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Multimodal single cell sequencing implicates
chromatin accessibility and genetic back-
ground in diabetic kidney disease
progression

Parker C. Wilson 1,6, Yoshiharu Muto 2,6, Haojia Wu 2, Anil Karihaloo3,
Sushrut S. Waikar 4 & Benjamin D. Humphreys 2,5

The proximal tubule is a key regulator of kidney function and glucose meta-
bolism. Diabetic kidney disease leads to proximal tubule injury and changes in
chromatin accessibility that modify the activity of transcription factors
involved in glucose metabolism and inflammation. Here we use single nucleus
RNA and ATAC sequencing to show that diabetic kidney disease leads to
reduced accessibility of glucocorticoid receptor binding sites and an injury-
associated expression signature in the proximal tubule. We hypothesize that
chromatin accessibility is regulated by genetic background and closely-
intertwined withmetabolic memory, which pre-programs the proximal tubule
to respond differently to external stimuli. Glucocorticoid excess has long been
known to increase risk for type 2 diabetes, which raises the possibility that
glucocorticoid receptor inhibition maymitigate the adverse metabolic effects
of diabetic kidney disease.

Diabetes is the leading cause of end-stage renal disease (ESRD) and a
significant contributor to morbidity and mortality1. An estimated 40%
of patients with diabetes develop chronic kidney disease (CKD), which
manifests as worsening proteinuria and renal dysfunction2. Single cell
sequencing is a powerful technique that has advanced our under-
standing of kidney biology3. Multimodal integration of single nucleus
RNA (snRNA-seq) and assay for transposase-accessible chromatin
sequencing (snATAC-seq) provides insight into how transcription
factors and chromatin-chromatin interactions regulate expression of
nearby genes4.

Glucocorticoids and mineralocorticoids comprise a class of hor-
mones called corticosteroids produced in the adrenal cortex. Cortisol
is the primary endogenous glucocorticoid that binds glucocorticoid
receptor (GR), which is expressed in proximal tubule, thick ascending

limb, endothelium, and podocytes3. Chronic exposure to endogenous
cortisol and long-term treatment with synthetic glucocorticoids has
been linked to type 2 diabetes and metabolic syndrome5,6. Single-cell
sequencing of human DKD has shown that the thick ascending limb
and distal nephron have a transcriptional signature consistent with
altered corticosteroid signaling7. GR also acts on the proximal tubule
where it increases expression of gluconeogenic genes to drive the
synthesis of glucose from non-carbohydrate substrates like lactate,
glutamine, and glycerol8,9. The kidney contributes approximately half
of circulating glucose during prolonged fasting and studies have
demonstrated that both glucose reabsorption and gluconeogenesis
are increased in type 2 diabetes8.

Genetic variation contributes to the risk of type 2 diabetes and
DKD progression as shown by genome wide association studies
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(GWAS)10–12. Many of the variants identified by GWAS are common
(MAF>0.01) and explain a small proportion of heritability of type 2
diabetes and kidney disease12. GWAS have been used to investigate a
wide variety of kidney-function-related traits, however, one of the
difficulties with GWAS is assigning function to risk variants located in
non-coding regions13,14. Recent studies have shown that a significant
proportion of GWAS variants for type 1 and type 2 diabetes are located
in cell-specific open chromatin regions15,16. The relationship between
gene expression and chromatin accessibility can be modeled using
allele-specific chromatin accessibility (ASCA)17–19. snATAC-seq can
measure ASCA by quantifying the ratio of ATAC peak fragments that
intersect heterozygous germline SNV. It can also predict CRE gene
targets within cis-coaccessibility networks (CCAN), which makes it a
compellingmethod for estimating the effect of SNV in open chromatin
regions18. Thesemethods open the door to novel techniques for gene-
enhancer predictions and quantitation of single cell allele-specific
effects20.

We have performed snRNA-seq and snATAC-seq on kidney cortex
from patients with and without type 2 diabetes to identify cell-specific
differentially expressed genes and accessible chromatin regions
associated with diabetic kidney disease (DKD). We validated key find-
ings from our multimodal analysis with cleavage under targets and
release using nuclease (CUT&RUN) and CRISPR interference (CRISPRi)
to directlymeasure transcription factor binding andmodify chromatin
accessibility of cis-regulatory elements (CRE). Epigenetic regulation of
chromatin accessibility may contribute to long-term expression of
DKD-related genes in a process termed metabolic memory21. Our
analysis identified cell-specific changes in chromatin accessibility that
co-localize with transcription factor binding sites associated with
glucose metabolism and corticosteroid signaling in the diabetic
nephron.

Results
Patient demographics and clinical information
For snRNA-seq and snATAC-seq, a total of thirteen kidney cortex
samples were obtained from control patients (n = 6), and patients with
diabetic kidney disease (DKD, n = 7). Tissue samples were collected
following nephrectomy for renalmass (n = 10) or fromdeceased organ
donors (n = 3). Patients ranged in age from 50 to 78 years (median =
57 y) and included seven men and six women (Supplementary Data-
set 1). Patients with type 2 diabetes had elevated hemoglobin A1c
(mean= 8.2 +/− 1.5%). The majority of patients with DKD were on
antihypertensive or ACE inhibitor therapy and two patients were on
insulin. Two patients with DKD had mild to moderate proteinuria as
measured by urine dipstick.

Renal histology of donor samples
Tissue sections were stained with H&E and examined by a renal
pathologist (P.W.) to evaluate histological features of DKD. Control
samples did not have significant global glomerulosclerosis (<10%) or
interstitial fibrosis and tubular atrophy (<10%). Patients with DKD had
predominantly mild (N = 3, <25%) or moderate (N = 3, 26–50%) global
glomerulosclerosiswith a corresponding increase in interstitialfibrosis
and tubular atrophy (Supplementary Fig. 1). Mean eGFR of DKD sam-
ples (66 +/− 25ml/min/1.73m2) and control samples (74 +/− 15ml/min/
1.73m2) was not statistically different (Students t-test, p = 0.49). DKD
samples showed nodular mesangial expansion, thickened glomerular
basement membranes and afferent arteriolar hyalinosis.

Single nucleus ATAC sequencing in type 2 diabetes
The snATAC-seq dataset included six control samples and seven with
DKD. snATAC-seq libraries were counted with cellranger-atac (10X
Genomics) and aggregated prior to cell-specific peak calling with
MACS220,22. We detected 437,311 accessible chromatin regions (‘ATAC
peaks’) across all cell types. More abundant cell types had a larger

number of ATAC peaks compared to less common cell types, which is
likely a function of increased power and sequencing depth (Supple-
mentary Fig. 2). The aggregated dataset was analyzed in Signac fol-
lowing doublet removalwith AMULET and batch effect correctionwith
Harmony20,23,24. A total of 68,458 cells passed quality control filters and
allmajor cell types in the kidney cortex were represented (Fig. 1A). Cell
types were identified based on increased chromatin accessibility
within gene body and promoter regions of lineage-specific markers
(Supplementary Fig. 3) and enrichment for cell-specific ATAC peaks
(Supplementary Dataset 2). The most abundant cell type was the
proximal convoluted tubule (PCT), which comprised approximately
one third of snATAC-seq cells, and DKD samples had a trend towards
greater number of infiltrating leukocytes (mean of 42 vs. 211, p = 0.10),
including B cells, T cells, and mononuclear cells. We previously
described an injured population of VCAM1 + proximal tubule cells
(PT_VCAM1) that increase in response to acute kidney injury, aging,
and CKD3. PT_VCAM1 can be distinguished from PCT by expression of
VCAM1 and HAVCR1 (KIM-1), which is a marker of kidney injury (Sup-
plementary Fig. 3). There was a greater proportion of PT_VCAM1 in
DKD samples compared to control samples (mean proportion 0.12 vs.
0.03, Wilcoxon rank sum p =0.004), however, this proportion varied
widely by donor (Supplementary Fig. 4). There was another closely
related cluster of cells that we designated PT_PROM1 (Fig. 1A). The
PT_PROM1 cluster was PROM1high VCAM1- in contrast to PT_VCAM1,
which was PROM1low VCAM1+ (Supplementary Fig. 3). We hypothesize
that the PT_PROM1 cluster represents a population of CD133 + VCAM1-
cells that we previously identified in control kidney, which raises the
possibility that there are multiple proximal tubule states related to
cellular injury or inflammation3.

Cell-specific differentially accessible chromatin regions in the
diabetic nephron
We compared DKD and control samples to identify 7358 cell-specific
differentially accessible chromatin regions (DAR) that met the adjus-
ted p-value threshold (Supplementary Dataset 3, Benjamini Hochberg
padj < 0.05), including 1315 that also met an absolute log-fold-change
threshold of 0.1 (Fig. 1B). The majority of DAR showed decreased
accessibility rather than increased accessibility (923 vs. 392) andmany
were located in a promoter region (Fig. 1B). In contrast, a minority of
DARwere intergenic (156/1315, 11%) located amedian distance of 22 kb
from the nearest transcriptional start site (TSS). Approximately one
third of intergenic DAR (n = 59/156, 37%) and one fourth of intronic
DAR (n = 58/240, 24%)mapped to a FANTOMenhancer25. The proximal
convoluted tubule (PCT) had the greatest number of DAR (n = 422)
followed by the proximal straight tubule (PST), PT_VCAM1, and thick
ascending limb (Fig. 1C). Less abundant cell types like podocytes and
endothelial cells had few if any DAR, which likely reflects our limited
power todetect them. Among 1315 totalDAR, 975were unique because
a subset of DARwere shared betweenmultiple cell types (Fig. 1C). DAR
present in multiple cell types included regions within or near ATP1B1
(Supplementary Fig. 5 and 6). ATP1B1 encodes a subunit of the sodium
potassium ATPase, suggesting that DAR in diabetes may elicit a con-
served effect on ion transport across nephron segments.

We grouped DAR from the proximal convoluted tubule (PCT) and
proximal straight tubule (PST) and annotated them with the nearest
protein-coding gene to perform gene ontology enrichment. Genes
near proximal tubule DAR were enriched for pathways involved in
response to insulin, cellular response to peptides, response to hor-
mone stimuli, and ion transport (Fig. 1D). Insulin resistance is a key
feature of DKD and we identified proximal tubule DAR with decreased
chromatin accessibility near multiple genes that regulate insulin sig-
naling (Supplementary Dataset 3)26. There was a DAR in the second
intron of the insulin receptor (INSR) that showed decreased accessi-
bility in the proximal tubule (Fig. 1E, Orange Arrow). This region was
predicted to regulate INSR expression via a CCAN (Fig. 1E, Green Arcs)
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and was associated with decreased INSR expression in the corre-
sponding snRNA-seq dataset (Fig. 1F). We did a pairwise comparison
between all control and DKD snATAC-seq samples to show that the
effect size and direction of this INSRDAR is largely reproducible across
donors (Supplementary Fig. 7). The loop of Henle is a key regulator of
sodium reabsorption where we identified two DAR in the promoter

region of ATP1B1 (Supplementary Fig. 6). These DAR were present in
both the ascending thin limb (ATL) and thick ascending limb (TAL1,
TAL2) where they showed decreased chromatin accessibility.
Decreased chromatin accessibility was associated with decreased
ATP1B1 expression in the same cell types in the corresponding snRNA-
seq dataset. Together, these findings suggest that DKD is associated
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with changes in chromatin accessibility that regulate expression of
genes important for insulin signaling and sodium reabsorption.

