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Abstract

Introduction: Computational modeling has rapidly advanced over the last decades, especially to 

predict molecular properties for chemistry, material science and drug design. Recently, machine 

learning techniques have emerged as a powerful and cost-effective strategy to learn from existing 

datasets and perform predictions on unseen molecules. Accordingly, the explosive rise of data-

driven techniques raises an important question: What confidence can be assigned to molecular 

property predictions and what techniques can be used for that purpose?

Areas covered: In this work, we discuss popular strategies for predicting molecular properties 

relevant to drug design, their corresponding uncertainty sources and methods to quantify 

uncertainty and confidence. First, our considerations for assessing confidence begin with dataset 

bias and size, data-driven property prediction and feature design. Next, we discuss property 

simulation via molecular docking, and free-energy simulations of binding affinity in detail. Lastly, 

we investigate how these uncertainties propagate to generative models, as they are usually coupled 

with property predictors.

Expert opinion: Computational techniques are paramount to reduce the prohibitive cost 

and timing of brute-force experimentation when exploring the enormous chemical space. We 

believe that assessing uncertainty in property prediction models is essential whenever closed-loop 

drug design campaigns relying on high-throughput virtual screening are deployed. Accordingly, 

considering sources of uncertainty leads to better-informed experimental validations, more reliable 

predictions and to more realistic expectations of the entire workflow. Overall, this increases 

confidence in the predictions and designs and, ultimately, accelerates drug design.
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I. INTRODUCTION

While data-driven modeling has made large advances in image processing and speech 

recognition, ground-breaking contributions in drug discovery are harder to find. Often, 

only limited amounts of reliable in vitro and in vivo data suitable for supervised learning 

tasks are available. Additionally, uncertainties of experimental data, for instance regarding 

effectiveness and toxicity, are common and significant as the experimental design is 

complex, prone to noise and the outcome is dependent on many parameters, in particular 

compound dosage. Hence, these uncertainties are propagated to property prediction 

workflows when data-driven models are trained on that data.

While it is evident that machine learning (ML) prediction accuracy and data quality are 

intrinsically related, there are more subtle aspects that are sometimes neglected. Dataset 

size, composition, coverage and training-test split have considerable influence on the final 

model performance but are insufficient to assess uncertainty alone without suitable models 

and methodologies for that purpose. For instance, using random or scaffold-based train/test 

splits does not lead to reliable measures of model performance and generalizability. Other 

common problems include high dataset bias, small sample size or low chemical diversity. 

However, some of these issues currently do not have a straightforward remedy as there is 

no commonly accepted way to describe chemical subspaces rendering it difficult to uncover 

all inherent biases. Nevertheless, when the underlying data is not investigated appropriately 

model performance and generalizability tend to be overestimated leading to a significant 

number of false predictions and, ultimately, low confidence in the property prediction 

workflows.

In this article, we discuss methodologies and datasets for chemical properties important in 

drug design. In particular, we focus on the main sources of uncertainties for both simulation-

based and data-driven property prediction. In doing so, we discuss uncertainties inherent in 
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datasets, outputs of data-driven models, input features, and simulation of binding affinities. 

In addition, we discuss the importance of uncertainty in generative models, especially for 

property-based molecule design. Finally, we close with our personal opinion on the most 

important aspects of uncertainty and confidence focusing on important problems and future 

avenues that will lead to higher predictive ability and models that naturally take uncertainty 

into account.

II. DATASET UNCERTAINTY

One of the most common challenges for data-driven molecular property prediction is 

dataset size and composition. For many important properties in drug discovery, especially 

pharmacologic properties of molecules such as absorption, distribution, metabolism, 

excretion and toxicity (ADMET), only a limited amount of high-quality data is available 

and it is usually only available for certain classes of molecules, which inherently introduces 

biases. To provide an overview of the amount and type of data available, Table 1 lists 

popular datasets for molecular property prediction. Accordingly, in this section, we discuss 

dataset characteristics that are important to consider for data-driven property prediction 

tasks along with methods and procedures to minimize their impact on property prediction 

performance.

In the framework of supervised learning, models learn relationships between input and 

output from the training data and, subsequently, predict properties for unlabelled input data, 

and the corresponding prediction ability is termed generalization. When predictors perform 

well on the training set, but performance on the unlabelled data is poor, the model is 

overfitted. This is a very common problem in ML, especially when the training set size is 

small (Figure 1-A). Learning theory states that collecting more data improves generalization 

if the data is independent and identically distributed [20]. However, real data is not a 

uniform sample of chemical space. Typically, molecules in a dataset are collected under 

specific criteria such as the number of atoms, the constituent elements, the similarity to 

known molecules or the availability of synthetic procedures introducing bias (Figure 1-B). In 

addition, there is an inherent bias in both industry and academia to publish only successful 

experiments which can be problematic for assembling training data as negative results are as 

important as positive ones for data-driven modeling.

