
versity (20200713002). Mouse hepatocytes were isolated from 8-
week-old male C57BL/6 J mouse (Charles River Laboratories) using the
procedure of standard two-steps collagenase perfusion method46. In
brief, the liver was pre-perfused through the portal vein with perfusion
solution (1 × EBSS without Ca2+ and Mg2+(Sangon Biotech) supple-
mented with 0.5mM EGTA (Sigma-Aldrich)) for 3–5min and then
perfused with collagenase solution (0.2mg/ml collagenase type IV
(Sigma-Aldrich), 10mM HEPES (Solarbio), 1× EBSS with Ca2+ and Mg2+

(Sangon Biotech)) at 2–3ml/min. The extracted liver wasmechanically
digested with sterile scissors and then filtered through a 70 μm filter
membrane. The cells were collected via centrifugation at 60 g for
2min. Then the cells were resuspended using 40% Percoll (Cytiva)
diluted with DMEM supplemented with 10% FBS and centrifuged at
1000 rpm for 5min to remove dead and non-hepatic cells. Purified
hepatocytes were then counted and used for further experiments.

Generation of liver progenitor cells
The generation of liver progenitor cells were basically according to
previously published protocol17. Concisely, isolated primary mouse
hepatocytes were seeded on plates coatedwith collagen type I (Sigma)
at 2 × 104 cells/cm2. The cells were cultured in DMEM supplemented
with 10% FBS for 6 h and then the medium changed to SHM medium
(DMEM/F12 containing 2.4 g/L NaHCO3 and L-glutamine (Gibco) sup-
plementedwith 5mMHEPES (Solarbio), 30mg/LL-proline (Alfa Aesar),
0.05% BSA (Solarbio), 10 ng/ml epidermal growth factor (PeproTech),
insulin-transferrin-serine (ITS) (Sigma-Aldrich), 10−7M dexamethasone
(Dex) (Sigma-Aldrich), 10mM nicotinamide (Solarbio), 1mM ascorbic
acid-2 phosphate (Wako) and 1× antibiotic/antimycotic solution
(Solarbio)) supplemented with YAC (10mM Y-27632 (Medchemex-
press), 0.5 mM A-83-01 (Medchemexpress), 3mM CHIR99021 (Med-
chemexpress)). Cells were cultured for 14 days to generate liver
progenitor cells and the medium was changed every other day
thereafter.
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Differentiation of liver progenitor cells
For induction of hepatocytes, liver progenitor cells were collected and
seeded onto collagen type I-coated plates at 2 × 104 cells/cm2. The cells
were cultured for 2 days in SHM medium and the medium was sup-
plemented with 1μM dexamethasone (Dex) (Sigma) and 20ng/ml
human Oncostatin M (PeproTech) for 6 days. For induction of biliary
epithelial cells, the liver progenitor cells were isolated and co-cultured
with pre-inoculated lowdensitymouse embryonicfibroblasts (passage
2). The mouse embryonic fibroblasts were isolated from E13.5 C57BL/
6 J mouse embryos and cultured in DMEMhigh-glucosemedia (Gibco)
supplementedwith 10% FBS (Ausbian). Themediumwas replacedwith
mTeSRTM1 (STEMCELL Technologies) containing YAC (mTeS-
R1+YAC), and on day 6, the medium was replaced with mTeSR1+YAC
supplementedwith 2%Matrigel (Corning) for another 6days. Allmedia
were changed every other day.

hiHep cell induction
hiHep cells were generated as previously described22. Briefly, 2×105

human dermal fibroblasts between passage 5 and 10 were seeded on a
collagen-I-coated 60mm dish and infected with pWPI lentiviruses
expressing FOXA3, HNF1A and HNF4A (multiplicity of infection: 1.5 for
each virus). For lentivirus production, pWPI lentiviral plasmids
encoding FOXA3, HNF1A or HNF4A were introduced into 293FT cells
(Thermo) together with psPAXs (Addgene) and pMD2.G (Addgene).
Themedium containing lentiviruses was collected and passed through
0.45μm filter (Sangon Biotech) after 48 hours incubation. After
48 hours’ infection of human dermal fibroblasts, the medium was
changed to hepatocyte maintenance medium (DMEM/F12 (Gibco)
supplemented with 0.544mg/L ZnCl2 (Sinopharm), 0.75mg/L
ZnSO4·7H2O (Sinopharm), 0.2mg/L CuSO4·5H2O (Sinopharm),
0.025mg/L MnSO4 (Sinopharm), 2 g/L Bovine serum albumin (Sigma-
Aldrich), 2 g/L Galactose (Sigma-Aldrich), 0.1 g/L Ornithine (Alfa
Aesar), 0.03 g/L Proline (Alfa Aesar), 0.61 g/L Nicotinamide (Solarbio),
1X Insulin-transferrin-sodium selenite media supplement (Sigma-
Aldrich), 40 ng/ml TGFα (PeproTech), 40 ng/ml EGF (PeproTech),
and 10μM dexamethasone (Sigma-Aldrich)). Cells were collected for
further analyses at different time points according to specific
experiment.

