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The mutational signatures of formalin
fixation on the human genome

Qingli Guo 1,2, Eszter Lakatos2,3, Ibrahim Al Bakir 2, Kit Curtius2,4,
Trevor A. Graham 2,3 & Ville Mustonen 1,5

Clinical archives of patient material near-exclusively consist of formalin-fixed
and paraffin-embedded (FFPE) blocks. The ability to precisely characterise
mutational signatures from FFPE-derived DNA has tremendous translational
potential. However, sequencing of DNA derived from FFPE material is known
to be riddled with artefacts. Here we derive genome-wide mutational sig-
natures caused by formalin fixation. We show that the FFPE-signature is highly
similar to signature 30 (the signature of Base Excision Repair deficiency due to
NTHL1 mutations), and chemical repair of DNA lesions leads to a signature
highly similar to signature 1 (clock-like signature due to spontaneous deami-
nation ofmethylcytosine).We demonstrate that using uncorrectedmutational
catalogues of FFPE samples leads to major mis-assignment of signature
activities. To correct for this, we introduce FFPEsig, a computational algorithm
to rectify the formalin-induced artefacts in the mutational catalogue. We
demonstrate that FFPEsig enables accurate mutational signature analysis both
in simulated andwhole-genome sequenced FFPE cancer samples. FFPEsig thus
provides an opportunity to unlock additional clinical potential of archival
patient tissues.

Patient samples are routinely processed with formalin fixation and
paraffin embedding (FFPE) by pathology laboratories around the
world. FFPE preserves tissue morphology and enables immunohisto-
chemical analysis for clinical diagnosis1,2. However, genomic analysis of
DNA extracted from FFPE blocks is problematic, as formalin fixation
negatively impacts DNA quality and quantity compared to fresh frozen
(FF) material3,4. The pathology archive of any large hospital is likely to
contain tens of thousands of FFPE blocks. Enabling accurate genomic
analysis of FFPE material would unlock tremendous translational
research potential from these vast collections of archival material5–7.

During the fixation step of FFPE preservation, buffered formalin
(4% formaldehyde) penetrates the biospecimen and generates cross-
links between intracellular macromolecules (DNA–DNA, DNA–RNA
and DNA–protein). These cross-links stall DNA polymerases during

library amplification7–9. As a consequence, the diversity and the num-
ber of templates that can be amplified by PCR from FFPE DNA is sig-
nificantly depleted4,10. Furthermore, formalin causes hydrolytic
deamination of cytosine bases to uracil1,7, resulting in U:G mismatches
where DNA polymerase incorporates adenine opposite to uracil in
amplicon-based protocols, generating artefactual C:G>T:A substitu-
tions in sequencing data5–7.

To mitigate deamination artefacts, some FFPE sequencing
library preparations provide repair treatment whereby uracil DNA
glycosylase (UDG) is added to remove uracil bases prior to
amplification5,6,11. However, formalin-induced deamination of
5-methylcytosine (5mC; exclusively present in CG dinucleotides)
would be converted directly to thymine instead of uracil3,10. This
second class of formalin artefacts is not corrected by the UDG
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treatment; therefore, downstream bioinformatics approaches are
necessary to attempt their removal7.

Mutational signatures derived from whole-genome sequencing
(WGS) data characterise the mutational processes that have acted
upon the cancer genome12,13. Single base substitution (SBS) signatures
are derived by considering the type of specific base pair change (e.g.
C>T) together with the flanking base pair context (e.g. ACA>ATA)12,13.
The recently updated mutational signature catalogue provides a
comprehensive source of mutational processes active in human can-
cers, which is derived from an unprecedentedly large number of
samples14. Activities of signatures have immediate translational
relevance15–19, for example homologous recombination (HR) deficiency
signature (SBS3), which is one of the response indicators to poly (ADP-
ribose) polymerase (PARP) inhibitors for targeted therapy17,20,21.

Mutational signature analysis on FFPE material is problematic
because of the artefactual mutations induced by formalin fixation5–7.
Here, we use the statistical machinery of mutational signature analysis
to derive a mutational footprint caused by formalin exposure during
FFPE biospecimen processing. First, we identify formalin artefact
mutational signatures in both unrepaired (without UDG) and repaired-
FFPE (with UDG) samples, using paired FFPE and FF sample sequencing
data fromthe same tissue.Wenextdesign andvalidate adecomposition
algorithm, FFPEsig, to subtract FFPE artefacts and thereby infer biolo-
gical mutation profile in a given FFPE sample. We demonstrate the
efficiency of ourmethod on synthetic and sequenced FFPE samples and
show that FFPEsig can correctly recover the true activities ofmutational
signatures otherwise masked by FFPE-induced artefacts. Our method
enables robust mutational signature analysis on FFPE samples, thus
paving the way towards clinical implementation using FFPE WGS data.

Results
Formalin fixation artefacts are predominantly C>T mutations
To identify FFPE artefacts signatures, we used publicly available tar-
geted panel sequencing data from two previous studies10,11, in which
triplicate samples (repaired FFPE, unrepaired FFPE and FF) were
available. The study by Prentice et al. (hereafter study 1) comprised
n = 3 colorectal cancers (CRC), and each cancer included nine samples:
one FF sample, four unrepaired and four repaired-FFPE samples that
were sequenced after a fixation time of 2, 15, 24 and 48 hours
respectively10,11. In addition, study 1 included n = 29 patients for whom
repaired and unrepaired-FFPE samples were available10,11. In the study
by Bhagwate et al. (hereafter study 2), triplicate samples from n = 4
benign breast tissue were available10,11. In total, we obtained n = 110
FFPE samples, of which 32 (29%) had matched FF (see Methods).

We first focused on samples with matched FF available and
examined the set of mutations detected in FFPE samples but not
detected in all FF samples and removed mutations listed in germline
SNPs databases (termed FFPE-only or discordant mutations; see
Methods). Within the study 1 sample set, we discovered that C>T dis-
cordantmutations were common (937 out of 1300, ~72% in unrepaired
FFPEs; 265 out of 679, ~39% in repaired FFPEs), and T>C mutations
were also common (347/1300, ~27% in unrepaired FFPEs; 393/679,
~58% in repaired FFPEs) (Supplementary Fig. 1). In comparison, dis-
cordantmutations from study 2wereprimarily C>Tmutations (10,519/
10,575, ~99.5% in unrepaired and 724/896, ~81% in repaired FFPEs),with
very few T>Cmutations detected (30/10,575, ~0.28% in unrepaired and
85/896, ~9% in repaired FFPEs) (Supplementary Fig. 2). Overall, both
studies observed large numbers of C>T artefacts and this class of
mutation was reduced dramatically in samples repaired with UDG
treatment. These observations suggest that C>T artefacts are directly
caused by the formalin treatment. This is in agreement with previous
studies reporting that deaminated cytosine and 5mC result in C>T
artefacts5–7 (Supplementary Fig. 3).

To examine whether T>C mutations are also true artefacts of
FFPE, we counted the proportion of C>T and T>Cmutations present in

two or more samples both within and between tissues (termed con-
cordant mutations) in the complete mutation list without any filters
applied (Supplementary Fig. 4). The complete list may consist of
unfiltered SNPs and recurrent PCR/sequencing artefacts, as well as
recurrent FFPE artefacts. We assume most of FFPE-induced mutations
to be randomly located across the genome and so expect the genomic
coordinate of mutations to differ between samples. We observed that
an average of ~30%C>Tmutationswere sharedby at least two samples,
in contrast to ~88% for T>C mutations (Supplementary Fig. 4a).
We next compared the pair-wise concordant mutation ratio across
three patients: ~10% of C>Tmutations and ~59%of T>Cmutations were
shared by the sample pairs on average (Supplementary Fig. 4b).
We noted that the concordant T>Cmutations were similarly prevalent
among FF sample pairs in study 1 (~57.8%, 1275/2207), compared to the
FFPE sample pairs in this study (~58.4%, 1260/2156). This high pre-
valence of T>C in FF samples is particularly observed in study 1 but not
in general FF CRC samples, so seems to be the consequence of an
undefined defined batch effect in this study. Overall, we found that
T>C mutations are not randomly distributed, suggesting that they are
batch-related artefacts likely due to librarypreparation or downstream
pipeline.