We compared the proximal convoluted tubule (PCT) and
PT_VCAM1 to identify changes in chromatin accessibility associated
with the pro-inflammatory PT_VCAM1 cell state (Supplementary
Dataset 4). There were 4,498 DAR and the majority showed decreased
accessibility (N = 3055, 68%). Geneontology analysis of nearby protein-
coding genes showed enrichment for pathways involved in kidney
development, metabolism, amino acid transport, epithelial cell pro-
liferation, response to glucocorticoids, and regulation of transforming
growth factor beta signaling. ATAC peaks with increased chromatin
accessibility in PT_VCAM1 were located near pro-inflammatory genes
like IL-6, CD40, andTGFB2 in addition to genes involved inproliferation
like EGFR and MYC.

Single nucleus RNA sequencing to detect differentially expres-
sed genes in type 2 diabetes
A total of eleven snRNA-seq libraries were aggregated with cellranger
(10X Genomics) and analyzed with Seurat following doublet removal
with DoubletFinder and batch effect correction with Harmony4,23,27.
The snRNA-seqdataset included six control samples andfivewithDKD.
A total of 39,176 cells passed quality control filters and all major cell
types in the kidney cortex were represented (Fig. 2A), including the
PT_VCAM1 population3. snRNA-seq cell types largely expressed the
same lineage-specific markers that showed increased chromatin
accessibility in the snATAC-seq dataset (Supplementary Fig. 8) and
were enriched for cell-specific genes (Supplementary Dataset 5). There
was a greater proportion of PT_VCAM1 in DKD compared to controls
(mean proportion 0.06 vs. 0.02, Wilcoxon rank sum p =0.03). We
compared individual cell types between control and DKD samples to
identify cell-specific differentially expressed genes (Supplementary
Dataset 6). The cell type with the greatest number of differentially
expressed genes was the proximal tubule (N = 607, padj < 0.05, |
avg_log2FC| > 0.25). Gene ontology analysis of differentially expressed
genes in the proximal tubule showed significant overlap with snATAC-
seq pathways, including membrane depolarization, anion home-
ostasis, sodium ion transport, and glucocorticoid signaling (Fig. 2B).
The diabetic proximal tubule showed a modest increase in expression
of GR (NR3C1, fold-change = 1.14, padj = 4.7 × 10−10), although it did not
meet the log-fold change threshold. The proximal tubule also showed
increased expression of sodium glucose cotransporter 2 (SGLT2, fold-
change = 1.24, padj = 1.9 × 10−30) and increased expression of the rate-
limiting enzyme in gluconeogenesis (PCK1, fold-change = 1.63, padj =
1.8 × 10−41). Similar to our findings from the snATAC-seq analysis, a
subset of differentially expressed genes were shared betweenmultiple
cell types (Fig. 2C). These shared genes were enriched for pathways
involved in regulation of cell growth, cellular response to hypoxia,
angiogenesis, cellular response to insulin stimulus, glucocorticoid

signaling, and ion transport. For example, INSR showed decreased
expression in the proximal tubule (Fig. 1F), thick ascending limb, and
distal convoluted tubule (Supplementary Dataset 6). Additional
enzymes in the gluconeogenic pathway were also upregulated in the
diabetic proximal tubule (Fig. 2D). Together, these findings suggest
that the diabetic proximal tubule increases expression of genes that
promote both glucose reabsorption (SLC5A2) and glucose production
(PCK1, ALDOB, FBP1, G6PC). Comparison with the corresponding
snATAC-seq dataset showed multiple proximal tubule DAR near PCK1
(Fig. 2E, Orange Boxes), suggesting that changes in chromatin acces-
sibility may lead to increased PCK1 expression. PCK1DARwere located
both within and distal to its gene body where they interacted with the
promoter via a CCAN (Fig. 2E, Green Arcs). Similar relationships
between PCT DAR and CCAN were observed near ALDOB, FBP1, and
G6PC (Supplementary Figs. 9–11).

The diabetic thick ascending limb (TAL1) had 622 differentially
expressed genes compared to controls (padj < 0.05, |avg_log2FC| >
0.25). Differentially expressed genes in TAL1 were enriched for path-
ways involved in nitric oxide signaling, ATP biosynthesis, anion trans-
port, and cellular response to cAMP, EGFR signaling, glucocorticoids,
hypoxia, and insulin. Similar to the diabetic proximal tubule, there was
decreased expression of INSR (fold-change =0.76,padj = 1.5 × 10−17) and
increased expression of GR (NR3C1, fold-change = 1.26, padj = 4.7 ×
10−10). There was also decreased expression of HSD11B2 (fold-
change =0.71, padj = 5.3 × 10−33), which is the enzyme that catalyzes the
conversion of cortisol to the inactive metabolite cortisone to protect
nonselective activation of MR. In fact, decreased HSD11B2 expression
was observed in every cell type in the distal nephron (Supplementary
Dataset 6). These data support our hypothesis that the diabetic
nephron has increased GR signaling due to increased GR expression
and decreased activity of the enzyme responsible for metabolizing
cortisol.

We compared the proximal tubule and PT_VCAM1 to identify
differentially expressed genes associated with the PT_VCAM1 cell
state. There were 3842 differentially expressed genes (Supplemen-
tary Dataset 7) enriched for pathways involved in cell migration,
EGFR signaling, insulin receptor signaling, histone deacetylation,
regulation of glycolysis, and TGF-beta signaling. For example, INSR
expression was decreased in PT_VCAM1 relative to PT (fold-
change = 0.67, padj = 4.1 × 10−53) and TGFBR2 was increased (fold-
change = 1.34, padj = 5.4 × 10−34). These changes were accompanied
by a modest increase in GR expression (NR3C1, fold-change = 1.07,
padj = 2.0 × 10−10) and a marked reduction in FKBP5 (fold-change =
0.45, padj = 4.9 × 10−117).

Cell-specific transcribed cis-regulatory elements
Transcribed cis-regulatory elements (tCRE) confer cell type specificity
and the majority are located in enhancer and promoter regions where

Fig. 1 | snATAC-seq of human DKD. A UMAP of snATAC-seq dataset. Six control
and seven DKD samples with 68,458 cells. PCT-proximal convoluted tubule, PST-
proximal straight tubule, PT_VCAM1-VCAM1(+) proximal tubule, PT_PROM1-
PROM1(+) proximal tubule, PT_CD36-CD36(+) proximal tubule, PEC-parietal epi-
thelial cells, ATL-ascending thin limb, TAL1-CLDN16(-) thick ascending limb, TAL2-
CLDN16(+) thick ascending limb, DCT1-early distal convoluted tubule, DCT2-late
distal convoluted tubule, PC-principal cells, ICA-typeA intercalated cells, ICB-typeB
intercalated cells, PODO-podocytes, ENDO-endothelial cells, FIB_VSMC_MC-fibro-
blasts, vascular smooth muscle cells and mesangial cells, TCELL-T cells, BCELL-B
cells, MONO-mononuclear cells. B Effect size and location of DAR in DKD. Control
cell types were compared to DKD to identify cell-specific DAR (Source data are
provided in Supplementary Dataset 3). Significance was evaluated with a
Bonferroni-adjusted Wilcoxon Rank Sum test. DAR with padj < 0.05 that met an
absolute log2-fold-change threshold of 0.1 (horizontal bars) were annotated rela-
tive to the nearest TSS. C DAR in DKD that are cell-specific or shared between cell
types. DAR that were shared betweenmultiple cell types or unique to a cell type are

displayed. (Source data are provided in Supplementary Dataset 3). D Proximal
tubule DAR pathway enrichment. Cell-specific DAR from PCT and PST were anno-
tated with the nearest protein-coding gene to perform gene ontology enrichment.
Fold-enrichment for all significant GO biological processes is shown and the top 25
are highlighted (Source data are provided as a Source Data file). E Proximal tubule-
specific DAR and ATAC peaks in the insulin receptor. snATAC-seq coverage plots
for DKD and control PCT are displayed. The orange arrow indicates a DAR in intron
2 that shows decreased accessibility in DKD (chr19:7196798-7198626, fold-
change = 0.92, padj = 7.7 × 10−13). Differentially methylated regions (DMR) asso-
ciated with end-stage kidney disease due to diabetes are shown as blue bars (see
Methods). Green arcs depict the nodes of a cis-coaccessibility network (CCAN).
Statistical significance was evaluated using a Bonferroni-adjusted Wilcoxon Rank
Sum test. F Proximal tubule INSR expression by snRNA-seq. Control proximal
tubule was compared to DKD to identify DEGs. DKD proximal tubule showed
reduced INSR expression (fold-change = 0.78, padj = 1.2 × 10−27). Statistical sig-
nificance was evaluated using a Bonferroni-adjusted Wilcoxon Rank Sum test.
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they overlap with ATAC peaks28,29. Transcriptional start sites (TSS) can
be identified by 5′ RNA sequencing if read 1 is long enough (>81 bp) to
include the junction between the template switch oligo (TSO) and TSS.
This type of analysis is compatible with single cell 5′ paired-end
chemistry (SC5P-PE, 10X Genomics), but will not work with libraries
that only use read 2 for alignment (SC5P-R2, 10X Genomics). We

analyzed two control and two DKD snRNA-seq libraries with SC5P-PE
sequencing to identify de novo transcriptional start sites in CRE using
Single Cell Analysis of Five-prime Ends (SCAFE)30,31. SCAFE analyzes the
5′ end of RNA transcripts to identify reads mapping to the junction
between the TSO and cDNA sequence to localize TSS within tCRE after
filtering false positives with a logistic regression classifier. We
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identified 37,698 tCRE across all cell types (Fig. 3A, Supplementary
Dataset 8). Themajority of tCREwere near a protein-coding TSS (mean
distance = 3823 +/− 43,885), but there was a significant proportion of
tCRE in intronic (Fig. 3B, 11847/37,698, 31%) and intergenic regions
(Fig. 3B, 1367/37,698, 3%). Someof these tCREmay represent enhancer
RNA (eRNA), which are a family of non-coding RNA that regulate gene
expression and enhancer activity in a cell-specific manner32. The
majority of tCRE were overlapping with a snATAC-seq peak (Fig. 3C,
23,048/37,698, 61%) and approximately half of snATAC-seq DAR were
overlapping with a tCRE (494/968, 51%, hypergeometric test
p = 3.6 × 10−5). A smallminority of tCREwere cell-type-specific (N = 361/
37,698, 1%, Supplementary Dataset 8), but correspond to well-known
cell-type-specific genes. For example, there was a cell-specific tCRE in
podocytes in the promoter region of NPHS1 and a cell-specific tCRE in
the proximal tubule in the promoter region of CUBN (Supplementary
Dataset 8). These data suggest that 5′ snRNA-seq datasets contain
complementary information that canbeused to evaluate the activity of
CRE identified by snATAC-seq.

We compared control to DKD samples to identify cell-specific
differential tCRE in diabetes. Across all cell types, wedetected a total of
293 differential tCRE (Supplementary Dataset 9). These tCRE included
139 unique regions, which were enriched for pathways involved in
mitochondrial electron transport and angiogenesis. Multiple cell types
showed increased transcription of CRE in promoters associated with
oxidative phosphorylation likeMT-CO1, MT-CO2 andMT-CO3. We also
compared the proximal tubule to PT_VCAM1 to identify tCRE that are
enriched in the PT_VCAM1 cell state (Supplementary Dataset 10).
Among 204 differential tCRE in PT_VCAM1, one of the most enriched
tCRE was the VCAM1 promoter (fold change = 1.46, padj = 1.1 × 10−82).
The VCAM1 promoter tCRE showed increased chromatin accessibility
in the corresponding snATACdataset (Fig. 3D) andwas associatedwith
two additional tCRE located ~60 kb upstream. Each of the upstream
tCRE were near a snATAC-seq peak and linked to the VCAM1 promoter
via a CCAN (Fig. 3D). We previously reported that this upstream CRE
binds NFkB by chromatin immunoprecipitation PCR3. NFkB signaling
induces VCAM1 expression in the proximal tubule, which raises the
possibility that NFkB binding to the upstream CRE is also associated
with transcription of enhancer RNA32,33. Together, these data suggest
that single cell analysis of 5′ ends may help to identify enhancers by
prioritizing CRE that are actively transcribed.