Molecular cloning and lentivirus package
For gene overexpression, PIM1 and other candidate targets were PCR
amplified from cDNA of human fibroblasts and cloned into the XbaI
(NEB) and BamHI (NEB) restriction enzyme sites of the pCDH-CMV-
MCS-EF1-copGFP vector (System Biosciences) using Clone Express® II
One Step Cloning Kit (Vazyme). PCR was performed with KOD-Plus-
Neo (TOYOBO). Cloning primers are listed in Supplementary Data 7.
TFs were previously constructed with modified pWPI plasmid
(Addgene). For shRNA experiments, the non-targeting shNT and all
other shRNA sequences were inserted into the AgeI and EcoRI
restriction enzyme sites of the pLKO.1 plasmid (Addgene), respec-
tively. DNA sequences were mainly obtained from Sigma MISSION
shRNA library. The oligonucleotide sequences are provided in Sup-
plementary Data 7. Constructed pCDH, pWPI or pLKO.1 plasmid was
then introduced to 293FT cells together with packaging plasmid
psPAX2 (Addgene) and envelope plasmid pMD2.G (Addgene). After
48 h incubation, the medium containing lentiviruses was collected by
0.45mm filter and stored at −80 °C. The constructs used here are
available upon request.

Quantitative RT-PCR
Total RNA was isolated from cells by Trizol (Invitrogen) and a total of
1 µg RNA was reversely transcribed into cDNA with PrimeScript™ RT
reagent Kitwith gDNAEraser (Perfect Real Time) (Takara) according to
the manufacturer’s instructions. Quantitative real-time PCR was per-
formed with TB Green™ Premix Ex Taq™ II (Tli RNaseH Plus) (Takara)

on an ABI 7500 fast real-time PCR system. Primer sequences used for
qRT-PCR are provided in Supplementary Data 7.

Immunoblotting
First, cells werewashed twicewith PBS (Sangon Biotech), lysed in RIPA
Lysis Buffer (Beyotime) supplemented with protease inhibitor cock-
tails and PhosStop (Roche). Protein was mixed with loading buffer,
boiled and subjected to SDS-PAGE electrophoresis and transferred to a
PVDF membrane (Millipore) according to a standard protocol. After
blockingwith 5%non-fatmilk in TBST (50mMTris-HCl (Sigma-Aldrich)
at pH 8.0, 150mMNaCl (SinoPharm), 0.1% Tween 20 (Sigma-Aldrich)),
the membrane was incubated with non-fat milk or BSA-TBST-diluted
primary and secondary antibodies. Signals were detected with ECL
detection reagent (Vazyme) using AI600 (GE). The antibodies used in
this study were: anti-GAPDH (Proteintech, 10494-1-AP), anti-Pim-1
(D8D7Y) Rabbit mAb (Cell Signaling, 54523 S), anti-c-Myc antibody
[Y69] (Abcam, ab32072), anti-c-Myc (phospho S62) antibody (Abcam,
ab51156), anti-4E-BP1 (53H11) (Cell signaling, 9644 T), anti-p-4E-
BP1(T32/46) (Cell signaling, 2855T), Anti-rabit IgG, HRP-linked Anti-
body (Beyotime, A0208).

Immunofluorescence
Cells were washed twicewith PBS and fixedwith 4% paraformaldehyde
(PFA) (Sigma-Aldrich) for 15min at room temperature (RT) followedby
permeabilization with 0.25% Triton X-100 (Sigma-Aldrich) in 3% BSA
(Solarbio) for 30min at RT. 5% BSA (Solarbio) was used for blocking
followed by incubation of primary antibodies overnight at 4 °C. After
being washed three times with PBST, cells were stained with Cy3-
conjugated secondary antibodies. Images were visualized by Zeiss Z2
(Zeiss). The antibodies used in this study were: anti-E-cadherin (Invi-
trogen, 13-1900), anti-Human Albumin cross adsorbed (Bethyl, A80-
229A), anti-Albumin (GeneTex, GTX102419), Alexa Fluor™ 488 Donkey
anti-Rat IgG (H + L) (Invitrogen, A-21208), Alexa Fluor™ 568 Donkey
anti-Rabbit IgG (H+ L) (Invitrogen, A10042), anti-Human Albumin
cross adsorbed (Bethy, A80-229A), Cy3-conjugated AffiniPure Donkey
Anti-Rabbit IgG (H + L) (min X Bov,Ck,Gt,GP,Sy Hms,Hrs,Hu,Ms,-
Rat,Shp Sr Prot) (Jackson,711-165-152).

Flow cytometry
For cell death analysis, cells were collected at day 5 after FHH or GFP
transfection. Dead cells were detected by Annexin V-PE/7-AAD Apop-
tosis Detection Kit (Yeasen) according to the manufacturer’s instruc-
tions and analyzed by LSRFortessa (BD). Data were analyzed with
Flowjo.

For intracellular staining of ALBUMIN, 1 × 106 cells were harvested
and fixed with 4% PFA (Sigma-Aldrich) for 30min, and then permea-
bilized inwith0.25%TritonX-100 (Sigma-Aldrich) in 3%BSA for 10min.
The cells were then incubatedwith 3%BSA 1 hour at room temperature
followed by incubating with Human Serum Albumin APC-conjugated
Antibody (R&D) for 30min in 3% BSA. Then, the cells were washed
three times with cold PBS and the results were analyzed by the
LSRFortessa (BD). The antibodies used in this study were: Human
Serum Albumin APC-conjugated Antibody (R&D, IC1455A).