In contrast, C>T mutations showed a substantially lower con-
cordant ratio (Supplementary Fig. 4). We noted that a relatively higher
proportion of concordant C>T mutations were observed among
repaired-FFPE pairs (Supplementary Fig. 4b). We found that the
majority of those concordantmutations were found inNCpG contexts,
and so were the concordant mutations from unrepaired-FFPE pairs.
This explains the higher concordant ratio in repaired pairs since they
have a similar chance of observing concordant mutations at CpG sites
(the numerator) but have a much smaller total artefact count (the
denominator) compared to the unrepaired pairs (Supplemen-
tary Fig. 4b).

We next studied the relationship between FFPE-only mutation
count and formalin fixation time. Our assumption was that the
number of mutations arising from formalin damage would increase
when the exposure (formalin fixation) time was longer. Indeed, we
observed a positive correlation for C>T mutations (slope = 7.28,
intercept = 150.28 for unrepaired-FFPE; slope = 0.69, intercept = 73
for repaired FFPEs) (Fig. 1a). However, the T>C mutations showed an
opposite trend in unrepaired FFPEs (slope = −0.05, intercept = 116.52)
(Supplementary Fig. 1a). These results further confirmed that C>T
mutations were true formalin-induced artefacts, but T>C mutations
were likely associated with the library preparation or other down-
stream steps.

To validate these observations, we conducted a thorough litera-
ture review and identified additional 20 studies looking at formalin-
induced artefacts (Supplementary Table 1). All of them (100%) repor-
ted C>T mutations due to formalin exposure. Only 3 of 20 (15%)
reported additional T>C and 2 of 20 (10%) reported C>A mutations. A
similar survey performed by Do and Dobrovic also observed a pri-
marily C>T landscape with non-conclusive evidence regarding other
mutation types7. Therefore, we conclude that C>T mutations are
dominant among FFPE-induced artefacts, whereas occasional T>C or
C>A artefacts are batch-related artefacts likely due to PCR related
procedures on formalin-treated DNA22–24.

Unrepaired-FFPE signature mirrors SBS30; repaired-FFPE sig-
nature mirrors SBS1
We next used FFPE-only mutations to learn the mutational signature
induced by formalin. We used all FFPE samples from study 1 and 2
(n = 110) and excluded all T>C mutations as we had confirmed that
these mutations were not formalin associated artefacts. We therefore
assigned zeros to T>C channels. The exclusion of this class was
equivalent to treating them as missing data. The samples in the
respective studies were sequenced using different cancer-gene panels,
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thus the mutational opportunities, determined by the frequency of
each trinucleotide context in the panel, differed between studies
(Supplementary Fig. 5). Therefore, we applied study specific normal-
isation on the mutation counts to project the values onto human
genome context, which enabled direct comparison between the
studies.

The cluster of normalised80-channelmutational profiles (without
T>C) from the entire combined set of n = 110 FFPE samples was
represented using t-distributed stochastic neighbour embedding (t-
SNE) method25 (Fig. 1b). Samples from the two studies showed no
batch effect and clearly separated into two clusters of unrepaired and

repaired samples. Two repaired samples from study 1 clustered with
unrepaired FFPEs, which we suspect is due to poor response to UDG
treatment26. By contrast, we also clustered normalised mutational
profiles of T>C mutations, which showed large variability among
samples regardless of repair treatment status and the study of ori-
gin (Fig. 1c).

To derive FFPE signatures, we used t-SNE clustering to select
representative samples to exclude possible outliers. We performed an
iterative process where each iteration was defined by the random seed
inputted to the t-SNE algorithm. For each t-SNE embedding, we cal-
culated the spatial density of the clustered data measured by a

Fig. 1 | Mutational signatures of formalin exposure. a C>T FFPE-only mutation
count increases with formalin fixation time. We observed this increase in both
unrepaired and repaired-FFPE samples from study 1 (the fixation group). FFPE-only
mutations refer tomutations that are only discovered in FFPE but not in FF samples
or known germline databases. The bar height represents the average C>T count in
n = 3 patients, and the individual counts aremarked as black dots. bConsistent and
separablemutational patterns observed for unrepaired-FFPE and for repaired-FFPE
samples using 80-channel spectrum (non-T>C). We clustered the normalised 80-
channel mutation profiles (n = 110) from study 1 and 2 using t-SNE (see Methods).
cNoconsistent and separablemutational patterns observed for T>Cmutations.We
clustered the normalised T>C mutation profiles (n = 110) from study 1 and 2 using
t-SNE. d Comparison of our derived FFPE signatures to known COSMIC SBS

signatures. e, f Unrepaired signature is highly similar to SBS30 (e) and repaired
signature is highly similar to SBS1 (f). We treated T>C features as missing data due
to the strong batch-effect found in study 1, which is also observed in a few other
studies shown in Supplementary Table 1 and therefore theywere assigned to zeros.
We noted that zero values are approximately close to the true T>C mutation
probabilities in FFPE datasets without this batch-effect (Supplementary Fig. 6f).
Error bars indicate the standard deviation in n = 55 independent samples with top
50% density in t-SNE cluster (see Methods). g, h Large variability in T>C mutation
channels. We derived the T>C patterns using the same methods applied in (e, f).
The error bar showed the standard deviations in n = 55 independent samples with
top 50% density within the t-SNE (see Methods).
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gaussian kernel, and selected samples in regions of high spatial density
(top 50%) as our representative sample subset (Supplementary
Fig. 6a). The averaged values of all mutation channels from this
representative subset generated one set of candidate formalin sig-
natures. Our final formalin signatures were derived from the mean of
all candidates collected from 100 random t-SNE embeddings (Sup-
plementary Fig. 6b, c, Supplementary Data 1).

We compared the derived FFPE-artefact signatures to COSMIC
SBS signatures (V3, May 2019 version)14 (Fig. 1d). We found that
unrepaired-FFPE signature is highly similar to SBS30 (cosine similar-
ity = 0.92; Fig. 1e), and the repaired-FFPE signature shares a similar
pattern with the ageing signature—SBS1 (cosine similarity = 0.90;
Fig. 1f). We noted that the features of both FFPE signatures agreedwith
the expected effects of formalin-induced artefacts with or without
UDG treatment (Supplementary Fig. 3). SBS30 has been validated as a
mutational footprint of NTHL1 mutations that disrupt base excision
repair (BER)27,28. SBS1 is well-known as a clock-like signature that
positively correlates with age29. We also note that the repaired-FFPE
signature shares even greater similarity (0.95)with clock-like signature
1 released in COSMIC V2 (March 2015 version),whichwas derived from
a relatively smaller cohort.

Despite the high similarity, we examined the C>T mutation
channels where the fold-change was >2 between the signature pairs in
Fig. 1e, f. The unrepaired-FFPE signature only differs in NCT context
from SBS30 (Fig. 1e). The repaired-FFPE signature mostly differs in
non-CpG mutation contexts which are absent in SBS1 (Fig. 1f), and the
fewmutations in those channels likely remained unrepaired even after
UDG treatment. However, we noted that the above dissimilarities
might not suffice to make an easy distinction between the two sets of
signature pairs by decomposition algorithms.

We attempted to apply the same method to derive patterns for
T>Cmutation channels (Fig. 1g, h) but did not observe distinguishable
patterns between repaired or unrepaired-FFPE samples. We found the
variability of the T>C mutation channel was much bigger than that of
the C>T channel (Fig. 1e, f), confirming that T>C mutations are not
driven by the same underlying process. Overall, the inconsistent error
pattern for these batch-related T>C mutations found in study 1 ruled
out the possibility of extracting themusing a similar strategy as a noise
signature, in contrast to formalin-induced C>T mutations. Separate
experimental studies are required to investigate the molecular cause
of these spurious T>C mutations.