Glucocorticoid receptor CUT&RUN in bulk kidney cortex
Cellular response to glucocorticoids is influenced by pre-existing
chromatin accessibility state where the majority of GR binding sites
localize to open chromatin regions34,35.Weused cleavage under targets
and release using nuclease (CUT&RUN) todirectlymeasureGRbinding
in bulk kidney cortex obtained from a control donor36. We identified
4362 GR binding sites (Supplementary Dataset 11) located in promoter
regions (N = 2889, 66%), introns (N = 744, 17%) and distal intergenic
regions (N = 567, 13%). The density of cell-specific ATAC peaks closely
resembled the density ofGRCUT&RUNsites across the genome,which

suggests that GR predominantly binds to areas of open chromatin in
the kidney (Fig. 4A). GR binding sites overlapped with cell-specific
ATAC peaks (N = 3066, 70%); many of which were shared between
multiple cell types. We visualized the intersection between cell-
specific ATAC peaks and CUT&RUN sites to identify individual cell
types or groups of cells that share ten or more GR binding sites
(Fig. 4B). The presence of GR binding sites within cell-specific ATAC
peaks suggests GR signaling is controlled by chromatin accessibility
and regulated by distinct GR modules shared across cell types. For
example, there were GR binding sites in ATAC peaks unique to the
proximal tubule (N = 61, Fig. 4B column 2), unique to the distal
nephron (N = 13, Fig. 4B column 12), and shared between the prox-
imal tubule and distal nephron (N = 26, Fig. 4B column 3). Similarly,
there were GR binding sites unique to lymphocytes (N = 15, Fig. 4B
column 13) and shared between the proximal tubule and lympho-
cytes (N = 21, Fig. 4B column 5).

Transcription factor motif enrichment and activity in the dia-
betic nephron
We used the JASPAR database to identify over-represented transcrip-
tion factor motifs in cell-specific ATAC peaks and DAR in DKD37. Cell-
specific ATAC peaks were enriched for established transcription fac-
tors that drive cell type differentiation like HNF4A in the proximal
tubule and TFAP2B in the distal nephron (Supplementary Dataset 12).
Transcription factors that were enriched in DAR provide insight into
cell-specific signaling pathways that are altered in DKD. PCT DAR were
significantly enriched for NR3C1 and NR3C2 motifs (Supplementary
Dataset 13, NR3C1 fold enrichment = 2.1, p = 3.8 × 10−259; NR3C2 fold
enrichment = 2.1, p = 2.4 × 10−288). NR3C1 is the canonical bindingmotif
for GR and NR3C2 is the binding motif for MR. The presence of NR3C1
and NR3C2 motifs within PCT DAR suggests that chromatin accessi-
bility may regulate corticosteroid signaling in the diabetic proximal
tubule38,39. We also saw enrichment of KLF9 and FOXO3 motifs within
PCT DAR, which are downstream of GR activation (Supplementary
Dataset 13). One of the most enriched motifs in PCT DAR was Histone
H4 transcription factor (HINFP, fold enrichment = 6.9, p = 6.3 × 10−308).
HINFP interacts with a component of the MeCP1 histone deacetylase
complex (HDAC) involved in transcriptional repression, which may
explain why the majority of DAR showed decreased chromatin
accessibility40. To help prioritize active signaling pathways in DKD, we
identified transcription factor motifs that were both differentially
expressed and enriched in DAR (Fig. 5A). HIF1A showed increased
expression and was enriched in DAR in multiple distal nephron cell
types (PC, ICA, DCT2) andPT_VCAM1.HIF1A is hypoxia inducible factor
1 subunit alpha, a master regulator of cellular response to hypoxia in
the kidney41. GR showed increased expression in the proximal tubule
(PT) and thick ascending limb (TAL1) where NR3C1 motifs were also
enriched in DAR. In contrast, MR showed decreased expression in the
distal nephron (PC, DCT2), but increased expression in the thick
ascending limb (TAL1). Together, these data suggest that corticoster-
oid signaling is altered in the diabetic proximal tubule and thick

Fig. 2 | snRNA-seq of human DKD. A UMAP of snRNA-seq dataset. Six control and
five DKD samples were aggregated, preprocessed, and filtered. A total of 39,176
cells are depicted. PT-proximal tubule, PT_VCAM1-VCAM1(+) proximal tubule, PEC-
parietal epithelial cells, ATL-ascending thin limb, TAL1-CLDN16(-) thick ascending
limb, TAL2-CLDN16(+) thick ascending limb, DCT1-early distal convoluted tubule,
DCT2-late distal convoluted tubule, PC-principal cells, ICA-type A intercalated cells,
ICB-type B intercalated cells, PODO-podocytes, ENDO-endothelial cells, MES-
mesangial cells and vascular smoothmuscle cells, FIB-fibroblasts, LEUK-leukocytes.
B Proximal tubule DEG pathway enrichment. Significant cell-specific DEG from
proximal tubule were used to perform gene ontology enrichment with Panther.
Fold-enrichment for all significant GO biological processes is shown and the top 25
are highlighted (Source data are provided as a Source Data file).C DEG in DKD that
are cell-specific or shared between cell types. DEG that were either shared between

multiple cell types or unique to a specific cell type are displayed. DEG shared
between multiple cell types are limited to groups that share ten or more DEG
(Source data are provided in Supplementary Dataset 6). D Proximal tubule shows
increased expression of gluconeogenic genes by snRNA-seq. Control proximal
tubule was compared to DKD proximal tubule in the snRNA-seq dataset to identify
differentially expressed genes with the FindMarkers function and visualized as
violin plots and dot plots. DKD proximal tubule showed increased expression of
PCK1, ALDOB, FBP1, and G6PC (see Supplementary Dataset 6 for adjusted p-values).
E Proximal tubule-specific DAR and ATAC peaks in PCK1. snATAC-seq coverage
plots for DKD and control PCT are displayed in relation to the PCK1 gene body.
Orange bars indicate multiple DAR that show decreased accessibility in diabetic
PCT (Supplementary Dataset 3). Green arcs depict the nodes of a cis-coaccessibility
network (CCAN) surrounding the PCK1 gene body.
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ascending limbwheremultiple cell typesmay be exposed to a hypoxic
environment.

We used chromVAR to compare transcription factor activity
between control and diabetic cell types (Supplementary Dataset 14).
chromVAR is a tool for inferring transcription-factor-associated chro-
matin accessibility in single cells thathelps to address sparsity inherent
in snATAC-seq datasets42. This is a qualitatively different and unbiased
approach when compared to transcription factor motif enrichment
analysis because it is not limited to a pre-specified list of cell-specific
DAR. Diabetic PCT showed decreased transcription factor activity for
NR3C1 (Fig. 5B, fold-change = 0.56, padj = 1.1 × 10−70) and increased
activity for REL motifs (Fig. 5B, fold-change = 2.08, padj = 6.9 × 10−212),
which was a pattern observed throughout the nephron. These data
support our transcription factor motif enrichment analysis by further
demonstrating that NR3C1 motifs localize to areas of decreased

chromatin accessibility in diabetes and REL motifs localize to areas of
increased accessibility.

Glucocorticoid receptor footprinting with snATAC-seq and
CUT&RUN in RPTEC
We used the snATAC-seq dataset to perform transcription factor
footprinting for GR to visualize the relationship between NR3C1
motifs and chromatin accessibility. Across all cell types, there was a
well-defined footprint immediately surrounding NR3C1 motifs
(Fig. 5C). DKD samples showed reduced chromatin accessibility
surrounding NR3C1 motifs, however, this effect was attenuated
when we limited our analysis to the proximal tubule (Fig. 5C). We
cultured immortalized renal proximal tubule epithelial cells
(hTERT-RPTEC, ATCC) and performed CUT&RUN to find 22,539
consensus GR binding sites that were not present in IgG-stimulated
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negative control samples (Supplementary Dataset 15). hTERT-
RPTEC media is supplemented with 25 ng/ml hydrocortisone (i.e.,
cortisol) and is a model of long-term glucocorticoid exposure.
Nearly half of PCT DAR (168/422, 39%) were overlapping with a GR
CUT&RUN site. These findings are comparable to the chromVAR
analysis, which showed that ~47% of control PCT and 35%of diabetic
PCT ATAC peaks contain an NR3C1 motif. GR binding sites that do
not directly overlap a PCT DAR may interact with DAR via CCAN
(Fig. 5D). For example, we identified multiple GR binding sites
throughout the FKBP5 gene body located in promoter and intronic
regions (Fig. 5E, Purple Boxes). Some of the GR binding sites in
FKBP5 co-localized with PCT DAR (Fig. 5E, Orange Box), but others
did not. FKBP5 expression was decreased throughout the entire
nephron (Fig. 5F), which highlights its potential importance in DKD
and raises the possibility that changes in chromatin accessibility
regulate its expression. The high proportion of overlap between GR
binding sites and snATAC-seq PCTDARwas especially strikinggiven
that hTERT-RPTEC are a cell culture model that does not fully
recapitulate the normal proximal tubule. We profiled open chro-
matin regions in hTERT-RPTEC and primary RPTEC using Omni-
ATAC and compared them to the PCT snATAC-seq dataset.
Approximately 59% of hTERT-RPTEC ATAC peaks (N = 57,675/
96,162, SupplementaryDataset 16) and 56%of primary RPTECATAC
peaks (N = 80,322/141,198, Supplementary Dataset 17) were over-
lapping with cell-specific PCT snATAC-seq peaks. These data
suggest that hTERT-RPTEC andprimary RPTEC capture roughly half
of the chromatin accessibility profile of a normal proximal
tubule cell.

Validation of differentially expressed genes in a bulk RNA-seq
dataset of human DKD
We analyzed a previously published bulk RNA-seq dataset of human
DKD to determine if our snRNA-seq findings are broadly generalizable.
The dataset published by Fan et. al consisted of 9 controls, 6 with early
DKD, and 22 with advanced DKD43. Early DKD was defined as eGFR >
90mL/min/1.73m2 andUACR< 300mg/g. AdvancedDKDwasdefined
as eGFR < 90mL/min/1.73m2 or UACR> 300mg/g. According to this
definition, samples from our study would be categorized as advanced
DKD because all of them had either eGFR< 90mL/min/1.73m2 or
proteinuria. Another important difference between our study and the
studybyFan et al. is thatmeaneGFRof control samples fromour study
(66 +/− 25ml/min/1.73m2) was significantly less than eGFR of control
samples from their study (87 +/− 9.8ml/min/1.73m2, p =0.03).