Cell proliferation analysis
Cells were incubated with 10 µM EdU culture medium (Reagent A,
RIBOBIO, c10327-1, 1:5000diluted in culturemedium) for 24 h at 37 °C.
Then, the cells werewashedwith PBS two times (5min/wash) and fixed
with 4%PFA for 30min at room temperature, followedby incubation in
2mg/ml glycine for 5min on bleaching shaker. The cells were then
washed 3 times in PBS (5min/wash), and permeated cell membrane by
0.5%-Triton inPBS and incubate at room temperature for 10min. Then,
the cells were washed in PBS and incubated with 1× Apollo® dyeing
reaction solution (Reagent B, C, D, E, RIBOBIO, c10327-1) for 30min-
utes in the dark, room temperature, and bleaching shaker. After
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discarding the dyeing reaction solution, Cells were incubated with
0.5%-Triton in PBS two times in dark (10min/incubate). Then, the cells
were incubated with 1× Hoechst 33342 (Reagent F, RIBOBIO, c10327-1,
1:100 diluted in distilled water) for 30min in the dark, room tem-
perature, and bleaching shaker. After washing cells in PBS three times
(5min/wash), the cells were visualized by Zeiss Z2 (Zeiss).

NADP/NADPH analysis
The NADP/NADPH analysis were formed using a NADP/NADPH assay
kit (Promega) following manufacturer’s instruction. Cells were col-
lected and resuspended in 1mL cold PBS. Then, counted cells (2 × 106

cells) were resuspended in 60μL Lysis Buffer and incubated at room
temperature for 15minutes. Lysate was then centrifuged at 1500 rpm
for 5minutes and use supernatant for the assay. The 12.5μL of NADPH/
NADP Extraction Solution was added into the NADPH/NADP sample
wells and the mix solution was incubated at room temperature for
10–15minutes. Then, 12.5 μL NADP/NADPH Extraction Solution was
added to neutralize NADPH/NADP extracts for 10–15minutes. 37.5μL
NADP/NADPH reaction mixture was then added to the mix and incu-
bated at RT for 45min. Monitor fluorescence intensity (Ex/Em = 540/
590 nm) by SpectraMax i3 (MD).

Glutathione assay
The cells were washed once with PBS and collected by centrifugation,
and the supernatantwas aspirated. Then, 150 µL 5% 5-sulfosalicylic acid
(SSA) solution was added to the cell pellet, fully Vortex. The sample
was then subjected to three rapid freeze-thaw cycles using liquid
nitrogen and a 37 °C water bath. Then the lysate was leave in ice for
5minutes and then centrifuged at 10,000 g for 10minutes at 4 °C. The
supernatant was taken for determination of total glutathione. The
reaction scheme was set up according to manufacturer table (Sigma-
Aldrich, CS0260-1KT) and performed every test in five duplicate wells.
Thefirst 2wells shouldcontain only 10 µLof the 5%5-Sulfosalicylic Acid
Solution as a reagent blank. Duplicate 10 µL samples of the prepared
Glutathione Standard Solutions were added into separate wells of the
plate. 10 µL sample were added into 5 duplicate separate wells. Then,
150 µL of theWorkingMixturewas added to each well with pipette and
mix them by pipetting up and down. The wells were incubated
5minutes at room temperature and then add 50 µL of the diluted
NADPH Solution with a multichannel pipette. The mixture was mixed
by pipetting up and down and the absorbance in each well was mea-
sured by SpectraMax i3 (MD).

RNA extraction and RNA-seq
Cell samples were groundwith Trizol Reagent (Invitrogen) in liquid N2,
then incubated at room temperature. The homogenates were cen-
trifuged at 12,000 g 4 °C and supernatant was thoroughly mixed with
chloroform (Sinopharm). After centrifugation of 12,000 g, aqueous
phase was transferred and mixed with isopropanol (Sinopharm).
Finally, RNA sedimentwasprecipitated two timeswith 75%ethanol and
obtained the total RNA.

Before sequencing, the quantity of total RNA was measured by
Nanodrop (Thermo, USA), and the quality was assessed with electro-
phoresis. For the construction of RNA library, TruSeq® RNA LT Sample
Prep Kit v2 (Illumina, USA) was used to treat 2μg RNA for each sample.
Then, mRNA was purified from total RNA with RNA Purification Beads,
and fragmented with Elute, Prime, Fragment Mix (EPF). First and sec-
ond strand cDNAs were synthesized based on random primers. End
repair was performedwith End RepairMix 2. After Adenylating 3’ ends,
adaptors were ligated to RNA fragments. And then, the cDNA was
amplified with PCR and quantified with Qubit (Invitrogen, USA). For
the cluster generation of index-coded samples, TruSeq PE Cluster Kit
v3-cBot-HS (Illumina) was used on the cBot Cluster Generation
System (Illumina). Library was sequenced on Illumina Hiseq 3000
platform.

Protein extraction, isolation of peptides and TMT labeling
Cell sample was mixed with lysis buffer (8M urea (Sinopharm), 1%
protease inhibitor (ThermoFisher) and phosphatase inhibitor (Ther-
moFisher), and 2mM EDTA (Sigma-Aldrich), at pH 8.0 with ice-bath)
and homogenized by sonification at 0 °C for 3min (cycle: sonication
for 3 s in ~180W power, and stop for 5 s to cool down). After the
centrifugation of lysate at 20,000 g at 4 °C for 10min, the supernatant
was transferred and collected. Finally, the protein concentration was
measuredwith 2-D Quant kit (Cytiva) and adjusted to be consistent for
all samples.