To validate the robustness of our derived formalin signatures, we:
(1) performed independent signature inference from study 1 and 2,
which revealed almost identical patterns (cosine similarity ≥0.98;
Supplementary Fig. 6d, e); and 2) derived a separate repair signature
from a third study30 (Supplementary Fig. 6f). This third study reported
strictly filtered somatic mutations for n = 11 lung adenocarcinoma
samples30. We found a total of 1041 FFPE-only mutations and the
aggregate profile of these mutations is highly similar to the repaired-
FFPE signature we derived from study 1 and 2 (cosine similarity = 0.93,
Fig. 1f), implying the FFPE samples in study 3 were repaired usingUDG.
These results together confirmed our discovered FFPE signatures are
highly robust across samples collectedbydifferent laboratories and/or
processed via different pipelines.

We noted that study 3 contains ~7.5% (79 out of 1041) T>C muta-
tions, similar to study 2 repaired-FFPE samples, which strongly sup-
ports our earlier conclusion that the T>C artefacts discovered in study
1 were batch-related and they should not be taken into account when
investigating the direct effect of formalin on the genome.

Accurate correction by FFPEsig on majority of simulated FFPE
samples
We next designed and implemented an algorithm called FFPEsig to
correct artefacts from FFPE mutation profiles (see Methods). The
algorithm decomposes the observed aggregate mutational catalogue

in a given FFPE sample into FFPE-artefact (the noise) and true biolo-
gical mutations (the signal). To test the performance of FFPEsig, we
added the same amount of FFPE artefacts (104) to all PCAWG fresh
tumourprofiles14,31 in silico (SupplementaryFig. 7), and then attempted
to remove them using FFPEsig. We omitted T>C mutations in our
simulations to match real-life samples where it would be unknown
whether a FFPE sample contains batch-related T>C artefacts.

The noise count of 104 used in our simulation set-up yielded a
signal-to-noise ratio (SNR) of 1/17 on average,which falls in the rangeof
excess mutations observed in real FFPE samples after applying variant
filters7,32,33. In Fig. 2a, we show an example of one simulated CRC FFPE
sample together with its biological and FFPEsig corrected profiles. In
this case, FFPEsig successfully inferred the biological mutation cata-
logue with ~0.98 accuracy (measured by cosine similarity between the
true and corrected profiles on C>T channels). We noted the overall
correction accuracy was slightly higher when we used the full channel
profile (Supplementary Fig. 8). Going forward, we used the stricter
evaluation focusing only on C>T mutation channels.

Next, we refitted signature activities using the three profiles
shown in Fig. 2a. We assigned activities to the three signatures (SBS1, 5
and 18) that were identified by the PCAWG team using the true bio-
logical (fresh frozen) profile. The corrected FFPE profile produced
highly similar contributions inferred from the real biological profile
(Fig. 2b). However, when using the uncorrected FFPE profile, the
contributions of SBS1 and SBS18were greatly underestimated. Because
relative signature activities were inferred, these errors propagated and
caused incorrect inference of all signatures, most notably of SBS5.

Next, we applied FFPEsig to all PCAWGsamples (n = 2780)with 104

mutations of in silico FFPE noise added to their true mutation profiles.
Overall, FFPEsig achieved ~0.90 and ~0.87 correction accuracy on
average for unrepaired-FFPE and repaired-FFPE samples, respectively
(Fig. 2c, d). We classified cases with correction accuracy >0.90 as well-
corrected samples (Fig. 2d), which yielded n = 1770 (~64%) unrepaired
and n = 1462 (~53%) repaired well-corrected samples.

To examine the possible factors which could influence the cor-
rection accuracy, we evaluated: (1) SNR, measured by biological C>T
mutation count (the signal) dividedby the introducednoise count; and
(2) the signal-to-noise similarity (SNS),measuredby cosine similarity of
C>T channel between the true biological catalogue (the signal) and
the FFPE-signature. We found that poorly corrected cases were due to
low SNR and/or high SNS (Fig. 2c). In particular, samples with low SNR
(equivalent to having low C>T biological mutation load) were difficult
to correct regardless of the SNS (Fig. 2c). We further separated these
two factors and confirmed that correctionperformance improvedwith
increasing SNR (Fig. 2e), and with smaller SNS (Fig. 2f).

We continued our in silico evaluation by examining FFPEsig per-
formance on our synthetic FFPE samples but separated into cancer
types (Fig. 2d). The efficacy of correction varied significantly across 26
main cancer types (with n > 20 per cancer type). Overall, FFPEsig was
most accurate in skin melanoma (accuracy = ~0.98) due to its higher
mutation load (mean = ~96,361) and lower SNS (mean= ~0.55), fol-
lowed by bladder transitional cell carcinoma (Bladder-TCC, accu-
racy = ~0.96) and lung squamous cell carcinoma (Lung-SCC,
accuracy = ~0.96). In contrast, FFPEsig performed poorly in pilocytic
astrocytoma (CNS-PiloAstro, accuracy = ~0.60), medulloblastoma
(CNS-Medullo, accuracy = ~0.79) and myeloproliferative neoplasm
(Myeloid-MPN, accuracy = ~0.80), because of the low SNR (≤0.06) in
this cancer types.

We noted that FFPEsig had different performance between
unrepaired and repaired FFPEs within certain cancer types (Fig. 2d).
There were 17 out of 26 cancer types with detectable difference
(P < 0.05) and 14 of 17 with significant difference (P < 0.001). For
instance, the noise correction worked significantly better for
unrepaired-FFPE samples in pancreatic adenocarcinoma (Panc-Ade-
noCA) with 94%ofwell-corrected samples, in contrast to only 43% for
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repaired FFPEs. This difference was caused by the low SNS (0.58) in
unrepaired FFPEs, which is much higher (0.88) in repaired FFPEs.
Furthermore, FFPEsig worked successfully in only repaired FFPEs for
Lung-SCC and liver hepatocellular carcinoma (Liver-HCC), with 100%
and 94% well-corrected samples, respectively, for the opposite
reason.

We next evaluated how FFPEsig performance depends on SNR by
generating more synthetic samples with five increasing levels of FFPE
noise to PCAWG fresh tumour profiles (Fig. 2g, h). We then split all
samples at each noise level into four categories based on an increasing
order of true biologicalmutation counts, in order to separately analyse
hyper- and hypo- mutated cancers. Overall, FFPEsig performed well in

Fig. 2 | Correction of FFPE artefacts in synthetic FFPE samples using FFPEsig.
a The correction result for one CRC sample as an example. b Similar activities
resulted from the corrected profile compared to the true biological profile for the
CRC sample in a. c Correction accuracy for all synthetic FFPE samples. We grouped
n = 2780 samples into three categories according to biologicalC>Tmutation count:
high (top 10%, n = 278), low (bottom 10%, n = 278) and middle (the remaining 80%,
n = 2224). d Correction accuracy varied among cancer types. The percentage of
samples with accuracy >0.90 is annotated in the heatmap bar. Data are presented
using a Letter-Value plot and the black line corresponds to the median of the
dataset and every further step splits the remaining data into two halves (the same
for e, f below). The statistical difference between repaired versus unrepaired FFPEs
is derived from the two-sided Mann–Whitney U test. P ≤0.001 (***); P ≤0.01 (**);
P ≤0.05 (*). e Positive correlation between signal-to-noise ratio and correction

accuracy. We classified all samples based on SNR into three groups: high (top 10%,
n = 278), low (n = 278, bottom 10%) and middle (the remaining 80%, n = 2224).
f Negative correlation between signal-to-noise similarity and correction accuracy.
Unrepaired: n = 278 (high), n = 2023 (middle) and n = 201 (low) samples. Repaired:
n = 244 (high), n = 1984 (middle) and n = 274 (low) samples. g, h FFPEsig works well
in samples with SNR above 0.1 for both unrepaired (g) and repaired (h) FFPEs. We
generated five sets (n = 2780 per set) synthetic samples by adding increasing noise
(103, 104, 5 × 104, 105 to 106) to PCAWG samples. We divided samples in each set into
four categories depending on biological C>Tmutation load (from the lowest to the
highest): Q:0–10% (n = 278), Q:10–50% (n = 1112), Q:50–90% (n = 1112) and
Q:90–100% (n = 278). Data are presented as mean values within each category ±
95% confidence interval. All statistics are derived from biological independent
samples.
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most samples when SNR >0.1, achieving mean accuracy of ~0.93 for
both unrepaired and repaired FFPEs. However, its performance drop-
ped quickly when the SNR was smaller than 0.1, and this limitation is
understandable since the stochastic variability of the noise sub-
stantially outweighed the signal. We noted that the correction algo-
rithm had high accuracy on hyper-mutated samples (Q:90–100%)
regardless of noise levels but could not successfully correct hypo-
mutated samples (Q:0–10%) in most cases (due to the low SNR).
Therefore, FFPEsig correction should be applied with caution in sam-
ples where prior knowledge suggests very low true mutation load.

