Table 6.
CNN-based classifiers for comparison.
Classifier | Grading | Precision | Recall | F1-Score | Accuracy |
---|---|---|---|---|---|
ResNet50 | I | 0.786 | 0.786 | 0.786 | 0.778 |
II | 0.714 | 0.714 | 0.714 | ||
III | 0.833 | 0.833 | 0.833 | ||
MobileNetV2 | I | 0.727 | 0.571 | 0.640 | 0.690 |
II | 0.608 | 0.738 | 0.667 | ||
III | 0.762 | 0.762 | 0.762 | ||
Xception | I | 0.676 | 0.595 | 0.632 | 0.619 |
II | 0.511 | 0.571 | 0.539 | ||
III | 0.690 | 0.690 | 0.690 | ||
DenseNet121 | I | 0.789 | 0.714 | 0.750 | 0.722 |
II | 0.644 | 0.690 | 0.667 | ||
III | 0.744 | 0.762 | 0.753 | ||
KNN | I | 0.865 | 0.762 | 0.810 | 0.746 |
II | 0.675 | 0.643 | 0.659 | ||
III | 0.714 | 0.833 | 0.769 | ||
RF | I | 0.791 | 0.810 | 0.800 | 0.786 |
II | 0.757 | 0.667 | 0.709 | ||
III | 0.804 | 0.881 | 0.841 | ||
NB | I | 0.703 | 0.619 | 0.658 | 0.643 |
II | 0.583 | 0.500 | 0.583 | ||
III | 0.642 | 0.810 | 0.716 | ||
SVM | I | 0.805 | 0.786 | 0.795 | 0.769 |
II | 0.689 | 0.738 | 0.713 | ||
III | 0.825 | 0.786 | 0.805 | ||
HCCANet | I | 0.902 | 0.881 | 0.892 | 0.873 |
II | 0.850 | 0.810 | 0.829 | ||
III | 0.867 | 0.929 | 0.897 |