For the digestion of proteins, protein solution was first reduced
with 5mM dithiothreitol (DTT, pH 8.0) (Sigma-Aldrich) at 56 °C for
30min, and then incubated with 11mM iodoacetamide (pH 8.0)
(Sigma-Aldrich) for 15min at room temperature in the dark. To reduce
the concentration of urea to less than 2M, 100mM triethylammonium
bicarbonate (TEAB) (Sigma-Aldrich)was added to the protein sample.
Two times trypsin digestions were processed, with the mass ratio of
1:50 trypsin-to-protein for 37 °C overnight treatment and 1:100 for 4 h,
respectively. Finally, trifluoroacetic acid (TFA) (Sigma-Aldrich) were
added to adjust pH to 2–3 for quenching the digestion.

Before the TMT labeling of peptides, peptides were vacuum-dried
after the desalting with Strata X C18 SPE column (Phenomenex), and
reconstituted with 0.5M TEAB (Sigma-Aldrich). Following the manu-
facturer’s protocol with minor modifications, the TMT kit (Thermo-
Fisher Scientific) was constituted with acetonitrile (Fisher Chemical),
and the equal peptides based on the absorbance at 280 nm were
subsequently processed with TMT kit (pH 8.5), and incubated with
labeling reagent (Batch 1: MH [126, 127, and 128] and CLiP-Hep [129,
130, and 131], and Batch 2: GFP [131], FHH-2.25d [129], and FHH-5d
[130]) at room temperature for 2 h to ensure a better efficiency of
labelling. Finally, the labeled peptides were equally pooled based on
the absorbance at 280 nm, desalted, and dried by vacuum.

Tomeasure the TMT labeling efficiency, msConvert47 was used to
convert the data format of rawMS/MSdata intomascot generic format
(MGF)files. Themonoisotopic reportermasses of different TMT6-plex
labels were downloaded from MaxQuant (v.1.4.1.2)20, including 126
(126.127726Da), 127 (127.124761Da), 128 (128.134436Da), 129
(129.131471 Da), 130 (130.141145Da), and 131 (131.138180Da). Using
0.005Da as the reporter mass tolerance, for each batch, the total
number of MS/MS spectra in MGF files was defined as T, while the
number of MS/MS spectra labeled with at least one detected TMT
6-plex reagent was defined as L. Then, the TMT labeling efficiency E of
each batch was calculated as below:

E =
L
T

ð1Þ

By this approach, we obtained 96.17% and 98.68% efficiencies for
mouse hepatocyte maturation and human hepatic reprogramming
samples, respectively.

During revision, we additionally prepared two batches of samples
for proteomic profiling, without further phosphopeptide enrichment.
The efficiencies of TMT labelling were 94.88% and 90.69% for addi-
tional samples ofmouse hepatocytematuration (Batch 1:MH [126, 127,
128] and CLiP-Hep [129, 130, 131]) and human hepatic reprogramming
(Batch 2: GFP [126], FHH-2.25d [127], and FHH-5d [128]), respectively.

Phosphopeptide enrichment
The tryptic peptides were fractionated into fractions with the high pH
reverse-phase high-performance liquid chromatography (HPLC),
basedon theThermoBetasil C18 column. Thepeptideswere separated
into 60 fractions with a gradient of 8% to 32% acetonitrile (pH 9.0)
(Fisher Chemical) over 60min and then pooled into 4 and 11 fractions
by combining with equal time interval for mouse hepatocyte
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maturation and human hepatic reprogramming, followed by the
vacuum drying.

For the phosphopeptide enrichment, the loading buffer (50%
acetonitrile & 6% TFA (Sigma-Aldrich)) with Ti4+-immobilizedmetal ion
affinity chromatography (Ti4+-IMAC) microspheres was used to incu-
bate the peptide mixtures for 1 h at room temperature (30 rpm). Next,
the IMAC microspheres with enriched phosphopeptides were col-
lected after centrifugation. Then, 50% acetonitrile with 6% TFA and
30% acetonitrile with 0.1% TFA were used to wash the microsphere for
10min at room temperature (30 rpm) sequentially, to remove the
nonspecifically adsorbed peptides. From the elution of phosphopep-
tides with microspheres by adding elution buffer containing 10%
NH4OH for 10min at room temperature (30 rpm), the supernatant
containing phosphopeptides was collected and lyophilized for further
analysis.

LC-MS/MS analysis
The liquid phase A (0.1% formic acid (Fluka)) was used to dissolve the
enriched phosphopeptides and load onto a home-made reversed-
phase analytical column (length: 15 cm, i.d.: 75 μm), and separated by
EASY-nLC 1000 ultra-performance liquid chromatography (UPLC)
system. Liquid phase B contains 0.1% formic acid in 90% acetonitrile
(Fisher Chemical). The flow rate wasmaintained at 300 nL/min and the
liquid phase gradient setting was as follows: 0–35min, 4–16% B;
35–65min, 16–24% B; 65–80min, 24–40% B; 80–82min, 40–80% B;
82–90min, 80% B.