We compared the transcriptional profile of advanced DKD to
control samples from Fan et al. to identify 9,632 differentially
expressed genes (Supplementary Dataset 18A, BH padj < 0.05).
Roughly half of these differentially expressed genes were upregulated
(N = 5181) and the remaining were downregulated (N = 4451). These
differentially expressed genes were enriched for familiar pathways
including amino acid metabolism, B cell receptor signaling, T cell dif-
ferentiation, response to tumor necrosis factor, response to peptide
hormone, cellular response to hormone stimulus, and ion transmem-
brane transport. The enrichment of pathways involved in lymphocyte
signaling and differentiation likely reflects the greater proportion of
leukocytes present in DKD samples compared to control samples. We
previously demonstrated that advanced DKD samples from Fan et al.
contain an increased proportion of leukocytes and PT_VCAM13.
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Advanced DKD samples showed increased expression of GR (NR3C1,
fold-change = 1.16, padj = 0.02) and VCAM1 (fold-change = 1.36, padj =
0.006) and decreased expression of INSR (fold-change =0.49, padj =
1.6 × 10−12), HSD11B2 (fold-change = 0.38, padj = 3.6 × 10−8) and FKBP5
(fold-change =0.46, padj = 0.0009). Next, we compared early DKD
samples to controls to identify 1041 differentially expressed genes,

among which 385 were upregulated and 656 were downregulated
(Supplementary Dataset 18B). The differentially expressed genes in
early DKD were enriched for pathways involved in response to epi-
dermal growth factor, cellular response to glucocorticoids, cellular
response to insulin stimulus, and cellular response to tumor necrosis
factor. In contrast to the advanced DKD samples, we did not detect

Tn
5 

in
se

rti
on

en
ric

hm
en

t

NR3C1 - All Cell Types

Distance from motif

CCAN Interactions between
GR binding sites and PT DAR

Control
Diabetes

Ex
pe

ct
ed

en
ric

hm
en

t

1.0

0.5

0.0

-0.5

1

3
2

-200 -100 0 +100 +200

Control
Diabetes

Distance from motif
-200 -100 0 +100 +200

NR3C1 - Proximal Tubule Only1.0

0.5

0.0

-0.5

1

3
2

LEUK

FIB

MES

ENDO

PODO

ICB

ICA

PC

DCT2

DCT1

TAL2

TAL1

ATL

PEC

PTVCAM1

PT

0 1 2 3 4 5
snRNA Expression Level

Control
Diabetes

FKBP5

28%
65%
67%
68%
48%
50%
29%
27%
38%
44%
40%
33%
37%
53%
63%
58%

PC
T 

N
or

m
al

iz
ed

 A
cc

es
si

bi
lit

y
(ra

ng
e 

0 
− 

18
0)

ATAC Peaks

GR CUT&RUN

DMR

35600000 35650000 35700000 35750000
chr6 position (bp)

CCAN

Diabetes

Control

Decreased accessibility
in diabetic proximal tubule

A

C

B

D

E FFKBP5 Gene Model

Glucocorticoid 
Receptor
Binding Sites 

Gene body
Intergenic
Promoter

−5

0

5

10

15

20

PCT
PST

PT_V
CAM1

PT_P
ROM1

PT_C
D36 PEC

AT
L

TA
L1

TA
L2

DCT1
DCT2 PC IC

A
IC

B
PODO

ENDO

FIB_V
SMC_M

C
TCELL

BCELL

MONO

Control
Diabetes

FKBP5

REL

NR3C1

Control
Diabetes

−5

0

5

10

PCT
PST

PT_V
CAM1

PT_P
ROM1

PT_C
D36 PEC

AT
L

TA
L1

TA
L2

DCT1
DCT2 PC IC

A
IC

B
PODO

ENDO

FIB_V
SMC_M

C
TCELL

BCELL

MONO

5'3'

PC

PC

PT

PT

NR3C1
NR3C2
HIF1A

-1

0

1

2

1 2 3 4

Motif Fold Enrichment

Av
er

ag
e 

Lo
g 

Fo
ld

 C
ha

ng
e 

Ex
pr

es
si

on

TF motif enrichment in DAR

PT_VCAM1

DCT2

DCT2

TAL1

TAL1

TAL1TAL2

ICAPEC

Article https://doi.org/10.1038/s41467-022-32972-z

Nature Communications |         (2022) 13:5253 9



differential expression of NR3C1, INSR, HSD11B2, or FKBP5 in early DKD
samples. This difference may reflect reduced specificity of bulk RNA-
seq and a limited number of early DKD samples (n = 6) vs. advanced
DKD samples (n = 22), or alternatively, that these genes are associated
with DKD progression.

Differentially methylated regions in DKD and CKD overlap with
cell-specific DAR and GR binding sites
We compiled a list of differentially methylated regions (DMR) from
previously published studies that compared methylation patterns
between DKD or CKD and control kidney samples44–48. Collectively,
these studies identified DMR associated with kidney disease progres-
sion that we compared to our cell-specific DAR and GR binding sites.
Approximately 9% of cell-specific DAR (N = 120/1315, 9.1%) were loca-
ted within 1 kb of a DMR associated with ESKD due to diabetes, eGFR
decline in DKD, or interstitial fibrosis in CKD and/or DKD (Supple-
mentary Dataset 19). This overlap included 645 unique DMR enriched
for pathways involved in lipid homeostasis, amino acid transport, ion
transport, inflammatory response, and cellular response to hormone
stimuli. There were multiple DMR located within or near the INSR
(Fig. 1E), gluconeogenic genes (Supplementary Figs. 9–11), and FKBP5
(Fig. 5E), including DMR in the FKBP5 promoter that overlapped with a
PCT cell-specific DAR andGR binding site (Fig. 5E: orange arrow). All of
the FKBP5DMRshowed increasedmethylation in associationwithDKD
and FKBP5 was identified as a top-ranked gene with multiple differ-
entially methylated CpGs supported by functional data and additional
cohorts45,48. Another notableDMRoverlapped a cell-specificDAR in the
ATP1B1 promoter with a nearby a GR binding site (Supplementary
Figs. 5–6). A similar proportion of GR CUT&RUN peaks in bulk kidney
(N = 269/4362, 6,1%) and hTERT-RPTEC (N = 1537/22517, 6.8%) over-
lapped with DMR (Supplementary Dataset 19). Together these data
support the hypothesis that increasedmethylation in DKD and/or CKD
leads to decreased chromatin accessibility in key regulatory regions,
including GR binding sites near FKBP5.

CRISPRi knockdown of FKBP5 cis-regulatory elements
We selected twoGR binding sites in the FKBP5 gene body (Fig. 5E, Blue
Stars) located at nodes within a CCAN (Fig. 5E, Green Arcs) to target
with CRISPRi. These GR binding sites intersected with DMR in publicly
available databases and a DAR in the FKBP5 promoter. Catalytically
inactive dCas9 fused to the Krüppel-associated box (KRAB) repression
domain (dCas9-KRAB) reduces chromatin accessibility to induce tar-
geted gene silencing. We transduced primary RPTEC with sgRNA tar-
geting the TSS or intronic CRE in FKBP5 to repress chromatin
accessibility with dCas9-KRAB (Fig. 6A)49. Transduction of sgRNAs
targeting the TSS or intronic region induced a 30–50% reduction in
FKBP5 expression compared to non-targeting control sgRNA (Fig. 6B).
Furthermore, gene silencingwas specific to FKBP5becauseCRISPRi did

not affect expression of neighboring genes expressed in primary
RPTEC (Fig. 6C). We hypothesize that CRISPRi simulates the effect of
hypermethylation, which leads to reduced chromatin accessibility.

Partitioned heritability of Cell-specific ATAC peaks and differ-
entially accessible regions for kidney-function-related GWAS
traits
GWAS have shown that a growing list of kidney-related traits have a
genetic component50–53. We downloaded GWAS summary statistics for
eGFR, CKD, microalbuminuria, and urinary sodium excretion to
determine whether cell-specific chromatin accessibility patterns
explain heritability of these traits. First, we partitioned heritability of
cell-specific ATAC peaks with stratified linkage disequilibrium score
regression to prioritize which cell types explain heritability of kidney-
function-related traits after controlling for baseline enrichment54. The
cell types that showed the greatest enrichment for heritability of eGFR
after correction for multiple comparisons were segments of the
proximal tubule (PCT, PST) and the PT_VCAM1 population (Fig. 7A).
This relationship between proximal tubule and heritability of eGFR has
been previously described55. Interestingly, PT_VCAM1 cell-specific
peaks also showed increased heritability for CKD, which raises the
possibility that genetic background may influence the transition from
proximal tubule to PT_VCAM1 (Fig. 7A). Multiple segments of the thick
ascending limb (TAL1, TAL2) and principal cells (PC) showed enrich-
ment for urinary sodium excretion, which is consistent with their
known roles in sodium reabsorption. In contrast, we did not identify
any cell types that showed increased heritability formicroalbuminuria.
This may reflect our reduced sensitivity to detect podocyte-specific
ATAC peaks that may regulate this phenotype. Next, we partitioned
heritability for cell-specific DAR that change in DKD. Similar to the
findings from our cell-specific ATAC peak analysis, the DAR in the
proximal tubule showed increased heritability of eGFR (Fig. 7B). In
addition, DAR in the thick ascending limb (TAL1) showed increased
heritability of urine sodiumexcretion (Fig. 7B). Thesedata suggest that
DKD induces changes in chromatin accessibility in some of the same
regions that predict heritability of cell-specific kidney functions. It also
raises the possibility that genetic background may modulate chro-
matin accessibility patterns to influence changes in eGFR or sodium
excretion in DKD.

Allele-specific chromatin accessibility as a modifier of gene
expression
We created an open-source and containerized workflow for single-cell
allele-specific analysis called “SALSA ([https://github.com/p4rkerw/
SALSA])”. SALSA is a tool for genotyping, phasing, mapping bias cor-
rection, and modeling of single-cell allele-specific counts obtained
from snRNA-seq or snATAC-seq datasets. SALSA was developed from
an earlier pipeline that used direct genotyping of snRNA-seq and

Fig. 5 | Glucocorticoid receptor (GR) binding and FKBP5 in DKD. A Cell-specific
transcription factor expression and motif enrichment. Transcription factors that
were both differentially expressed (Supplementary Dataset 6) and showed motif
enrichment in cell-specific DAR (Supplementary Dataset 13) were visualized. Cell
types that showed differential expression and motif enrichment for GR (NR3C1,
red), MR (NR3C2, blue), and HIF1A (HIF1A, black) motifs are highlighted. PT-
proximal tubule, PT_VCAM1-VCAM1(+) proximal tubule cells, PEC-parietal epithelial
cells, TAL1-CLDN16(-) thick ascending limb, TAL2-CLDN16(+) thick ascending limb,
DCT2-late distal convoluted tubule, PC-principal cells, ICA-type A intercalated cells.
B Cell-specific chromVAR motif activity for GR and REL. chromVAR was used to
compute cell-specific activities for NR3C1 and RELmotifs for control and DKD. Red
arrows indicate significantly decreased motif activity and green arrows indicate
increased activity (see Supplementary Dataset 14). C Transcription factor foot-
printing for GR. Transcription factor footprinting analysis was performed for
NR3C1 (GR) for all cell types and for PCT only to quantitate Tn5 insertion enrich-
ment. D Interaction between PCT DAR and hTERT-RPTEC GR CUT&RUN sites. PCT