Uncorrected FFPE profiles lead to mis-assignment of signature
activities that can be rectified by FFPEsig
Next, we systematically evaluated the impact of FFPE artefacts on
signature decomposition (Fig. 3; Supplementary Figs. 9, 10). We refit-
ted signature activities in uncorrected (with simulated FFPE artefacts)
and corrected (by FFPEsig) profiles in samples with accuracy
>0.90 shown in Fig. 2c. We compared the derived signature activity
weights against the values inferred from real biological mutation
profiles from the same tumour (Fig. 3). We limited refitting to the
signatures identified in each sample by the PCAWG team under the
assumption that the PCAWG-identified signatures are the true muta-
tional processes active in those tumour samples. All active signatures
were adjusted to 80-channel spectrum. It yielded 7359 signatures in
n = 1770 well-corrected unrepaired FFPEs and 6057 signatures in
n = 1462 well-corrected repaired FFPEs (the 1st panel in Fig. 3a, b).

We quantified the false positive (FP) and false negative (FN) rates
on the inferred activities (Supplementary Fig. 9). We assigned a binary
label to each activity inference, in which 0 means absent (relative con-
tribution ≤0.1) and 1 means present (relative contribution >0.1). The
binary classifications basedon correctedprofiles are highly reliablewith
8~10% false discovery rate (Supplementary Fig. 9a, b), and the majority
of the mis-assignment happens to a flat signature—SBS5, which is pro-
blematic to recover in signature refitting analysis in general14.

In contrast, using uncorrected profiles has a profound impact
while determining the present/absent status of the signatures, with a
total error rate of ~41% and ~37% for unrepaired and repaired-FFPE
samples, respectively (Supplementary Fig. 9c, d). The recall rate is
particularly low in unrepaired-FFPE samples (49%), which shows about
half of true signatures would not be detected (predicted as absent) if
the uncorrected profiles areused.Weobserved a relatively lower recall
rate of ~23% using uncorrected profiles for repaired FFPEs. We assume
the generally active SBS1 in cancer genomes buffered the impact in
repaired FFPEs.

To quantify the relative contribution changes, we next measured
the error of inferred signature activity using the absolute difference
(between the inferred and the true signature contributions, termed ε).
Overall, the refitted contributions from corrected FFPE profiles
recovered true activities with negligible error (ε = ~0.06 for all FFPE
samples) (the 1st panel of Fig. 3a, b). On the other hand, signature
proportions derived from uncorrected FFPE profiles were grossly mis-
estimated compared to true values (ε = ~0.20 for unrepaired; ε = ~0.18
for repaired FFPEs), highlighting the necessity for artefact correction
prior to mutation signature fitting.

We next studied the impact of FFPE artefacts on the individual
signatures which were being detected in at least 20 tumour samples in
the PCAWG cohort (Fig. 3c, d, Supplementary Fig. 10). Again, using
uncorrected FFPE profiles in signature analysis led to significant mis-
assignment formany signatures (Fig. 3). For example, SBS3 (signatureof
HR deficiency) was largely underestimated in both unrepaired FFPEs
(ε = ~0.34) and repaired FFPEs (ε = ~0.31). The activity of BER signatures
was grossly overestimated in unrepaired FFPEs (ε = ~0.36). Similarly, the
overall ageing signature (SBS1) was commonly overestimated in
repaired samples where the refitting method likely assigned FFPE
artefacts to SBS1 (ε = ~0.25), whereas their activities were systematically

underestimated in unrepaired FFPEs (Supplementary Fig. 10a). In
addition, signatures without known clear aetiology (e.g. SBS8, 9, 12, 16)
were also greatly mis-assigned using uncorrected FFPE profiles in both
repaired and/or unrepaired FFPEs (Supplementary Fig. 10).

In contrast, the application of FFPEsig enabled reliable and robust
prediction of signature contributions for all signature groups using
corrected profiles (Fig. 3c, d). Errors of activities inferred from cor-
rected profiles were significantly lower than those from uncorrected
profiles among 20/21 and 19/21 signature groups for unrepaired and
repaired FFPEs, respectively. We did not detect such a significant
decrease of error in two sets of signatures, namely POLE-signature (in
unrepaired and repaired FFPEs) andMSI-signature (in repaired FFPEs).
We propose this is because: 1) the POLE/MSI signatures were not
characterised in C>T mutation channels; and 2) the FFPE artefacts we
added in the simulationhaveminor impact onhyper-mutation samples
such as POLE/MSI (Fig. 2g, h).

We also compared the reconstruction accuracy of corrected and
uncorrectedprofiles against the real biological catalogues using cosine
similarity (Fig. 3e, f). The reconstructed mutational profiles were cal-
culated as the product of active signatures and their inferred activities.
We calculated the reconstruction accuracy from the biological profiles
(mean= ~0.97) as a baseline comparison. This reconstruction accuracy
was followed very closely by that of corrected FFPEs (~0.97 for unre-
paired, ~0.96 for repaired FFPEs). However, uncorrected FFPEs only
achieved ~0.86 and ~0.77 averaged reconstruction accuracy for unre-
paired and repaired-FFPE, respectively, which is significantly lower
than that of corrected FFPE samples.

A case study of correcting FFPE artefacts in real FFPE CRCs
shows consistent results with synthetic samples
Next, we performed whole-genome sequencing on two tumour FFPE
samples (unrepaired versus repaired), and on the matched normal
tissueDNA from the sameCRCpatient (seeMethods; paired FFwas not
available). The mean coverages of the sequencing data were 46×
(unrepaired), 43× (repaired) and 43× (the matched normal), with
>98.8% reads mapped to the genome. Following our filtering, we
detected 13,208 and 6107 somatic SBS in unrepaired and repaired-
FFPE, respectively (Supplementary Fig. 11a).

In particular, the two types of dominant mutations in our FFPE
samples were C>T and T>C, and together they contributed 64.7%-
66.6% to the total mutations (Supplementary Fig. 11b, Supplementary
Data 2). For C>Tmutations, we expected them to be amixture of FFPE
artefacts and real biological mutations, because of the relative abun-
dance (~35%) of C>T mutations in PCAWG CRCs. T>C mutations
accounted for 41.2% (5469/13,280) and 39.8% (2431/6107) in our
unrepaired and repaired FFPEs, but only ~16% on average in PCAWG
fresh CRCs (Supplementary Fig. 11c). Given that our earlier analysis
pointed to batch-related T>C mutations possibly caused by FFPE DNA
sequencing protocols or downstream steps (Fig. 1c, Supplementary
Table 1), we excluded the T>C mutations from our analysis. We also
found the overall mutation load in the repaired WGS-CRC was lower
than in the unrepaired sample (Supplementary Fig. 11b). It is partially
due to the UDG treatment (leading to a decreased C>T load) and our
mutation calling and filtering methods that discard low allele-
frequency (low coverage) mutations from all channels.