Peptides were subjected to NSI ion source (electrospray voltage:
2.0 kV) to ionize followedbyMS/MS inQExactiveTM Plus (Thermo), and
Orbitrap was used for detection and analysis. The scan range of pri-
mary MS was 350 to 1800m/z at a resolution of 70,000. Then, pep-
tides were selected for MS/MS using NCE setting as 30 and detected
with scan range starting at 100m/z at a resolution of 17,500. A data-
dependent procedure that alternated between one MS scan followed
by 20 MS/MS scans was applied with 15.0 s dynamic exclusion. Auto-
matic gain control (AGC) was set at 1E5.

Re-analysis of the trans-omic data in drug-resistant cancer cells
For the transcriptomes of DOX resistance, we downloaded two read
count files of U-2 OS cells with or without DOX treatment, from Gene
Expression Omnibus (GEO)48, a public resource for maintaining gene
expression data (https://www.ncbi.nlm.nih.gov/geo/, accession num-
ber: “GSE84863”)11. Then, the DEMs regulated by DOX against control
were calculated with edgeR (version 3.28.1, p <0.01), a frequently used
R package to analyze RNA-seq data49. Also, we downloaded the tran-
scriptomic data of genistein resistance from GEO (accession number:
“GSE56066”)13, which contained four read count files of MCF-7 breast
adenocarcinoma cells with or without genistein treatment for 24 h.
Then, the DEMs of genistein vs. control were directly computed with
edgeR (p < 0.01)49.

For the phosphoproteomic data, we first obtained the searched
results of TMT-based quantitative phosphoproteomes of DMSO- or
DOX-treated U-2 OS cells with three technical replicates from PRIDE50,
a comprehensive resource formaintaining the proteomicdata (https://
www.ebi.ac.uk/pride/, accession number: “PXD007145”)12. In addition,
the search results of TMT-based phosphoproteomes with two biolo-
gical replicates forMDA-MB-231 triple-negativebreast cancer cellswith
or without genistein treatment for 24 h were also downloaded from
PRIDE (accession number: “PXD002735”)14.

Standard database search
For rawMS/MS data of phosphoproteomes, MaxQuant (v.1.4.1.2)20 was
used for standard database search. The MS/MS spectra files of three
biological replicates of MH and CLiP-Hep samples were searched
against the mouse proteome set downloaded from UniProt (Version
202002)51, which contained 21,982 unique protein sequences in Mus

musculus. The MS/MS spectra files of GFP, FHH-2.25d, and FHH-5d
samples were searched against the human proteome set obtained
from UniProt (Version 201401)51, which contained 20,274 unique pro-
tein sequences in Homo sapiens. Trypsin/P was chosen as the cleavage
enzyme allowing up to 2missing cleavages. The fixedmodificationwas
set as Carbamidomethyl (C), which Oxidation (M), Acetyl (Protein N-
term), and Phospho (STY) were the variable modifications. The mini-
mum peptide length was set as 7, and the mass tolerance for fragment
ionswas set as0.02Da. The falsediscovery rates (FDRs) of the peptide-
spectrummatch (PSM) andprotein decoy fractions were all set to < 1%,
and the minimum score for modified peptides was set to >40.

For raw MS/MS data of mouse or human proteomes, the same
reference proteome sets mentioned above were adopted for spectral
library searching with MaxQuant (v.1.4.1.2)20. Similarly, we chosen
Trypsin/P as the cleavage enzyme and 2 as the maximum missing
cleavages. The carbamidomethyl (C) was selected as fixed modifica-
tion and Oxidation (M) and Acetyl (Protein N-term) were taken as the
variable modifications. The minimum peptide length and mass toler-
ance were set as 7 and 0.02Da, respectively. FDRs of PSM and protein
decoy fractions were set to < 1%.

From the MaxQuant results, the raw reporter intensities were
taken as the quantification values of p-sites or proteins.

Detection of DEMs
We analyzed the transcriptomes of mouse hepatocyte maturation, by
mapping raw reads to the mouse reference genome, which was
downloaded from Ensembl (release version 99, http://www.ensembl.
org/)52. Six BAM files of two samples each with three biological repli-
cates, were individually produced by two software packages of Bowtie
2 (version 2.2.4)53 and TopHat (version 2.2.1)54. Then, we used Cufflinks
(version 2.2.1)55 to assemble reads and calculate FPKM values of map-
ped mRNAs for the estimation of their expression levels. The Cuffdiff
program in Cufflinks was adopted to detect DEMs for each replicate of
CLiP-Hep vs. MH (p < 0.01).

For the transcriptomes of GFP, FHH-2.25d, and FHH-5d, we map-
ped raw reads to the human reference genome, which was down-
loaded from Ensembl (release version 85, http://www.ensembl.org/)52.
Three BAM files were processed as described above, and DEMs were
detected for the three time points (p <0.01), respectively. The same
procedure was also used for the detection of DEMs of HDFs under-
going hepatic transdifferentiation in the context of PIM1 over-
expression against GFP transfection.

Public phosphorylation data resources
We collected experimentally characterized human and mouse p-sites
from 9 public phosphorylation databases, including UniProt51, SysPTM
2.056, PhosphoSitePlus57, PhosphoPep 2.058, PHOSIDA59, HPRD 960,
Phospho.ELM 9.061, dbPTM 3.062, and dbPAF63. As previously
described63, ambiguous p-sites annotated with “By similarity”,
“Potential” or “Probable” were excluded from the UniProt database.
After the redundancy clearance, we obtained 244,034 known p-sites
including 144,116 pS (59.06%), 61,231 pT (25.09%), and 38,687 pY
(15.85%) resides in 18,773 human phosphoproteins, and 119,328 p-sites
including 85,774 pS (71.88%), 23,594 pT (19.77%), and 9960 pY (8.35%)
in 14,044 mouse phosphoproteins.