DAR in DKD (Supplementary Dataset 3) were intersected with cis-coaccessibility
networks (CCAN) to identify all CCAN links that contain at least onePCTDAR.These
regionswere intersectedwith hTERT-RPTECGRCUT&RUN sites and visualizedwith
the circlize package in R to identify links betweenGRCUT&RUN sites and PCTDAR.
E PCT-specific DAR and ATAC peaks in FKBP5. snATAC-seq coverage plots for DKD
and control PCT are displayed in relation to FKBP5. The orange arrow indicates a
DAR that shows decreased accessibility in DKD (Supplementary Dataset 3). PCT-
specific ATAC peaks (Peaks, dark gray boxes) and DAR (Peaks, orange box) are
shown in relation to hTERT-RPTEC CUT&RUN sites (GR, purple boxes), differen-
tially methylated regions (DMR) associated with end-stage kidney disease due to
diabetes (see Methods), and a cis-coaccessibility network (CCAN, green arcs) sur-
rounding FKBP5. Blue stars indicate sites targeted by CRISPRi. F Cell-specific
expression of FKBP5 by snRNA-seq. Individual cell types were compared between
control andDKD and visualized to display relative change in FKBP5 expression. Red
arrows indicate decreased FKBP5 expression (see Supplementary Dataset 6 for
adjusted p-values).
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snATAC-seq to explore allele-specific expression3. It has been updated
to include reference-based variant phasing, multithreading, general-
ized linear models for ASCA, user-friendly tutorials and a publicly
available Docker container built on the Genome Analysis Toolkit
(GATK) developed by the Broad Institute56. SALSA uses GATK best
practices for germline short-variant discovery to identify SNV and
indels, which are phased using shapeit4 and a population-based
reference from 1000 Genomes57,58. Phased variants present in the
population-based reference are used to perform mapping bias cor-
rection and eliminate technical artifacts with WASP59. Heterozygous
germline SNV that overlap ATAC peaks identify single-cell allele-spe-
cificpeak fragments thatmap to either the referenceor alternate allele.
In this manner, heterozygous SNV in ATAC peaks are used as markers
to assign a peak fragment to one haplotype or the other. This is an
attractive approach because the reference haplotype can serve as a
perfectly matched internal control for each individual. We quantitated
single-cell allele-specific peak fragments in the proximal tubule and
plotted the aggregate ratio of fragments mapping to reference or
alternate alleles among 43,479 peaks containing a heterozygous SNV
(Fig. 7C). The majority of peaks had an equal proportion of fragments
mapping to each allele (N = 35,019, 80%), but a minority of peaks had
allelic bias as evaluated by a binomial test (N = 8460, 20%). A sig-
nificantly smaller proportion of peaks met the adjusted p-value
threshold (N = 542, 1.2%), suggesting that most proximal tubule peaks
donot show allelic bias when aggregated across a population. Next, we
integrated snRNA-seq and snATAC-seq datasets to apply an algorithm
developed by Ma et al. to identify ATAC peaks that are correlated with
expression of nearby genes after correction for distance, GC content,
peak accessibility, and peak width60. This approach helped to identify
one or more gene targets for each peak containing a heterozygous
SNV. We developed a simple mixed effect logistic regression model
where the binary dependent variable was coded as the presence of an
alternate allele in an ATAC peak fragment and the continuous pre-
dictor variable was single cell target gene expression in the integrated
multimodal dataset. Amixed effect per samplewas included to control

for pseudo-replication bias61. Our approach is a modification of a
previously published model in SnapATAC used to identify gene-
enhancer pairs that coded the dependent variable as ‘open’ or ‘closed’
and omitted the mixed effect20. Our base model evaluates whether
increased or decreased expression of a target gene is predictive of the
presence of an alternate allele within an ATAC peak. In the simplest
terms, we can ask if the presence of a SNV in an ATAC peak is asso-
ciated with changes in gene expression.

In the base model, we evaluated 66,828 peak-gene combinations
to estimate the effect of gene expression on the presence of a het-
erozygous SNV in an ATACpeak (Fig. 7D, Supplementary Dataset 20A).
The peak-gene combinations included 42,990 unique ATAC peaks
where the majority had either one (N = 28,989, 67%) or two gene tar-
gets (N = 8767, 20%). Approximately 11% of peak-gene combinations
showed nominal evidence of an allele-specific effect (Fig. 7D, 7512/
66,828,Wald testp < 0.05), whichdecreased to 1% after adjustment for
multiple comparisons (N = 714, 1%). There were 5,908 unique ATAC
peaks with at least one nominally significant peak-gene allelic effect,
predominantly in promoter (N = 2312, 39%) and intronic regions
(N = 2082, 35%). The number of peak-gene combinations that showed
increased expression in association with an alternate allele (N = 3664,
48%) was similar to the number of combinations that showed
increased expression in association with the reference allele (N = 3848,
52%). Among peaks that met the significance threshold, the median
absolute coefficient valuewas0.01 (logodds) for a 1% increase in target
gene expression. For a 10% increase in gene expression, this translates
to the typical ATAC peak being 1.10 times more likely to contain an
alternate allele in the base model. It is important to note that the base
model may overestimate the effect of expression on allele-specific
chromatin accessibility because it does not account for the role of
diabetes. In subsequent models, we added a fixed effect for diabetes
(Model 2) and a fixed effect for diabetes with an interaction term
between target gene expression and diabetes (Model 3). Model 2 had
7557 peak-gene combinations where expression was a nominally sig-
nificant predictor of thepresence of an alternate allele (Supplementary

Fig. 6 | KnockdownofFKBP5 cis-regulatory elementswithCRISPR interference.
A CRISPR interference diagram. dCas9-KRAB domain fusion protein and small
guide RNAs (sgRNA) were used to target the TSS and a potential intronic CRE
in the FKBP5 gene. Targeted regions are depicted as blue stars in the FKBP5
gene model diagram in Fig. 5E. sgRNA primers and region coordinates are
provided in Supplementary Dataset 21. B, C Quantitative PCR of CRISPRi. RT
and real-time PCR analysis of mRNAs for FKBP5 and surrounding genes
(MAPK14, PPARD, SPRK1 and TEAD3) in primary renal proximal tubular

epithelial cells (primary RPTEC) with CRISPR interference targeting the TSS
and predicted cis-regulatory element (CRE) for FKBP5. NT, non-targeting
control. Each group consists of n = 2 biologically independent experiments
each with n = 3 biological replicates (2 sgRNAs with 3 biological replicates).
Bar graphs represent the mean and error bars are the s.d. p-values are calcu-
lated with one-way ANOVA and a post-hoc Dunnett’s test for multiple com-
parisons. Statistical significance was evaluated as an adjusted p-value < 0.05
(Source data are provided as a Source Data file).
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Dataset 20B, Wald test p < 0.05), which included 6980 that were also
identified in the base model. Since we know that diabetes can alter
gene expression, Model 3 included an interaction term between
expression and diabetes. Model 3 had 7353 peak-gene combinations

where expressionwas a nominally significant predictor of the presence
of an alternate allele (Supplementary Dataset 20C, Wald test p <0.05),
which included 4577 that were also identified in the base model.
Approximately 28% of these peak-gene combinations (N = 2097/7353)
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Fig. 7 | Partitioned heritability of GWAS traits and predicted allelic effects with
SALSA. A Cell-specific analysis. Cell-type-specific ATAC peaks (Supplementary
Dataset 2) were partitioned for heritability of GWAS traits using the ldsc cell-type-
specific workflow. Significance was evaluated with a Benjamini-Hochberg-adjusted
one-sided test using padj < 0.05. N = 13 biologically independent samples con-
taining 68,458 cells were examined in a joint analysis (Source data are provided as a
Source Data file). B Cell-specific DAR that change in DKD. Cell-specific DAR in DKD
(Supplementary Dataset 3) were analyzed with ldsc using the cell-type-specific
workflow. Significance was evaluated as described above. C Ratio of snATAC-seq
fragments in the proximal tubule. SALSA was used to identify heterozygous SNV in
the proximal tubule (PCT, PST) and counts mapping to the reference or alternate
allele were aggregated across libraries and evaluated for allele-specific chromatin
accessibility using an exact binomial test (see Supplementary Dataset 20. D Pre-
dicting an allele-specific effect with SALSA. The presence of a fragmentmapping to
an alternate allele in a proximal tubule peak (binary dependent variable) was

modeled as a function of target gene expression (continuous predictor variable)
after controlling for sample-to-sample variability with a mixed effect per library
using glmer in lme4. Effect size is displayed in log-odds where a 1 unit increase
corresponds to a 1% increase in gene expression. N = 11 biologically independent
samples containing 26,929 proximal tubule cells were examined in a joint analysis
(see Supplementary Dataset 20). E Partitioned heritability of proximal tubule peaks
with a predicted effect. Peaks that were associated with changes in target gene
expression were partitioned for heritability of eGFR for each of three generalized
linearmixedmodels in addition to peaks thatmet the binomial threshold for allele-
specific chromatin accessibility. Significance was evaluated with a Benjamini-
Hochberg-adjusted one-sided test using padj < 0.05. N = 11 biologically indepen-
dent samples were examined in a joint analysis (Source data are provided as a
Source Data file). F Overlap between proximal tubule DAR and peaks with a pre-
dicted effect. DAR from PCT and PST were intersected with proximal tubule peaks
with a predicted effect in Model 3.
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had a nominally significant interaction between expression and dia-
betes. In addition, diabetes was a nominally significant predictor of the
presence of an alternate allele in 20% of peak-gene combinations
(N = 1471/7353) after adjusting for gene expression. To examine the
reproducibility of allele-specific effects, we analyzed peak-gene com-
binations in the proximal tubule for individual donors using the base
model, but omitting the mixed effect. Across donors, we identified
24,794 nominally significant peak-gene combinations that were pre-
sent in at least one donor. Approximately half of these peak-gene
combinations (n = 10,495, 42%) were nominally significant in two or
more donors. Two-thirds of the peak-gene combinations that were
identified in multiple donors had an effect size in the same direction
(n = 7121/10,495, 67%), suggesting that the presence of a variant in an
ATAC peak may have similar effects across individuals.

We hypothesized that peaks with a predicted allele-specific
effect would be enriched for heritability of kidney-function-related
traits in the proximal tubule. We partitioned heritability for eGFR
using peaks that met the nominal p-value threshold (Wald test
p < 0.05) for the expression fixed effect in each of three models. All
three models showed increased heritability for eGFR (Fig. 7E). In
contrast, proximal tubule ATAC peaks that showed increased pro-
portion of fragments mapping to the alternate or reference allele
(Fig. 7C) in the aggregated dataset did not have enrichment for
heritability of eGFR (ASCA, Fig. 7D). These peaks do not necessarily
have a predicted allele-specific effect and may represent a random
subset of proximal tubule peaks that exhibit biased chromatin
accessibility due to chance alone. These data suggest that peaks with
a predicted allele-specific effect are more likely to contribute to
heritability of eGFR than a random sampling of proximal tubule
peaks. Approximately 20% of proximal tubule DAR were overlapping
with a peak with a predicted allelic effect (N = 104/597, Fig. 7E,
Hypergeometric p = 1.7 × 10−10), suggesting that genetic background
may also modify chromatin accessibility patterns in DKD. We used
the 4476 significant peak-gene combinations present in all three
models to perform gene ontology enrichment. The most enriched
pathways involved peptide antigen assembly with MHC class II,
antigen processing, and immunoglobulin production. Each of these
pathways involve multiple HLA genes, which are known to exhibit
allele-specific expression due to genetic variation in CRE62. Proximal
tubule expression of MHC class II regulates the response to kidney
injury and renal fibrosis63. Additional enriched pathways with
important function in the proximal tubule included triglyceride
metabolism, amino acid transport, and carbohydrate metabolism.

Discussion
DKD progression is multifactorial and contributing factors include
hyperglycemia, hypertension, hypoxia, and inflammation64. These
factors exert their effect on different cell types throughout the
nephron,whichorganizes a coordinated response to tissue injury.DKD
was associated with an increased proportion of VCAM1 + proximal
tubule cells (PT_VCAM1) and infiltrating leukocytes in both snRNA-seq
and snATAC-seq datasets. The PT_VCAM1 cell state emerges after
proximal tubule injury and is associated with acute kidney injury,
aging, and DKD3,65. It adopts a pro-inflammatory phenotype char-
acterized by enhanced NFκB signaling and failed repair that may
underlie transition from acute kidney injury to CKD66. In our dataset,
there was another closely related proximal tubule cluster that we
termed PT_PROM1. PT_PROM1 is characterized by a PROM1high VCAM1-
chromatin accessibility profile that differentiates it from PT_VCAM1,
which is PROM1low VCAM1+. These data are consistent with recent
reports that there are multiple proximal tubule injury states and raises
the question whether they have variable effects on kidney disease
progression67. These cell states are not specific to DKD because they
are observed in control kidney, however, we hypothesize that DKD
leads to an increase in their abundance.