Since paired FF was not available, to provide the ground truth
mutational signature, we were inspired by results found in study 210,
where both repaired and unrepaired-FFPE samples contained the
majority of the variants found in the paired FF sample. Thus, we used
concordant mutations between the repaired and unrepaired samples
with more strict filtering (supporting reads ≥5 in both FFPEs) as an
approximation for the true biological mutation profile of the tumour:
this yielded a total of 1040 concordant true somatic mutations (Sup-
plementary Fig. 11a, b), and 656 of them remained after excluding T>C
mutations (top panel of Fig. 4a).
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To explore shared biological mutation patterns in a larger CRC
cohort, we performed hierarchical clustering on the n = 60 PCAWG
fresh CRCs. Indeed, we discovered the subtype CRC samples share
highly homologous mutational patterns with average cosine similarity
of 0.90 for MSS-CRCs sample pairs, 0.92 for MSI-CRCs and 0.96 for
POLE-CRCs (Supplementary Figs. 12a, 13a). To further explore themost
conserved mutation patterns within each subtype, we performed a
similar similarity analysis on six mutation types separately, which

showed C>A and C>T mutations have the strongest power in classify-
ing CRC subtypes (Supplementary Figs. 12b, 13b). We therefore com-
pared the concordant C>A somatic mutation pattern observed in our
two FFPE CRCs to the PCAWGCRCs and identified that our sample was
an MSS-CRC (Fig. 4b).

We then applied FFPEsig on the observed mutation profiles from
the two FFPE-CRC samples (Fig. 4a, Supplementary Fig. 14). We eval-
uated the corrected profiles by comparing them to concordant

Fig. 3 | Mis-assigned signature activities fromuncorrected FFPE profiles can be
ratified by FFPEsig. a, b Similar signature activities inferred from corrected pro-
files and the true values. We compared the signature activities inferred from cor-
rected and uncorrected profiles against true activity proportions from biological
profiles. We used n = 1770 well-corrected unrepaired FFPEs (a) and n = 1462 well-
corrected repaired FFPEs (b). We used adjusted 80-channel signatures (non-T>C;
see Method). Activity error (ε) is calculated as the absolute difference between the
true and inferred relative activities. Mean of the error is annotated in the upper left
within eachplot.We also included a few signatureswith large errorswhile using the
uncorrected profiles, including HR (homologous recombination) deficiency, BER
(base excision repair) deficiency, ROS (reactive oxygen species) damage, clock-like,
and treatment exposure. c, d Error of inferred signature activities is significantly
higher using uncorrected profiles in unrepaired (c) and repaired (d) FFPE samples.

Data are presented as mean values ± 95% confidence interval (error bar). We
grouped the signatures based on their aetiology information. One-sided Wilcoxon
signed-rank test was used to calculate the P values: P ≤0.001 (***); P ≤0.01 (**);
P ≤0.05 (*); P >0.05 (ns: not significant). e, f Reconstruction accuracy of corrected
profiles is significantly improved compared to uncorrected profiles for n = 1770
unrepaired (e) and n = 1462 repaired (f) FFPEs. All samples are simulated from true
biologically independent tumours (Supplementary Fig. 7). The reconstruction
accuracy is calculated according to the true biological profiles. Data are presented
using a Letter-Value plot and the black line in the middle box corresponds to the
median of the dataset. Every further step splits the remaining data further into two
halves. Significant difference of reconstruction accuracy between corrected and
uncorrected profiles is tested using the two-sided Wilcoxon signed-rank test.
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mutation catalogue as well as to all PCAWG MSS-CRC samples under
the assumption that corrected profiles of our samples should show
higher similarity to both positive controls compared to uncorrected
profiles. For unrepaired-FFPE CRC, the accuracy improved from ~0.91
before correction to ~0.95 after correction to concordant mutations
(Fig. 4c). Furthermore, when compared to PCAWGMSS-CRCs, FFPEsig
correction led to a significant increase of cosine similarity from ~0.84
to ~0.92 (Fig. 4d). However, the correction on repaired-FFPE CRC
showed the opposite results. We further validated our observations
using simulated FFPEMSS-CRCs and confirmed that the correctionwas
only beneficial for unrepaired but not repaired FFPEs (Fig. 4e). This is
because the biological MSS-CRC profiles are highly similar to the
repaired-FFPE signature (~0.98 on C>T channels) and therefore the
algorithm could not distinguish true mutations from artefacts. In this
case, the FFPE artefacts would be misread as the ageing signature.

We evaluated the impact of correction by FFPEsig on signature
decomposition in our unrepaired FFPE CRC (Fig. 4f). We refitted activ-
ities to the three signatures (SBS1, 5 and 40), which are reported as
being active in one PCAWG MSS-CRC sample which has the highest
cosine similarity to the concordant mutation profile (using C>A chan-
nel). We again found that using the uncorrected FFPE-CRCprofile led to
misinterpretation of the underlying mutational processes (Fig. 4f).

We further investigated how our corrected profile from
unrepaired-FFPE could contribute to CRC subtyping. Application of
MSIsensor34 detected 8.3% ofmicrosatellite sites with somatic changes
in the unrepaired CRC, but only 0.23% from the repaired CRC. 8.3%
exceeds the 3.5% threshold to call MSI34, and so application of MSI-
sensor to an unrepaired CRC sample could lead to miscalling of MSI
status for the tumour. We therefore attempted to classify the sample
using the conserved mutation patterns (C>A and/or C>T) into CRC
subtypes. We were unable to obtain the correct subtype using the
uncorrected FFPE profile (Supplementary Fig. 15a, b). However, fol-
lowing corrections using FFPEsig, we could clearly distinguish that the
sample was MSS. In addition, we found that the C>A mutation pattern
itself could also classify our sample, and this pattern was only mar-
ginally affected by artefact correction as FFPE artefacts are found
mostly in C>T channels (Supplementary Fig. 15c).

The potential of using 80-channel signatures for refitting ana-
lysis in FFPE samples
In our previous analyses we omitted T>C mutations due to their
unclear origin. We next performed a detailed analysis of how signature
decomposition is affected by such removal of T>C mutations. We
compared the attributedmutation count (or activity) of each signature

Fig. 4 | Applying FFPEsig on two real CRC FFPE samples. a Correctedmutational
profile of unrepaired-FFPE CRC tumour is highly similar to concordant (true)
somatic mutation pattern. CRC: colorectal cancer. We removed T>Cmutations for
clear visualisation of other channels (otherwise will be masked), and their full 96-
channel profiles are shown in Supplementary Fig. 11d–f. b The tumour is an MSS
CRCbased on the concordantmutation profile.We calculated cosine similarities of
unique sample pairs within and between three subgroups (POLE, MSI and MSS) on
the most conserved C>A mutations (Supplementary Fig. 13b). There are n = 28
(POLE-POLE), n = 36 (MSI-MSI), and n = 903 (MSS-MSS) independent sample pairs
within each subgroup, and n = 416 (POLE-MSS/MSI), n = 459 (MSI-POLE/MSS) and
n = 731 (MSS-MSI/POLE) sample pairs between the subgroups. POLE: polymerase
epsilonmutated, MSS: microsatellite stable, MSI: microsatellite instability. Data are
presented using a Letter-Value plot and the black line corresponds to themedian of
the dataset, and every further step splits the remaining data into two halves (the

same for d, e below). The P values were derived from the two-sidedMann–Whitney
U test. c, d FFPEsig correction works well for unrepaired but not for repaired FFPE
according to concordantmutations (c) and to PCAWGMSS-CRCs (d).We calculated
the cosine similarity of corrected and uncorrected FFPE profiles to n = 43 inde-
pendent MSS-CRC samples in d. The P values were derived from the two-sided
Mann–Whitney U test. e The correction also works well for unrepaired but not for
repaired synthetic MSS-CRC FFPE samples. We repeated our analysis in (d) on
simulated FFPE samples. Therefore, we compared each simulated sample to all
MSS-CRC profiles but their real biological profile to match with the scenario that
the two real CRC tumours have no paired FF sample. In total, we obtained n = 1806
independent data points for repaired and unrepaired samples each. The P values
were derived from the two-sided Mann–Whitney U test. f Similar activity fits
observed between concordant and corrected (but not uncorrected) unrepaired-
FFPE profiles. Source data are provided as in a Source Data file.
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by supplying our refitting model with 80-channel (80c; T>C removed)
and with 96-channel (96c) signatures on PCAWG mutational catalo-
gues (seeMethods; Supplementary Fig. 16). The log10 signature activity
ratio of 80c to 96c was used to estimate how dissimilar their activity
values were (termed as inconsistency rate). The bigger the absolute
inconsistency rate is, the more different the activities are.