Functional enrichment analysis
We performed hypergeometric tests for GO- and KEGG-based enrich-
ment analyses of DEMs and differentially regulated p-sites (DRPs, ≥
2-fold or ≤0.5-fold change), respectively. First, we downloaded GO
annotations from the QuickGO (https://www.ebi.ac.uk/QuickGO/, on
21 October 2017)19, which contained 19,476 human and 21,552 mouse
proteins annotated with at least one GO biological process term. We
also downloaded KEGGannotations from the ftp server of KEGG (ftp://
ftp.bioinformatics.jp/, released on 15 October 2017)18, containing
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10,042 human and 11,521 mouse proteins annotated with at least one
KEGG pathway. To identify GO biological processes that were sig-
nificantly over- or under-represented in DEMs, here we defined:

N = number of mapped human genes annotated with at least one
GO term

n = number of DEMs annotated with at least one GO term
M = number of mapped human genes annotated with the

GO term t
m = number of DEMs annotated with the GO term t
Then, the enrichment ratio (E-ratio) was computed, and the p

value was calculated with the hypergeometric distribution as below:

E� ratio=
m
M
n
N

ð2Þ

p=∑n
m0 =m

�
M

m0

��
N �M

n�m0

�
�
N

n

� ðE� ratio ≥ 1Þ, ð3Þ

or

p=∑m
m0 =0

�
M

m0

��
N �M

n�m0

�
�
N

n

� ðE� ratio< 1Þ ð4Þ

The same hypergeometric test was also conducted for the
enrichment of DRPs. GO-based enrichment analyses were performed
for DEMs and DRPs of FHH-2.25d vs. GFP, FHH-5d vs. GFP, and FHH-5d
vs. FHH-2.25d during hepatic reprogramming. GO- and KEGG-based
enrichment analyses were also conducted for DEMs of CLiP-Hep
against MH, as well as DEMs of HDFs undergoing hepatic transdiffer-
entiation in the context of PIM1 overexpression against GFP
transfection.

The CKI algorithm
First, we obtained standard gene names and protein sequences of 524
human and 539mouse PKgenes fromapreviouslydevelopeddatabase
of iEKPD 2.0 (http://iekpd.biocuckoo.org/), which contained 109,912
known andpredicted PKs in 164 eukaryotes64. For the humanormouse
transcriptomic data, we identified potential DEPKs by directly map-
ping DEMs of a pairwise comparison to PKs using gene names. The
p <0.01 was selected as the threshold for DOX resistance, mouse
hepatocyte maturation, and hepatic reprogramming, while a more
stringent threshold ofp <0.0001 was selected for genistein resistance.

For identified p-sites in this study, their upstream regulatory PKs
were first predicted by iGPS (http://igps.biocuckoo.org/)10. All p-sites
were prepared in the tab-delimited Phospho.ELM (ELM for short)
format61, including UniProt accession numbers51, full protein sequen-
ces, phosphorylation positions, and residue types. For each sample,
the “Batch Predictor” option in iGPS was used, and the ELM file con-
taining all p-sites was directly loaded for a prediction. The probability
of a p-site modified by each PK was individually scored, and
only results with scores higher than the pre-determined cut-off
values were reserved and outputted. For using iGPS, we selected the
default parameters of the “Low threshold” and “Experiment/
STRING PPI”.

Then, we designed two approaches to identify potentially central
PKs from the phosphoproteomic data, including an intensity-based
method and a network-basedmethod. For the former, we first defined
the total substrate intensity (TSI) of a PK by adding square root values

(SRVs) of TMT intensities of p-sites in their corresponding substrates.
For each phosphoproteomic data set, the TSI value of a PK i in the
sample A was calculated as below:

TSIA ið Þ= ∑
n

j = 1
SRVj ð5Þ

here,n is the number of substrate p-sites of the PK i. Thus, theTSI score
of m PKs in the sample A was computed as below:

TSIA = ∑
m

i = 1
TSIA ið Þ ð6Þ

We performed the Yate’s chi-squared test of a pairwise compar-
ison, by calculating a Chi-squared 2 × 2 contingency table:

Sample A Sample B Total

PK i a =TSIA ið Þ b = TSIB ið Þ Ti = a + b

Other PKs c = TSIA � TSIA ið Þ d = TSIB � TSIB ið Þ To = c + d

TA = a + c TB = b + d T = a + b + c + d

The χ2 was determined as below:

χ2 =
T max 0, ∣ad � bc∣� T

2

� �� �2
TiToTATB

ð7Þ

The function chisqrprob(degree, χ2) of Perl module Statis-
tics::Distributions was adopted to calculate p values, whereas the
degree was set as 1. In this method, the p < 1.0 × 10−5 was adopted as
the threshold to predict potentially central PKs for DOX resistance,
mouse hepatocyte maturation, and hepatic reprogramming, while
a relaxed threshold of p < 0.05 was selected for genistein
resistance.