GR signaling is a key regulator of the immune response and
exerts its effects on multiple cell types in the kidney. GR has potent
anti-inflammatory properties that help mitigate tissue injury, but
long-term exposure to glucocorticoids can lead to insulin resistance
and metabolic syndrome68. Chromatin accessibility pre-determines
cellular response to glucocorticoids and GR preferentially binds
areas of open chromatin35. Our snATAC-seq analysis showed that the
majority of DAR in DKD had reduced chromatin accessibility and
were enriched for GR motifs across multiple cell types. These data
suggest that the diabetic nephron is pre-programmed to respond
differently to corticosteroids. Metabolic memory is an epigenetic
state characterized by persistent expression of DKD-related genes
despite glycemic control21. Decreased chromatin accessibility of GR
binding sites within GR-responsive genes can lead to reduced trans-
activation and expression of target genes, however, DNA-binding-
independent mechanisms may remain intact. GR directly binds pro-
inflammatory transcription factors like NFκB to inhibit their activity
in a process called tethering69. In a simple model, the metabolic
effects of GR signaling can be attributed to transactivation and the
anti-inflammatory effects can be attributed to tethering70,71. We
hypothesize that the diabetic kidney adapts to a pro-inflammatory
environment by remodeling chromatin accessibility to promote anti-
inflammatory effects of GR at the expense of its adverse effects on
metabolism. Targeting GR signaling in the proximal tubule may help
to decrease GR-mediated gluconeogenesis and improve glycemic
control, particularly during fasting. SGLT2i have been shown to
increase gluconeogenesis, which raises the possibility that GR inhi-
bition may be useful as a combination therapy, however, further
studies will be needed to evaluate this hypothesis70,72,73.

We used CUT&RUN to identify GR binding sites in the proximal
tubule and validate predictions from our snATAC-seq analysis. GR
binding sites showed significant overlap with proximal-tubule-specific
ATAC peaks and participated in CCAN with cell-specific DAR in dia-
betes. A subset of GR CUT&RUN sites showed reduced chromatin
accessibility in the proximal tubule, suggesting that it may respond
differently to glucocorticoids. Changes in GR signaling were com-
pounded by increased expression of GR, and reduced expression of
FKBP5 and HSD11B2 in diabetes. FKBP5 is a cytosolic chaperone that
negatively regulates GR signaling as part of a negative feedback loop
and HSD11B2 converts cortisol into inactive cortisone to protect non-
selective activation ofMR74. We found DAR within FKBP5 that coincide
with GR binding sites within a CCAN. CRISPRi targeting of GR binding
sites decreased FKBP5 expression, suggesting that DKD is associated
with reduced activity of GR negative feedback in the proximal tubule.
FKBP5 methylation has been associated with type 2 diabetes and car-
diovascular risk and FKBP5 polymorphisms are associated with insulin
resistance75,76. Publicly available datasets of differentially methylated
regions (DMR) associated with CKD and/or DKD progression over-
lapped with cell-specific DAR and GR CUT&RUN sites from our study.
These data support the hypothesis that FKBP5 hypermethylation leads
to reduced chromatin accessibility in GRE and reduced activity of the
GR negative feedback loop (Fig. 8).

The diabetic proximal tubule had increased gluconeogenesis,
which is downstream of GR signaling. The proximal tubule is the pri-
mary site in the kidney for glucose production and its rate-limiting
enzyme is PCK177. We saw increased expression of PCK1 and other
gluconeogenic enzymes in the diabetic proximal tubule that was
associatedwith reduced expression of INSR. Glucose reabsorption and
glucose production are closely intertwined and tightly regulated by
insulin signaling78. Proximal-tubule-specific INSR knockout and
proximal-tubule-specific IRS1/2 knockout have both been shown to
increase gluconeogenesis, which is normally suppressed by insulin
signaling or glucose reabsorption via SGLT278,79. Glutamine is the
preferred substrate for gluconeogenesis in the proximal tubule, which
leads to ammonia production and acid excretion tomaintain acid-base
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balanceduring prolonged fasting. It is possible that gluconeogenesis is
upregulated in DKD to promote acid excretion andmitigatemetabolic
acidosis80. SGLT2i stimulate gluconeogenesis in the liver and kidney,
however, it remains unclear whether gluconeogenesis affects DKD
progression72,73,78.

Genetic background is increasingly recognized as an important
determinant of kidney function and DKD10,50,53. GWAS are generating
a growing list of variants associated with kidney function, but it
remains difficult to associate these variants with regulation of a
specific gene or pathway. Bioinformatics approaches have led to the
identification of quantitative trait loci associated with expression
(eQTL), chromatin accessibility (caQTL), methylation (meQTL), and
other traits that may regulate kidney function in a cell-specific
manner14. Some of these phenotypes are driven by allele-specific
effects that can be measured as changes in expression (ASE) and
chromatin accessibility (ASCA)3,19,81. Allele-specific analysis can sub-
stantially boost the power of QTL studies because each individual
serves as its own perfectly matched control. Multimodal single-cell
datasets can take advantage of this approach to model allele-specific
effects as a function of gene expression (or any other measurable
quantity). We developed a tool for single cell allele-specific analysis
called SALSA and used it to detect proximal-tubule-specific ATAC
peaks in CRE that modify gene expression via ASCA. These peaks
were enriched for heritability of eGFR and some of them coincide
with DAR in DKD. These findings raise the possibility that genetic
background affects kidney function via ASCA, which could alter the
progression of DKD.

Methods
Human kidney tissue
This research complies with all relevant ethical regulations and has
been approved by the Washington University Institutional Review
Board. For snRNA-seq and snATAC-seq, non-tumor kidney cortex
samples (n = 10) were obtained from patients undergoing partial or
radical nephrectomy for renal mass at Brigham andWomen’s Hospital
(Boston,MA) under an established Institutional ReviewBoard protocol
approved by the Mass General Brigham Human Research Committee.

An additional three kidney cortex samples (1 control and 2 DKD) were
obtained from deceased organ donors in the Novo Nordisk bior-
epository. For bulk kidney GR CUT&RUN and Omni-ATAC, kidney
cortex samples were obtained from deceased organ donors (N = 3)
under an established Institutional Review Board protocol approved by
Washington University in St. Louis. All participants provided written
informed consent in accordance with the Declaration of Helsinki,
including publication of demographic and clinical history as included
in Supplementary Dataset 1. Histologic sections were reviewed by a
renal pathologist and laboratory data was abstracted from themedical
record.

Statistics and reproducibility
Statistical analysis was conducted on all collected samples and data
and carried out in Docker containers to enhance reproducibility. The
details of each analysis is outlined in themethods section. No statistical
methodwas used to predetermine sample size. No data were excluded
from the analyses. The experiments were not randomized. Investiga-
tors were not blinded to allocation during experiments and outcome
assessment.

Nuclear dissociation and library preparation
Samples were chopped into <2mm pieces, homogenized with a
Dounce homogenizer (885302–0002; Kimble Chase) in 2ml of ice-
cold Nuclei EZ Lysis buffer (NUC-101; Sigma-Aldrich) supplemented
with protease inhibitor (5892791001; Roche) with or without RNase
inhibitors (Promega, N2615 and Life Technologies, AM2696, only for
snRNA-seq library preparation), and incubated on ice for 5min. The
homogenate was filtered through a 40-μmcell strainer (43–50040–51;
pluriSelect) and centrifuged at 500 × g for 5min at 4 °C. The pellet was
resuspended, washed with 4ml of buffer, and incubated on ice for
5min. Following centrifugation, the pellet was resuspended in Nuclei
Buffer (10 ×Genomics, PN-2000153) for snATAC-seq, nuclei suspen-
sion buffer (1× PBS, 1% bovine serum albumin [BSA], 0.1% RNase inhi-
bitor) for snRNA-seq, or 1× PBS containing 1% BSA for CUT&RUN. The
suspension was then filtered through a 5-μm cell strainer (43-50005-
03, pluriSelect) and counted.

Fig. 8 | Model of altered glucocorticoid receptor signaling in the diabetic
proximal tubule. GR expression is increased in the diabetic proximal tubule.
Cortisol binds GR and translocates to the nucleus where it localizes to glucocorti-
coid response elements (GRE) in genes like FKBP5. Decreased chromatin accessi-
bility of GRE in the FKBP5 gene body is observed as reduced accessibility of
proximal-tubule-specific ATAC peaks in DKD (red triangles). Reduced accessibility
of FKBP5 GRE leads to reduced transactivation by GR and reduced FKBP5

expression. Reduced FKBP5 expression decreases activity of the GR negative
feedback loop. In the absence of FKBP5 negative feedback, GR can exert both DNA-
binding-dependent and DNA-binding-independent actions that lead to adverse
metabolic effects, anti-inflammatory effects, and increased gluconeogenesis. GR
hallmark pathway genes that are differentially expressed in our study include:
CDKN1A, CREBBP, EGR1, FKBP5, FOS, HSP90AA1, ICAM1, JUN,MAPK10, NCOA2, NFKB1,
NR3C1, NR4A1, PBX1, PCK2, PRKACB, SGK1, SMARCA4, STAT1, STAT5A, STAT5B.
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Single nucleus ATAC sequencing and bioinformatics workflow
Thirteen snATAC-seq libraries were created with 10X Genomics
Chromium Single Cell ATAC v1 chemistry following nuclear dissocia-
tion. These libraries included six control and seven DKD samples. Five
of the control snATAC-seq libraries were prepared for a prior study
(GSE151302). A target of 10,000 nuclei were loaded onto each lane.
Sample index PCR was performed at 12 cycles. Libraries were
sequenced on an Illumina Novaseq instrument, demultiplexed with
bcl2fastq, and countedwith cellranger-atac v2.0 (10XGenomics) using
GRCh38. Libraries were aggregatedwith cellranger-atac without depth
normalization. A mean of 327,328,680 reads were sequenced for each
snATAC library (s.d. = 47,171,305) corresponding to a median of 15,150
fragments per cell (s.d. = 3875). Themean fraction of reads with a valid
barcode was 96.3 ± 2.2%. Aggregated datasets were processed with
Seurat v4.0.3 and its companion package Signac v1.3.0. A Seurat object
was created using the CreateSeuratObject function with min.cells=10
and min.features=200. Low-quality cells were removed from the
aggregated snATAC-seq dataset (peak region fragments > 2500, peak
region fragments < 20,000, nucleosome signal < 4, TSS enrichment >
2) before normalization with term-frequency inverse-document-
frequency (TFIDF) with default parameters. Dimensional reduction
was performed via singular value decomposition (SVD) of the TFIDF
matrix. Batch effect was corrected with Harmony using the RunHar-
mony function in Seurat and the lsi reduction. Dimensional reduction
was performed with the FindNeighbors function using dimensions
2:30 and clustered using the FindClusters function with the Louvain
algorithm. UMAP was performed using the harmony reduction and
dimensions 2:30. Homotypic and heterotypic doublets were identified
by running AMULET (v1.1.0) on individual snATAC-seq libraries and
visualized in the aggregated object prior to removal of doublets with a
qval < 0.0524. A gene activitymatrixwas constructed by countingATAC
peaks within the gene body and 2 kb upstream of the transcriptional
start site using protein-coding genes annotated in the Ensembl data-
base. The gene activity matrix was log-normalized prior to label
transfer with the aggregated snRNA-seq Seurat object using canonical
correlation analysis. The aggregated snATAC-seq object was filtered
using label transfer to remove additional heterotypic doublets not
captured by AMULET. Cell-specific ATAC peaks were called with
MACS2 (v2.2.7.1) using the Signac wrapper with default parameters
and a new Seurat object was created using MACS2 peaks and the
FeatureMatrix function. The new snATAC-seq object was reprocessed
with TFIDF, SVD, and batch effect correction followed by clustering
and annotation based on lineage-specific gene activity as previously
described. After filtering, there was a mean of 6000 ± 1134 nuclei per
snATAC-seq library with a mean of 8098 ± 3231 peaks detected per
nucleus. The final snATAC-seq library contained a total of 437,311
unique peak regions among 68,458 nuclei and represented all major
cell types within the kidney cortex. Representative quality control
plots and visualization of sample integration are in Supplementary
Fig. 12. Differential chromatin accessibility between cell types was
assessedwith the Signac FindMarkers function for peaks detected in at
least 20% of cells using a likelihood ratio test. Bonferroni-adjusted p-
values were used to determine significance at an FDR <0.05. Genomic
regions containing snATAC-seqpeakswereannotatedwithChIPSeeker
(v1.5.1) and clusterProfiler (v4.0.5) using Ensembl and FANTOM data-
bases on hg38. Motif enrichment within DAR was calculated with the
Signac FindMotifs function using cell-specific accessible peaks mat-
ched for GC content with TFBSTools (v1.39.0) and motifmatchr
(1.14.0). chromVAR (1.14.0) motif activities were computed using the
Signac wrapper and JASPAR2020 database (v0.99.10) adjusted for the
number of fragments in peaks for each nucleus. CCANwere computed
with cicero (v1.3.4.11) using the run_cicero function and default para-
meters. Gene-enhancer links were computed with the Signac Link-
Peaks function and imputed RNA following label transfer and
integration of snRNA-seq and snATAC-seq datasets.