We refitted 10,312 mutational signature activities for 29 active
signatures from 2726 PCAWG genomes (Fig. 5a), and an additional 54
genomes were excluded due to either low reconstruction accuracy
(<0.85; n = 35) by 96c signatures or too small of a sample size (<10

cases per signature per cancer type; n = 19). The mean inconsistency
rate among 10,312 refits was 0.013 (Fig. 5a). We considered signatures
with inconsistency rate between −0.30 and 0.18, equivalent to actual
activity ratio from 0.5 to 1.5, as having well-refitted results. Of the
originally inferred 10,312 signature activities, 8938 (86.7%) were well-
refittedwhen only 80c spectrumwas used. Overall, 24 of 29 signatures
were considered well-refitted.

For the five signatures that were poorly refitted using 80c, four of
them had high T>C mutation rates, namely SBS7d, 12, 16 and 17a
(Fig. 5a). The inconsistency rate was significantly correlated with T>C

Fig. 5 | Using adjusted 80-channel signature has minimal effect on activity
inference. a Similar activities inferred by 96-channel (96c) and 80-channel (80c)
signatures in most PCAWG samples. We show the signatures that are active in at
least 20 cancer samples. We use an inconsistency rate to measure the dissimilarity
of the inferred activities, which is calculated using log10(activity_80c/activity_96c).
The three panels in a share the same y-axis and the labels are shown in the right
panel. Left panel: sumofmutational probabilities of T>C channels of the signatures.
Middle panel: violin plot of absolute inconsistency rate for each signature. The
white dot represents the median value. The thick grey bar in the centre represents
the interquartile range and the thin grey line represents the rest of the distribution.

Right panel: heatmap of mean inconsistency rate for all signatures in different
cancer types. Orange rectangle marks signatures with the average activity ratio
(activity_80c/activity_96c) above 1.5, which indicates that 80c activity is larger than
1.5 times of 96c activity. The purple rectangle marks the averaged activity ratio
below 0.5, which indicates 80c activity is smaller than 50% of 96c activity. The
radius of each circle represents the sample size (in log scale). b The challenge of
assigning activities between two flat and similar signatures (SBS5 and SBS40). The
light-blue and light-grey shading areas are used for annotating main cancer types
(n > 20 sample per type). The cancer types with n < 20 samples are shown in
unshaded areas.
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mutation rate of signatures (r =0.54, P < 1e−16, Spearman correlation).
We grouped the refitted data based on cancer types and found that the
majority of the above five signatures with inconsistent refits were each
only reported in one cancer type, except for SBS17a which was present
in four cancer types. SBS6 also had a high inconsistency rate and was
mostly detected in non-Hodgkin lymphoma (lymph-BNHL), likely due
to relatively higher similarity shared with SBS1 (0.77). Taken together,
removing T>Cmutations had a veryminor impact on refitting analysis
for the majority of the cases (~86.7%).

In addition, SBS5 and SBS40 showed noticeable differences
between 96c and 80c fits in several cancer types. Since these two flat
signatures are highly similar (cosine similarity is 0.83 using 96c, and is
0.86 using 80c), we expect the general decomposition algorithm to
have problems distinguishing them even using 96c signatures. Thus,
we hypothesised that while the inferred signature activity of SBS5 or
SBS40might bevariedwithina sampleusing96cor 80c signatures, the
sum of the activities of the two signatures would be fairly constant.

We tested our hypothesis on samples with both signatures active
(Fig. 5b). As expected, the sum of activities converged well with the
mean inconsistency rate of 0.02, but individual attribution for SBS5
washigher by 80c (mean inconsistent rate of 0.15) and lower for SBS40
(mean inconsistency rate of −0.19), and the two individual attributions
were negatively correlated (r = −0.69, P = 6.22e−164, Spearman corre-
lation). We note that these two signatures are assigned less accurately
also when using 96-channels, asmore data is needed to separate them
into more distinguishable patterns.

Finally, we examined signatures where removal of the T>C
mutations was most likely to be detrimental for signature identifica-
tion. We compared all possible signature pairs among 65 COSMIC V3
SBS signatures (Supplementary Fig. 17). As expected, the overall
similarities between any two signatures tended to increase (Supple-
mentary Fig. 17a, b). Five signature pairs became highly similar (>0.80)
using 80c. Three out of them are reported to be biological/non-artifi-
cial mutation processes, namely SBS3-SBS5, SBS40-SBS12 and SBS40-
SBS16 (Supplementary Fig. 17c). However, two signature pairs became
even more distinguishable using 80c. Therefore, we concluded that
reducing to 80-channel signatures by removal of T>C channels tended
to have a minor effect on signature refitting.

Recommended workflow for applying FFPEsig
Finally, we designed a flowchart that summarised how our above
findings could be applied to optimise signature analysis for real FFPE
samples (Supplementary Fig. S18). The aim of the flowchart is to guide
the complete experimental workflow, both in the wet-lab and in the
downstream bioinformatics analysis. Firstly, we suggest that users
leverage prior knowledge from publicly available sequencing data
from fresh tumours to decide whether or not chemical repair should
be used in the laboratory analysis. Next, we advise users to compute
the expected SNR given the observed mutations in the sample as
suggested in the flowchart to maximise the signal for FFPEsig.

For already existing data without direct/obvious chemical treat-
ment status available, we suggest the users contact the original data
generator or consult the manufacturing company using the DNA
extraction kit information. Nonetheless, the users should always apply
the matched FFPE signature corresponding to how the sequencing
data was generated.

For FFPE samples with any suspicion of excess amounts of T>C
mutations of unclear origin (as observed in study 1 or our FFPE sam-
ples), we recommend the users to omit all T>C mutations in their
signature analysis. We demonstrated above that the remaining 80
features still convey enough information for the algorithm to correctly
complete the activity refitting task in most of the cases (Fig. 5a, Sup-
plementary Fig. 16). Our solutionof omittingT>C features is equivalent
to performing feature selection on the 96mutational channels to drop
features with large unexplained variance, which is task-oriented and

proven to work. Nevertheless, the omission of T>C channel can cause
difficulties to recover signatures featured in these channels, e.g. SBS12
and SBS16 (exclusively found in Liver-HCC) (Fig. 5a), and therefore we
advise manual curation in samples where these signatures are sus-
pected to be prevalent.

For FFPE samples without evidence of excess artefacts on T>C
channels (i.e. their proportion and pattern are highly similar to the FF
samples of the same cancer type, such as in study 2 and 3), we suggest
our established FFPE signatures appropriately represent the artefacts
in the data (Supplementary Figs. 2, 6f). The users therefore could apply
FFPEsig using the 96-channel spectrum to obtain the true underlying
biological processes.

We used our main set of simulated data as a benchmark to
examine the performance of FFPEsig when the flowchart guidance for
use was followed (Supplementary Fig. 18). We first assigned the ideal
DNA repair treatment status to n = 26 main cancer types (with n > 20)
by choosing the protocol with lower SNS (Supplementary Fig. 19).
Then, we sorted the n = 26 cancer types into unsuitable for correction
(n = 8), repaired-protocol (n = 10) and unrepair-protocol (n = 8) if we
apply 0.1 as a cut-off of SNR (Supplementary Data 3). Overall, we
obtained 1564 (~79%) well-corrected cases among 1979 suitable sam-
ples from n = 18 cancer types, and this figure increased to ~86% if we
apply SNR cut-off of 0.2. Note that here we applied an automated
measurement of SNR which very likely under-estimates those of real
samples; the overall achievement of in a real scenario variant filtering
can be adjusted to increase SNR and rescue samples despite low bio-
logical mutation burden.