In the network-based method, we defined the kinase network
index (KNI) to denote the network state of a PK. First, we re-
constructed a site-specific PK-substrate network from predicted
ssKSRs mutually quantified in a pair of samples, e.g., treatment vs.
control. In the network, the nodes denoted individual p-sites or their
upstream regulatory PKs, and the orientations of edges were defined
as PKs -> p-sites. Then, single PK networks were individually retrieved
to only contain the PK and its substrate p-sites.

To compare sampleA andB, theweight valueof thenetworkedge,
the relative intensity ratio (RIR) of a p-site in A vs. B was calculated as
below:

RIRp�site =
TMT intensityA
TMT intensityB

ð8Þ

BasedonRIR values of p-sites,we split each single PK network into
an up-regulated sub-network (RIR > 1) and a down-regulated sub-net-
work (RIR < 1). For a PK i, its up-regulated KNIU ðiÞ value could be
computedby addingRIRs ofmp-sites in the up-regulated sub-network,
whereas its down-regulated KNIDðiÞ score could be inferred from RIRs
of n p-sites in the down-regulated sub-network as below:

KNIU ðiÞ= ∑
m

j = 1
RIRj ð9Þ

KNIDðiÞ= ∑
n

k = 1
1=RIRk ð10Þ
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Then, the total KNIU and KNID of A vs. B for l PKs were calculated
as below:

KNIU = ∑
l

i = 1
KNIU ðiÞ ð11Þ

KNID = ∑
l

i = 1
KNIDðiÞ ð12Þ

Again, the Yate’s chi-squared test was used to identify potentially
up- or down-regulated PKs with the following Chi-square 2 × 2 con-
tingency table:

Up-regulated Down-regulated Total

PK i a=KNIU ðiÞ b=KNIDðiÞ Ti =a+b

Other PKs c=KNIU � KNIU ðiÞ d =KNID � KNIDðiÞ To = c+d

TU =a+ c TD =b+d T =a+b+ c+d

The χ2 was computed as below:

χ2 =
T max 0, ∣ad � bc∣� T

2

� �� �2
TiToTUTD

ð13Þ

The p values were also computed with the function chisqr-
prob(degree, χ2) of perl module Statistics::Distributions, and the
degreewas set as 1. In thismethod, thep < 1.0 × 10−5 was adopted as the
threshold to predict potentially central PKs for DOX resistance and
mouse hepatocyte maturation, while a relaxed threshold of p < 0.01
was selected for genistein resistance and hepatic programming.

Finally, the number of positive hits was counted for each PK from
all pairwise comparisons. For DOX resistance11,12, the threshold in CKI
for prioritization of potentially central PKs were set as ≥14 of the 19
pairwise comparisons (1 formRNAexpression, 3 × 3 for substrate p-site
intensity, and 3 × 3 for kinase-substrate network). For genistein
resistance13,14, the threshold was ≥ 6 of the 12 pairwise comparisons
(2 × 2 for mRNA expression, 2 × 2 for substrate p-site intensity, and
2 × 2 for kinase-substrate network). For hepatocyte maturation, the
threshold was ≥ 15 of the 27 pairwise comparisons (3 × 3 for mRNA
expression, 3 × 3 for substrate p-site intensity, and 3 × 3 for kinase-
substrate network). For hepatic programming, the thresholdwas≥ 5 of
the 9 pairwise comparisons (3 for mRNA expression, 3 for substrate
p-site intensity, and 3 for kinase-substrate network).

KSEA analysis
For the human phosphoproteomic data, the R package KSEAapp16

(version 0.99.0) was directly used to identify potentially central PKs
(p < 0.05). For themousephosphoproteomicdata, weobtained known
ssKSRs by mapping the p-sites to PhosphoSitePlus57 as previously
described15. Then KSEAapp was used for predictions of potentially
important PKs using mapped ssKSRs (p <0.05).

Performance evaluation
For the DOX or genistein resistance, known regulatory PKs curated
from the literature were taken as the positive data, while other
remaining PKs predicted with at least one ssKSR were taken as the
negative data. To evaluate the accuracyof CKI and othermethods, true
positive (TP), true negative (TN), false positive (FP), and false negative
(FN) values were counted, and we calculated 2 commonly-used mea-
surements, including sensitivity (Sn) and specificity (Sp) as below:

Sn=
TP

TP + FN
, ð14Þ

Sp=
TN

TN + FP
ð15Þ

The ROC curves were illustrated based on Sn and 1-Sp values, and
the corresponding AUC values were calculated. A higher AUC value
denotes a higher accuracy of a predictive model in general.

Then, the confusionmatrix under a selected threshold of pairwise
comparisons was calculated as below:

Actual

Known Unknown

Predicted Known TP
TP + FP

FP
TP + FP

Unknown FN
FN +TN

TN
FN +TN

For each of known or unknown PKs, the number of positive hits
and the sum of all minus-log transformed (-lg) p values were counted
for PCA analysis.

Correlation analysis of mRNA expression levels of PKs and their
substrate p-site intensities
The correlations between mRNA expression levels of PKs and their
corresponding substrate p-site intensitiesweremeasured basedon the
ssKSRs, using the Spearman’s correlation. For each ssKSR, the Spear-
man’s correlation coefficient (ρ) between themRNAexpression level of
the upstream PK and the intensity of the downstream p-site was cal-
culated across different samples or replicates.