Single nucleus RNA sequencing and bioinformatics workflow
Eleven snRNA-seq libraries were obtained using 10X Genomics Chro-
mium single cell chemistry following nuclear dissociation. Eight
snRNA-seq libraries (5 control, 3 DKD) were prepared for prior studies
(GSE131882, GSE151302). A target of 10,000 nuclei were loaded onto
each lane. The cDNA for snRNA libraries was amplified for 17 cycles.
Libraries were sequenced on an Illumina Novaseq instrument, demul-
tiplexed with bcl2fastq, and counted with cellranger v4.0 using a
custom pre-mRNA GTF built on GRCh38 to include intronic reads.
Datasets were aggregated with cellranger v4.0 without depth nor-
malization. A mean of 382,207,065 reads (s.d. = 78,522,614) were
sequenced for each snRNA library corresponding to a mean of 68,429
reads per cell (s.d. = 21,706). The mean sequencing saturation was
77.6 ± 11.9%. The mean fraction of reads with a valid barcode (fraction
of reads in cells) was 75.9 ± 6.6%. Aggregated datasets were pre-
processed with Seurat v4.0.3 to remove low-quality nuclei (Fea-
tures > 500, Features < 5000, RNA count < 16000, %Mitochondrial
genes < 0.5, %Ribosomal protein large or small subunits < 0.3) and
DoubletFinder v2.0.3 to remove heterotypic doublets (assuming 6% of
barcodes represent doublets). The filtered library was normalizedwith
SCTransform using default parameters and corrected for batch effects
with Harmony v0.1.0 using the RunHarmony function in Seurat with
the SCT assay. After filtering, there was amean of 3561 ± 2028 cells per
snRNA-seq library and a mean of 2137 ± 1031 genes detected per
nucleus. Representative quality control plots and visualization of
sample integration are in Supplementary Fig. 13. Clustering was per-
formed by constructing a KNN graphwith the Louvain algorithm using
dimensions 1:24 and a resolution of 0.8. Dimensional reduction was
performed with the RunUMAP function using dimensions 1:24 and
individual clusters were annotated based on the expression of lineage-
specific markers. The final snRNA-seq library contained 39,176 cells
and represented all major cell types within the kidney cortex. Differ-
ential expression between cell types was assessed with the Seurat
FindMarkers function for transcripts detected in at least 20% of cells.
Bonferroni-adjustedp-valueswereused todetermine significanceat an
FDR <0.05.

Single cell analysis of five-prime ends with SCAFE
We used SCAFE (1.0) to analyze single nucleus 5′ paired-end chemistry
libraries obtained from two DKD samples and two previously published
control samples (GSE151302)30. Transcribed cis-regulatory elements
(tCRE)were called in individual libraries using the scafe.worfklow.sc.solo
function with default parameters. There was a mean of 16,912 tCRE per
library (s.d. = 1855). Libraries were pooled with the scafe.workflow.sc.-
pool function to identify a total of 37,698 tCRE. Pooled libraries were
merged into a Seurat object followed by normalization with SCTrans-
form, batch effect correction with Harmony, dimensional reduction,
and clustering. The final object contained 10,984 nuclei and cell types
were annotated using snRNA-seq barcode annotations from the same
samples (see snRNA-seq bioinformatics workflow above). Cell-specific
tCRE and differential tCRE in diabetes were identified with the Find-
Markers function with a log-fold-change threshold of 0.25. Bonferroni-
adjusted p-values were used to determine significance at an FDR<0.05
and significant tCRE were annotated with ChIPseeker.

Cell culture
Human primary proximal tubular cells (human RPTEC, Lonza; CC-
2553) were cultured with renal epithelial cell growth medium kit
(Lonza; CC-3190). Human telomerase reverse transcriptase (hTERT)-
immortalized human RPTEC (ATCC; CRL-4031) were cultured with
ATCC hTERT Immortalized RPTEC Growth Kit (ATCC, ACS-4007).
HEK293T cells (ATCC; CRL-3216) were cultured in Dulbecco’smodified
Eagle’s medium (DMEM, Gibco; 11965092) supplemented with 10%
fetal bovine serum (Gibco; 10437028) and antibiotics. All cultured cells
were maintained in a humidified 5% CO2 atmosphere at 37 °C.
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GR CUT&RUN library preparation and peak calling
CUT&RUN assay libraries for cultured cells or human kidneys were
generated using the CUTANA kit (EpiCypher, 14-1048) with the man-
ufacturer’s instructions. For cultured cells, adherent cells were scraped
from culture dishes and centrifuged at 500 × g for 5min. Pellets were
resuspended in PBS with 1% BSA and counted. Cultured cells or nuclei
obtained from a human kidney (500,000 cells or nuclei) were then
mixed and incubated with Concanavalin A (ConA) conjugated para-
magnetic beads. Antibodies were added to each sample (0.5μg of
rabbit glucocorticoid receptor antibody [abcam, ab225886, 1:20] or
rabbit IgG negative control antibody [Epicypher, 13-0041k, 1:50]). The
remaining steps were performed according to the manufacturer’s
instructions. Library preparation was performed using the NEBNext
Ultra II DNA Library Prep Kit for Illumina (New England BioLabs,
E7645S) with the manufacturer’s instructions, including minor mod-
ifications indicated by CUTANA described above. CUT&RUN libraries
were sequenced on aNovaSeq instrument (Illumina, 150bp paired-end
reads). Fastq files were trimmed with Trim Galore (Cutadapt [v2.8])
and aligned with Bowtie2 [v2.3.5.1] (parameters: --local --very-sensitive-
local --no-unal --no-mixed --no-discordant --phred33 -I 10 -X 700) using
hg38. Peak calling was performed using MACS2 [v2.2.7.1] with default
parameters using samtools (1.9) and DeepTools (3.5.0). Bulk human
kidney GR CUT&RUN had a mean of 24,693,221 reads (SD = 2,921,074
reads) with 62% on-target alignments and an estimated duplication
rate of 0.36. Bulk human kidney IgG CUT&RUN control samples had a
mean of 26,162,676 reads (SD = 1,477,128 reads) with 63% on-target
alignments and an estimated duplication rate of 0.39. hTERT-RPTEC
GR CUT&RUN had a mean of 21,647,282 reads (SD = 4,205,002 reads)
with 75% on-target alignments and an estimated duplication rate of
0.26. hTERT-RPTEC IgG CUT&RUN control samples had a mean of
22,770,072 reads (SD = 140,623) with 66% on-target alignments and an
estimated duplication rate of 0.35.

Bulk ATAC-seq library preparation and peak calling
We suspended 50,000 cells in 50μL of ice-cold lysis buffer with 10mM
Tris-HCl (pH 7.4), 10mM NaCl, 3mM MgCl2, 1% BSA, 0.1% Tween-20
(Sigma, P7949-100ML), 0.1% NP-40 (Thermo Scientific, 28324) and
0.01% Digitonin (Thermo Scientific, BN2006)82. The suspension was
incubated for 4min on ice. Subsequently, 450μL of ice-cold wash
buffer (10mM Tris-HCl [pH 7.4], 10mM NaCl, 3mM MgCl2, 1% BSA,
0.1% Tween-20) was added and centrifuged at 600× g for 6min. The
pellet was resuspended in 25μL of ATAC-seq transpositionmix (12.5μL
2 × Illumina Tagment DNA (TD) buffer; 10.5μL nuclease-free water;
2.0μL Tn5 transposase [Illumina, FC-121-1030]) and incubated at 37 °C
for 1 h on a thermomixer. The transposed DNA was purified with
MinElute PCR purification kit (QUIAGEN, 28004). DNA samples were
then amplified with PCR ([72 °C; 5min] and [98 °C; 30 s] followed by 9
cycles of [98 °C; 10 s, 63 °C; 30 s, 72 °C; 1min] using unique 10-bp dual
indexes and NEBNext High-Fidelity 2 × PCR Master Kit (M0541L). Fol-
lowing the first amplification, DNA size selection was performed using
solid-phase reversible immobilization (SPRI) beads (AMPure XP
[Beckman Coulter, A63881]) at an SPRI to DNA ratio of 0.5. The
supernatant was further mixed with SPRI beads at a SPRI to DNA ratio
of 1.2. The resulting supernatant was discarded, and the magnet-
immobilized SPRIbeadswerewashed twicewith 80%ethanol. DNAwas
subsequently eluted in 20μL of EB elution buffer (QUIAGEN, included
in 28004). The size-selected DNA was amplified with an additional
9-cycle PCR. Subsequently, the amplified DNA was purified with
AmpureXP (SPRI toDNA ratio of 1.7) and elutedwith 25μL of buffer EB
elution buffer. The resultant ATAC-seq libraries were sequenced on a
NovaSeq instrument (Illumina, 150bp paired-end reads). Fastq files
were trimmed with Trim Galore (Cutadapt [v2.8]) and aligned with
Bowtie2 [v2.3.5.1] with --very-sensitive -X 2000 using hg38. PCR
duplicates were removed with Picard’s MarkDuplicates function. Peak
calling was performed on each sample separately using MACS2

[v2.2.7.1] (--nomodel --shift −100 --extsize 200). The consensus list of
accessible peaks was generated using the intersect function in bed-
tools. hTERT-RPTEC libraries were sequenced to a mean depth of
58,250,870 reads (SD = 13,029,194 reads) with 98% on-target align-
ments and an estimated duplication rate of 0.21. Primary RPTEC were
sequenced to a mean depth of 67,220,749 reads (SD = 18,879,089
reads) with 98% on-target alignments and an estimated duplication
rate of 0.24.