Discussion
In this study, we derived genome-wide mutational signatures that
result from formalin exposure in FFPE biospecimens and designed an
algorithm, FFPEsig, to detect and remove artefactual-FFPE mutations
frommeasuredmutational profiles.We found repaired and unrepaired
formalin mutational artefacts were predominantly distributed in C>T
mutation channels and their mutational signatures were consistent
across independent experimental studies (Fig. 1 and Supplementary
Table 1). FFPE artefacts observed following chemical repair, a widely
used protocol,mirror ageing signature SBS1 (Fig. 1f). In particular, they
both are caused by deamination of 5-methylcytosine (5mC): SBS1 is
due to spontaneous deamination in vivo; whereas the artefact sig-
nature is caused by chemically-modified deamination in vitro7,29

(Supplementary Fig. 3). When the chemical-repair step is absent, the
artefact signature in FFPE samples is highly similar to SBS30 (Fig. 1e).
Biological SBS30 occurs more rarely: it is caused by loss-of-function in
glycosylases in BER due to biallelic inactivation mutations in NTHL1,
and patients carrying this variant are with an increased lifetime risk for
CRC, breast cancer, and colorectal polyposis27,28,35. More generally, our
results show that there is not necessarily a direct 1-to-1 mapping rela-
tionship frommutational process to a unique signature profile (as also
questioned in36). Nevertheless, our findings speak to the utility of
constructing a common carcinogen signature database36,37.

The correction accuracy of FFPEsig was demonstrated on syn-
thetic FFPE samples (Fig. 2). The accuracy in the majority of the sam-
ples was very high. Poorer performance occurred when (a) SNR is <0.1,
and/or (b) for samples where the true mutational profile closely
resembled the FFPE-artefact signature. To obtain a reasonable SNR,
users can apply upstream filters to exclude the easy-to-remove FFPE
artefacts which are known to have, for example, low allele-frequency,
orientation bias or low-quality metric7,32,33. We advise future users to
adjust their filtering if they suspect their data might fall closer to the
SNR =0.1 limit (Supplementary Fig. 18). We also noted that C>T arte-
facts accumulate rapidly with the duration of formalin exposure
(Fig. 1a), and so, knowledge of the fixation time is a useful pre-
analytical factor of determining the SNR, which could impact the
downstream signature analysis. Over-fixation (e.g. over 48 hours)
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should be avoided as the resulting high burden of formalin-induced
artefact can be problematic for FFPEsig correction.

We demonstrated the need for correcting observed FFPE muta-
tion profiles before inferring signature activity using both in silico and
patient data. Uncorrected FFPE artefacts lead to misinterpretation of
signature contributions in the majority of cases (Fig. 3). Of particular
note, activities of HR deficiency tend to be largely underestimated in
uncorrected FFPE samples, whichcouldcause implications for patients
who are suitable for PARP inhibition therapy in breast, ovarian and
other cancers17,20,21. SBS1 and SBS30, on the other hand, are both likely
to be overestimated in repaired and unrepaired FFPEs, respectively
(Fig. 3). Since SBS1 is active in almost all tumours as well as in healthy
tissue types29, the impact of this mis-assignment can potentially have
wide-reaching consequences for signature analysis in almost all tissue
types. Our FFPEsig software provides a robust correction and enables
accurate downstreammutational signature analysis. We also note that
the statistical machinery within FFPEsig is generalisable and could be
repurposed to correct for mutational noise from any source.

We observed that an excess number of putatively artefactual T>C
mutations in FFPE samples from study 1 and biological interpretation
of thesemutationsmust be performedwith extra care. We suspect the
choice of DNA polymerase used in PCR or downstream steps, in
combination with the DNA being FFPE derived,may be associatedwith
those batch-related artefacts but have not investigated this suspicion.
It is well-known that DNA polymerases exhibit varied levels of fidelity
and by-pass efficiency, which is also termed as translesion synthesis
(TLS)38,39. TLS represents the ability of reading through and incorpor-
ating awrongbase opposite a damaged site inDNA templates7. Indeed,
T:G pairs are found as themost frequently synthesised andmost easily
extended base substitution errors for Taq DNA polymerase, which led
to A:T>G:C artefacts23,24. Further, Y-family by-pass DNA polymerase
would also cause a great number of A:T>G:C artefacts as the mis-
incorporation of dGTP opposite of T is even more efficient than
inserting dATP in this family39. Nonetheless, these batch-related arte-
facts are exclusively distributed in T>C channels without a consistent
noise pattern (Fig. 1c). For FFPE samples with an excessive amount of
T>C mutations present, our analysis suggests it is safe to remove this
mutation class and perform analysis using the remaining 80-channel
(non-T>C) profiles for the signature analysis as they contain enough
information for the adequate signature decomposition (Fig. 5 and
Supplementary Fig. 16).

In conclusion, here we identified two mutational signatures,
linked to repaired and unrepaired-FFPE, which are highly similar to
COSMIC signatures SBS1 and SBS30, respectively. We further devel-
oped FFPEsig software to accurately remove FFPE-induced mutational
artefacts and demonstrated efficacy in silico and in new samples. It is
necessary to correct FFPE artefacts prior to downstream mutational
signatures analysis. Careful application of our approachwill enable the
robust study of mutational signatures in the enormous FFPE archives
that exist around the world.

Methods
Our research complies with all relevant ethical regulations. The
archival FFPE samples were analysed in accordance with ethical
approval from the UK Research Ethics Committee (REC: 18/LO/2051
IRAS:249008) whereby anonymised archival FFPE blocks were pro-
vided to the researchers without the requirement for patient consent.

Targeted sequencing data
We used targeted sequencing data from two previous publications to
learn FFPE signatures10,11. Prentice et al. has collected three sets of
samples from CRC patients, stratified by fixation time (n = 3 patients),
DNA extraction kits (also termed baseline; n = 20) and storage time
(block-age, n =9), to examine the impact of these factors on somatic
mutation detection in FFPE samples11. Samples collected in the fixation

groupwere fixed in formalin for 2, 15, 24 and 48hours for both repaired
and unrepaired FFPEs, and paired FF samples were also available.

To validate if true somatic mutations are detectable in FFPE
samples, Prentice et al. applied several filters on the mutation calling
results, which could have filtered FFPE artefacts out. However, for our
purpose of learning FFPEnoise signatures, wepre-processed thewhole
mutations list to exclude non-FFPE artefacts as much as possible (also
termed as FFPE-only mutations). Mutations were excluded if they met
any of the following criteria, (1) being detected in all FF samples; (2)
being detected in the matched normal samples; (3) with >0.90 pos-
terior probability of being somatic mutations; and (4) being detected
as common SNPs in germline databases using ANNOVAR40.

We also included targeted panel sequencing data from study 2 in
our analysis10. There were four normal breast tissues collected in the
study. Triplicate sampleswerecollected for eachof them, including FF,
repaired and unrepaired-FFPE. Further details about sample collection
and preparation can be found in the original studies.

Mutational opportunities of the targeted regions
To obtain mutational opportunities, we calculated all possible muta-
tion frequencies of the targeted sequences in study 1 and 2. The FASTA
sequences for targeted regions were downloaded for study 1 and for
study 2. The whole-genome mutation opportunity was taken from41.