Correlation and clustering of samples
The correlations of biological replicates and samples were measured
with the Spearman’s correlation, based on transcriptomic or phos-
phoproteomic data. The Spearman’s correlation coefficient was cal-
culated and used for 2-way hierarchical clustering.

Trans-omic modeling of the hepatic transdifferentiation-
associated TPCW
First, we manually collected 41 experimentally identified hepatic line-
age genes inH. sapiens from the scientific literature. Besides annotated
human genes in the KEGGpathwayof ferroptosis (KEGG ID: hsa04216),
we further curated 37 known ferroptosis-associated genes from
PubMed. For cell cycle, all human genes in the KEGG pathway of cell
cycle (KEGG ID: hsa04110) were directly used. All curated genes of
hepatic lineage, ferroptosis, and cell cycle were shown in Supple-
mentary Data 6. Before the construction of TPCW, we reserved the
curated genes transcriptionally up-regulated by FHH with or without
PIM1 overexpression (p < 0.01). Also, we reserved the curated genes, of
which protein products contained at least one DRP. Moreover, we
validated an additionally hepatic lineage gene CYP3A4 regulated by
FHH in the context of PIM1, and this gene was also included.

In the transcriptional level, we first downloaded pre-calculated TF-
binding sites (TFBSs) of all available TFs from ‘Genome Tracks’ of JAS-
PAR database (http://expdata.cmmt.ubc.ca/JASPAR/downloads/UCSC_
tracks/2018/hg38/)65. The locus of human genes were extracted from
the Gene Annotation Format (GTF) file of Ensembl52. Highly potential
TFBSs (p<0.001) located within the upstream 2000 bp and down-
stream 500bp of each gene locus were reserved to determine potential
TF-target relations. From the transcriptomic data, we obtained 24
potentially FHH-regulated TFs transcriptionally up-regulated (p<0.01)
in the pairwise comparison of FHH-2.25d vs. GFP, FHH-5d vs. GFP, or
FHH-5d vs. FHH-2.25d (Supplementary Data 6). Then, predicted TF-
target relations among FHH, the 24 TFs and other target genes were
reserved. Also, we downloaded known TF-target relations in H. sapiens
from the database of TRRUST (v2, http://www.grnpedia.org/trrust/),
which contained 8444 and 6552 TF-target relations for 800 human TFs
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and 828mouse TFs curated from the literature, respectively66. Standard
gene names were used to map the TRRUST data to our data set. To
avoid missing any known data, we also searched the PubMed with all
pairs of FHH and 24 FHH-regulated TFs with other genes, and obtained
additionally known TF-target relations. We merged the three types of
data sets, and in total 48 known and 1228 predicted TF-target relations
between 27 TFs and 89 target genes were integrated (Supplemen-
tary Data 6).

In the phosphorylation level, the experimentally characterized
ssKSRs between the 2 central PKs and other proteins were directly
taken from two public databases including PhosphoSitePlus57 and
UniProt51, as well as an additional literature curation. Also, iGPS was
used to predict all potential ssKSRs between the 2 central PKs and
other proteins, with the default parameters of the “Low threshold” and
“Experiment/STRING PPI”. In total, 12 known and 459 predicted ssKSRs
were obtained between 2 central PKs and 30 other proteins (Supple-
mentary Data 6).

Finally, wemerged the TF-target network and the kinase-substrate
network together to obtain an integrative TPCW, which was illustrated
by Cytoscape, a tool for visualizing complex networks67. In the TPCW,
there were 27 TFs including FHH and 24 additional FHH-regulated TFs,
2 potentially central PKs, and 60 curated genes of hepatic lineage,
ferroptosis, and cell cycle were adopted for TPCWmodeling. A hepatic
lineage gene, TF (Serotransferrin), is also associated with ferroptosis
(Supplementary Data 6). In the TF-target network, the nodes denoted
TFs or their downstream targets, and the orientations of the edges
were defined as TF - > target. In the kinase-substrate network, the
nodes denoted PKs or their downstream substrate proteins, and the
orientations of the edges were defined as PK - > substrate protein. In
the final TPCW, the edge weight was not considered. All known and
predicted TF-target relations and ssKSRs were shown in Supplemen-
tary Data 6.

Statistics and reproducibility
All experiments are performed at least in three biological replicates.
No statistical method is used to predetermine sample size and no data
are excluded from the analyses. All statistical data are presented as the
mean + standard deviation (SD). Statistical significance of the differ-
ence is determined using Student’s t test. Differences are considered
significant at the p < 0.05.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The RNA-seq data has been deposited into NCBI GEO48 (https://www.
ncbi.nlm.nih.gov/geo/) with the dataset identifier “GSE169702”. The
mass spectrometry phosphoproteomic and proteomic data including
the annotated mass spectra have been deposited into the integrated
proteome resources (iProX, http://www.iprox.org/)68 with the dataset
identifier “PXD035829 [https://www.iprox.cn/page/project.html?id=
IPX0001681000]”. All the other data supporting the findings of this
study are available within the article and its supplementary informa-
tion files, or from the corresponding authors upon reasonable
request. Source data are provided with this paper.

Code availability
The source code of CKI has been uploaded to GitHub (https://github.
com/BioCUCKOO/CKI) with the DOI identifier (https://doi.org/10.
5281/zenodo.7017943)69.
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