CRISPR interference
Small guide RNA (sgRNA) targeting around the FKBP5 TSS and intronic
CRE were designed with CHOPCHOP (https://chopchop.cbu.uib.no/).
These sgRNAs and two non-targeting control sgRNAs were placed
following the U6 promoter in a dCas9-KRAB repression plasmid (pLV
hU6-sgRNA hUbC-dCas9-KRAB-T2a-Puro, Addgene; 71236, a gift from
Charles Gersbach) with golden gate assembly. The sgRNA sequences
used in this study are in Supplementary Dataset 21. First, single-strand
oligonucleotides (Integrated andTechnology [IDT]) for sense and anti-
sense sequences were annealed. Subsequently, cloning with Golden
gate assembly was performed with Esp3I restriction enzyme (NEB,
R0734L) and T4 DNA ligase (NEB, M0202L) on a thermal cycler
repeating 37 °C for 5min and 16 °C for 5min for 60 cycles, followed by
transformation to NEB 5-alpha Competent E. coli (NEB, C2987H) per
manufacturer’s instructions. The cloned lentiviral vectors were pur-
ified with a mini high-speed plasmid kit (IBI Scientific; IB47102).
Insertion of sgRNAwas checkedwith Sanger sequencing. For lentivirus
preparation, we seeded 6.0 × 105 HEK293T cells per well on six-well
tissue culture plates 16 h prior to transfection. Cells were transfected
with 1.5 µg of psPAX2 (Addgene; 12260, a gift from Didier Trono),
0.15 µgof pMD2.G (Addgene; 12259, a gift fromDidier Trono) and 1.5 µg
of dCas9-KRAB repression plasmid per well by Lipofectamine 3000
transfection reagent (Invitrogen; L3000015) per manufacturer’s
instructions. Culture media were changed to DMEM supplemented
with 30% FBS 24 h after transfection. Lentivirus-containing super-
natants were harvested 24 h later and filteredwith 0.45 µmPVDF filters
(CELLTREAT; 229745). The lentivirus-containing supernatants were
immediately used for lentiviral transduction. Human RPTEC were
seeded at 5.0 × 104 cells per well on 6-well tissue culture plates 16 h
prior to transfection. Themedia on humanRPTECwas then changed to
the fresh lentiviral supernatants supplemented with polybrene (5 µg/
ml, Santa Cruz Biotechnology; sc-134220) and cultured for 24 h. Sub-
sequently, RPTEC cells were cultured in renal epithelial cell growth
medium and puromycin (3 µg/ml, invivogen; ant-pr-1) for 72 h.

Quantitative PCR
RNA from human RPTECs was extracted with the TRIZOL and Direct-
zol MicroPrep Plus Kit (Zymo) following the manufacturer’s
instructions. Extracted RNA (1-2 µg) was used for reverse transcrip-
tion to generate cDNA libraries with the High-Capacity cDNA Reverse
Transcription Kit (Life Technologies). Quantitative PCR was per-
formed in the BioRad CFX96 Real-Time System using iTaq Universal
SYBR Green Supermix (Bio-Rad). Expression levels were normalized
to GAPDH, and data were analyzed using the 2-ΔΔCt method. Quan-
titative PCR data are presented as mean±s.d. and compared between
groups with one-way ANOVA and a post-hoc Dunnett’s adjustment
for multiple comparisons. A p-value < 0.05 was considered statisti-
cally significant. Primer sequences are provided in supplementary
materials (Supplementary Dataset 21).

Bulk RNA-seq analysis of previously published human DKD
Raw fastq files were downloaded fromGSE142025 to include 9 control,
6 early DKD, and 22 advanced DKD donors43. Transcript abundance
was quantified with Salmon (1.8.0) using Ensembl (release-99) and
count matrices were imported to DESeq2 (1.32.0) with tximport
(v1.16.1). Differentially expressed genes were identified using the
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DESeq function with default parameters for early DKD vs. Control and
advanced DKD vs. Control (Supplementary Dataset 18). Significance
was determined using a Benjamini-Hochberg adjusted p-value.

Comparison of Cell-specific DAR and GR binding sites to differ-
entially methylated regions in CKD or DKD
Differentially methylated regions (DMR) were downloaded from pub-
licly available databases comparing control kidney samples to CKD or
DKD44–48. DMR were lifted over to hg38 coordinates using the UCSC
LiftOver utility and compiled into an aggregated list (Supplementary
Dataset 19; sheet = ”ALL_DAR”). DMR were flanked by a 1 kb window
and intersected with cell-specific DAR and GR CUT&RUN binding sites
using GenomicRanges in R.

Partitioned heritability of ATAC peaks
Cell-specific ATAC peaks and cell-specific DAR in diabetes were iden-
tified with the Seurat FindMarkers function, sorted by p-value, and
filtered for peakswith an average log-fold-change greater than zero. All
peaks thatmet the adjusted p-value threshold were used to generate a
cell-specific bed file. In the event a cell type did not have at least 2000
peaks that met the adjusted p-value threshold, the top 2000 peaks
with the lowestp-valuewereused to create thebedfile. If a cell typedid
not have 2000 cell-specific peaks, all available peaks were used to
create the bed file. For the allele-specific analysis, bed files were gen-
erated using peaks thatmet the adjusted binomial threshold for allelic
bias of reference vs. alternate allele (N = 5593, padj < 0.05) or the
unadjusted p-value threshold for the base model (N = 7512, pval <
0.05), model 2 (N = 7557, pval < 0.05), and model 3 (N = 7353, pval <
0.05). These thresholds were used to keep the number of peaks in
each annotation roughly equivalent. Bed files were lifted over to hg19
to create annotations for autosomal chromosomes with a 1000 gen-
omes phase 3 reference and the make_annot.py function in ldsc (1.0)
using a 100 kb window54. Linkage disequilibrium scores were com-
puted fromcustomannotationswith the ldsc.py function using default
parameters. GWAS summary statistics for eGFR, CKD, micro-
albuminuria, and urinary sodium excretion were downloaded from
publicly available databases and formatted for ldsc using
munge_sumstats.py51–53. Partitioned heritability for each GWAS trait
was estimated using the 1000G phase 3 reference and ldsc cell-type-
specific workflow with default parameters, including baseline v1.2
annotations after controlling for all kidney ATAC peaks in the dataset.
P-values were adjusted for multiple comparisons using Benjamini-
Hochberg and significance was determined at padj < 0.05.

Allele-specific modeling with SALSA
Coordinate-sorted bam files generated by cellranger (snRNA-seq)
or cellranger-atac (snATAC-seq) were genotyped with SALSA using
GATK (4.2.0.0) best practices for germline short variant
discovery57. For snRNA-seq, reads containing Ns in their cigar
string (e.g. spanning splice junctions in snRNA-seq data) were split
using SplitNCigarReads. For snRNA-seq and snATAC-seq, base
recalibration was performed with BaseRecalibrator using hg38
GATK bundle resources, including dbsnp (v138), 1000 G phase I
indels, 1000 G phase I high-confidence SNV, and Mills and 1000 G
gold standard indels. Recalibration was applied with ApplyBQSR to
create analysis-ready bam files. Variants were identified from
analysis-ready bam files with HaplotypeCaller and genotypes were
called from GVCFs using GenotypeGVCFs with default parameters.
snRNA-seq variants were hard-filtered by Fisher strand bias (FS >
30), quality by depth score (QD < 2), cluster size3, and cluster-
window size (35 bp). snATAC-seq were filtered using CNNScor-
eVariants followed by FilterVariantTranches (--snp-tranche 99.95
indel-tranche 99.4). snRNA-seq libraries had a mean total of 98,255
(s.d. = 64,847) SNVs and indels and snATAC-seq libraries had a
mean total of 2,283,904 (s.d. = 534,165) SNVs and indels.

Genotypes from snRNA-seq and snATAC-seq were combined and
phased with shapeit4.2 using the 1000 Genomes phased reference
for biallelic SNV and indels on GRCh3857. There was a mean of
1,917,939 (s.d. = 363,223) phased SNV and indels for each library,
which were used to perform variant-aware realignment with WASP
(0.3.4) using bwa (0.7.17) or STAR (2.5.1b) and filtered with
bcftools (1.9)59. WASP-aligned bam files were divided into single
cell bam files by extracting proximal-tubule-specific barcodes
using the CB tag. GATK ASEReadCounter was used to generate
single cell allele-specific counts from single cell bam files using
phased heterozygous SNV (mean = 722,091, s.d. = 199,756).

Pseudo-multiomic cells were created by performing label
transfer from the aggregated snRNA-seq to snATAC-seq dataset to
generate an imputed RNA estimate for each snATAC-seq cell. One or
more gene targets for each ATAC peak were identified using the
LinkPeaks function. ATAC peaks with heterozygous SNVwere filtered
for an aggregate total fragment count >20, total reference allele
count >5, and total alternate allele count >5. The ratio of aggregated
reference counts to alternate counts within ATAC peaks containing
heterozygous SNV was compared with a binomial test. A generalized
linear mixed effect model with a logit link function was implemented
with the lme4 package83. In the base model, the dependent variable
was coded as the presence of an alternate allele within an ATAC peak
and the continuous predictor variable was the imputed RNA estimate
normalized to an interval from 0 to 100. A mixed effect per sample
was added to control for pseudo-replication bias. In model 2, an
additional fixed effect for diabetes was added. In model 3, additional
fixed effects for diabetes and an interaction term between diabetes
and imputed RNA expression were added. The significance of each
peak-gene combination was evaluated using a Wald test obtained
from the glmer function. In the supplementary materials, all fixed-
effect coefficient estimates for each peak-gene combination are
included with 95% confidence intervals, Wald p-values, and standard
deviation estimates of random effects (Supplementary Dataset 20).
Peak-gene combinations meeting the nominal p-value threshold for
expression (p < 0.05) were annotated with ChIPseeker and the cor-
responding effect size in log-odds is visualized in relation to the
nearest TSS. These same peaks were also used to create annotations
and calculate linkage disequilibrium scores with ldsc for partitioned
heritability of eGFR as previously described.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All of the data for this manuscript have been made publicly available.
Raw sequencing data for snATAC-seq (N = 1 control, N = 7 DKD) and
snRNA-seq (N = 1 control, N = 2 DKD) is deposited in GEO under
accession number “GSE195460”. Previously published raw sequencing
data for snRNA-seq (N = 5 control, N = 3 DKD) and snATAC-seq (N = 5
control) are available in “GSE151302” and “GSE131882”. Processed
count matrices for all snRNA-seq (N = 11) and snATAC-seq (N = 13)
libraries used in this study are also provided in “GSE195460”.
Sequencing data for CUT&RUN from bulk kidney cortex and primary
RPTEC are deposited under accession number “GSE195443”. Sequen-
cing data for Omni-ATAC from hTERT-RPTEC and primary RPTEC are
alsodepositedunder accessionnumber “GSE195443”. Gene expression
and chromatin accessibility for each cell type can be viewed on our
interactive website; “Kidney Interactive Transcriptomics [http://
humphreyslab.com/SingleCell]” (dataset: Wilson and Muto et al). All
other relevant data supporting the key findings of this study are
available within the article and its Supplementary Information files or
from the corresponding author upon reasonable request. Source data
are provided with this paper.
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Code availability
SALSA is available on GitHub (https://github.com/p4rkerw/SALSA)84.
All of the analysis code used to generate data in this manuscript is
available on GitHub (https://github.com/p4rkerw/Wilson_Muto_
NComm_2022)85.
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