Deriving FFPE signatures
To derive FFPE signatures, we first applied t-distributed Stochastic
Neighbour Embedding (t-SNE) for dimensionality reduction using
cosine distance matrix of the merged 80-channel mutational prob-
abilities. Basedon the twoprincipal components providedby t-SNE,we
selected representative samples for both repaired and unrepaired-
FFPE clusters using data point density estimated by gaussian kernel
(from scipy.stats) (Supplementary Fig. 6a). The high-density samples
(top 50%) were used to generate one set of FFPE signature candidates.
With repeating the above procedure for 100 times using different
initial values, we took the averaged values of each channel as the final
FFPE signatures (Supplementary Fig. 6b, c).

FFPE-only mutation pattern in the third study
We also validated our derived FFPE signature using a third independent
study30, in which filtered mutations are available for n = 11 lung adeno-
carcinoma FFPE samples.We selected themutations with zero alternate
reads in the validation sample from the FFPE-data list as FFPE-only
mutations. The mutational profile is obtained from these FFPE-only
mutations via SigProfilerMatrixGenerator42 (Supplementary Fig. 6f).

Simulation of FFPE samples
To simulate FFPE samples, we added different amounts of noise
mutations with Poisson noise to biological mutation catalogues of
2780 canner genomes provided in Pan-Cancer Analysis of Whole
Genomes (PCAWG) project by International Cancer Genome Con-
sortium (ICGC)14,31 (Supplementary Fig. 7). We then omitted all T>C
mutations prior noise correction/signature decomposition, to simu-
late the real-life scenario where it is unknown whether a FFPE sample
contains batch-related T>C artefacts.

Development of FFPEsig for artefacts correction
We denote the observed mutation counts from the FFPE sample by V,
which was considered as a linear combination of FFPE-artefact sig-
nature W1 and biological mutation spectrum W2 with their corre-
sponding attributions/activities H1and H2. Thus, we have:

V≈∑i 2 ð1;2ÞWi � Hi ð1Þ

In this model (1), V and W1 were known and the task was to infer
H ¼ ½H1;H2�T and W2. Here, we utilised generalised Kullback-Leibler
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(KL) divergence between reconstructed V̂ ¼ ∑i2ð1;2ÞWi � Hi and the
observed profile V as the cost function and applied Lee and Seung’s
multiplicative update rules to minimise the cost function43.

This update process iterated over at least 200 and up
to 3000 steps by default until it met our termination criteria defined
here. We calculated the convergence ratio using the average KL
divergence from the last batch of 20 iterations divided by the second
last batch of 20 iterations. The algorithm would terminate if the con-
vergence ratio reached0.95 (or definedby the users), or if the iteration
process reached the maximum 3000 steps. The above one whole
process provided inferred W2 and H as one candidate solution. We
collected 100 candidate solutions using different random status and
averaged them as our final solution for all samples analysed for FFPE
noise correction in this study.

Comparison of decomposition results between corrected and
uncorrected mutation profiles
To compare the impact of FFPE artefacts on signature activity infer-
ence, we refitted active signatures in well-corrected FFPE samples
identified in Fig. 2c. The active signatures for each sample were used
for refitting if the original activities were greater than 0. Three 80-
channel profiles of each sample (true biological, corrected, and
uncorrected) were used for the refitting analysis using our locally
implemented refitting algorithm to exclude possible bias introduced
by different tools. We also studied the impact of FFPE artefacts on
refitting for each individual signature, with orwithout known aetiology
and such information was retrieved from COSMIC website (visited in
April 2021).

DNA extraction and genome sequence of FFPE CRC samples
The male patient with ulcerative colitis was diagnosed with cancer in
the transverse colon at age 48 in St. Mark’s Hospital, London, United
Kingdom.The sampleswere collected and analysed in accordancewith
ethical approval from the UK Research Ethics Committee (REC: 18/LO/
2051 IRAS:249008—Fulhamcommittee). All samples were anonymised
to the researchers.

Formalin-fixed paraffin-embedded (FFPE) sections of 10μm
thickness were deparaffinized, rehydrated and lightly stained with
methyl green. The annotated H&E was used as a guide for epithelial
enrichment through targeted needle scraping of slides (for estimated
epithelial cellularity >50%). To collectmatched normal tissue, targeted
scraping of serosal tissue from FFPE blocks was taken from a small
intestinal segment distal to the cancer.

DNA was extracted using a modified protocol of the High Pure
FFPE DNA Isolation Kit (Roche Life Science, Penzburg, Germany). The
normal tissue DNA sample and one tumour DNA sample were repaired
using the NEBNext FFPE DNA Repair Mix (New England Biolabs, Inc)
following the manufacturer’s recommendations. The other tumour
DNA was left unrepaired. DNA libraries were prepared using the NEB-
Next Ultra II DNA Library Prep Kit for Illumina (New England BioLabs,
Ipswich,Massachusetts, USA), followedby equimolar pooling strategy.
Finally, all DNA libraries were sequenced on NovaSeq S2 for 50 bp
paired-end reads.

Somatic variants calling in WGS FFPE CRCs
The paired-end reads underwent initial quality control with FastQC44

followed by default adaptor trimming with Skewer45 and were subse-
quently aligned to the GRCh38 reference genome with BWA-MEM46.
Aligned reads were sorted by genome coordinate (SortSam, Picard)
and duplicate reads were flagged with GATK’s MarkDuplicates47. The
two FFPE tumour samples were called against the matched normal
separately using the Mutect2 somatic variant caller from GATK47.
Variants were marked with filters by FilterMutectCalls. Variants were
kept if they were PASS by Mutect2, aligned to a canonical chromo-
some, had a total allelic depth of greater or equal to 10 in both the

tumour and normal sample and had 3 or more reads supporting the
alternative allele in the tumour sample. The filtered variants from two
FFPE tumour samples were merged into a single VCF file using
VCFtools48.

We used Platypus on the merged VCF file as the candidate
somatic variant list and integrated local alignment withmulti-sample
variant calling to assess the evidence for these variants across all
samples49. The resulting VCF file was further filtered to only contain
variants: (1) if the FILTER flag was PASS or other acceptable filters
(alleleBias, Q20, QD, SC, HapScore); (2) the variant was not a known
germline variant; (3) a genotype was called for all samples; the gen-
otype phred score was 10 or more in all samples; (4) the normal
sample had no reads containing the variant and at least 3 or more
reads supported the variant in a tumour sample. Variants present in
two FFPE samples with 5 or more supporting reads were classified as
concordant mutations.

Comparison of signature refitting results of 80-channel and 96-
channel spectrum
To obtain the set of 80-channel signatures, we dropped T>Cmutation
channels of COSMIC SBS signatures and renormalised them to sum up
to 1. We next refitted 80c and 96c active signatures to the mutational
catalogues with and without T>C mutations accordingly. The inferred
activities for80c signatureswere then rescaledbydividing themby the
total mutation frequencies of non-T>C mutation channels of corre-
sponding 96c spectra. These rescaled 80c attributions were then used
to compare to those inferred from 96c signatures.

Statistics and reproducibility
Weused the original sample sizes fromcancer typeswithout excluding
any individuals. No statistical method was used to predetermine
sample size. To derive statistics, we focused on cancer types or sig-
nature groups with sample size over 20. To demonstrate the impact of
signature decomposition results using corrected and uncorrected
FFPE profiles, we focused onwell-corrected samples (accuracy > 0.90).
The experiments were not randomised. The Investigators were not
blinded to allocation during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The BAM and VCF of WGS FFPE-CRC data generated in this study have
been deposited in the EGA database under accession code
EGAS00001005331. The raw BAM data are protected and are not
available due to data privacy laws, and the access can be obtained with
the agreement with our Data Sharing Policy.

Source data are provided with this paper, which are available to
download from our GitHub repository. All raw and processed data
used in our study are available to download from this website.

Mutation list is available to download for study 1 and study 3.
Mutations from study 2 are available upon request to the authors of
the original study. Human genome assembly GRCh38 is downloaded
from here. PCAWG signatures, mutational profiles and signature
activity data are available from this website.

Code availability
FFPEsig is implemented in python50. All data analysis codes (Jupyter
Notebook and HTML format) can be found in our Github repository.
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