First, the uncertainty of model predictions for unlabelled molecules is largely dependent on 

the difference of the structure and property distributions to the training data. To quantify 

this difference, in the field of quantitative structure-activity relationships (QSARs) [21], 

the concept of applicability domain (AD) is widely applied. The AD of a QSAR model is 

defined as “the response and chemical structure space in which the model makes predictions 

with a given reliability”[22] and makes the inherent bias of a model comprehensible (Figure 

1-C). There are several methods to estimate ADs [23]. A common approach is to consider 

molecules with descriptors within a certain distance to the mean of the training data to be 

inside the AD. Notably, predictions for molecules inside the AD are considered reliable, 

outside the AD reliability cannot be guaranteed.
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Secondly, a significant bias in the training data can cause models only to learn the inherent 

bias rather than physically meaningful relationships (Figure 1-B). When users are unaware 

of this bias, it inadvertently leads to overly optimistic conclusions concerning model 

performance. Recently [10], it was pointed out that there is significant hidden bias in the 

widely used dataset for structure-based virtual screening, the Directory of Useful Decoys: 

Enhanced (DUD-E)[24]. DUD-E includes two types of molecules: ligands, small molecules 

that bind to a receptor, and decoys, molecules with similar physical properties but dissimilar 

chemical structures compared to the ligands. Using DUD-E as a dataset for training, the 

performance of receptor-ligand and ligand-only ML models were compared to determine 

whether the receptor-ligand models also learned from the actual interactions or whether 

they just learned the inherent ligand bias. Ideally, the performance of these two types of 

models should be different as the binding energies are a function of both ligand and receptor 

structures, and the receptor structure can generally not be inferred from the ligand alone. 

However, the performance was found to be equivalent, the receptor-ligand models did not 

learn from the receptor structure, and it was concluded that ”models may only learn the 

inherent bias in the dataset rather than physically meaningful features” [10]. This calls for 

general methods to test what property predictors actually learn as it would naturally lead to 

more powerful, generalizable models and to more confidence in the models. To minimize 

hidden biases, the importance of dataset diversity for the generalizability of ML models has 

been pointed out before [25].

Finally, small datasets pose a particular challenge as they are inherently biased due to their 

limited size and, additionally, overfitting is to be expected. An important strategy to reduce 

both bias and overfitting in ML models when data is sparse is transfer learning (Figure 

1-D) [23, 26]. When using that approach, models are first pre-trained on large, sometimes 

unlabelled, datasets, and subsequently trained on the property of interest. Importantly, 

transfer learning has been shown to improve the prediction performance for models trained 

on small datasets significantly [27, 28]. For instance, recently [27], a language-based ML 

property prediction model was pre-trained first via self-supervised learning on one million 

unlabeled molecules curated from ChEMBL. This pre-training improved the prediction 

performance after subsequent training on small datasets of molecular activity consistently, 

regardless of the specific property prediction task and the training dataset size. Notably, the 

smallest dataset only contained 642 samples [27].

III. UNCERTAINTY IN THE OUTPUTS

Supervised ML largely relies on an inductive inference approach to derive general rules from 

a finite number of training examples. Therefore, predictive models obtained using inductive 

inference are never formally correct and inherently uncertain. There are often additional 

sources of uncertainty that stem from noise or imprecision on target measurements. For 

instance, molecular properties like binding affinity are often measured with an uncertainty, 

e.g. 1 μM ± 10%. The latter type is referred to as aleatoric uncertainty, while the former 

is referred to as epistemic or systematic uncertainty and can in theory be reduced in light 

of more training observations or increased knowledge about the correct model. Both types 

of uncertainty are important, although they are often not treated separately and the formal 

distinction between the two remains an active area of research [29]. Many ML methods 
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are available for representing uncertainty. They can be categorized with respect to the way 

uncertainty is represented and whether or not they allow for differentiation between the 

two types (aleatoric and epistemic). Here we divide the discussion of methods derived from 

frequentist statistics and ones based on Bayesian inference.

A widely used class of frequentist methods are ensemble strategies which typically use a 

large set of distinct predictors as opposed to a single model. Ensembles of tree-based models 

such as random forests [30] are commonly used to produce frequentist probability estimates 

based on the relative output frequency of the ensemble members [31, 32]. Ensemble 

learning can introduce variance through multiple ensemble models with different parameter 

initializations (ensembling) or through the use of randomly sampled training sets (bagging 

or boosting, Figure 2-a). Ensembles of neural networks can also provide computationally 

efficient, readily parallelizable uncertainty estimates [33, 34]. However, care must be 

taken using these methods as the uncertainties are often biased, poorly calibrated, and are 

only concerned with aleatoric uncertainty. Heteroscedastic aleatoric uncertainty can also 

be modeled using a single neural network trained with frequentist maximum likelihood 

inference that outputs a probability distribution (Figure 2-b) [35]. Conformal prediction (CP) 

has recently received significant attention, in which one ML model is trained to predict a 

property and another to predict the uncertainty (Figure 2 d) [36–39]. CP methods are based 

on a rigorous mathematical framework and allow users to select intuitive confidence levels 

for their predictions, e.g. selecting a confidence level of 0.9 means that at most 10% of 

predictions will be outside the predicted range.

Methods inspired by Bayesian inference seek to update a prior distribution p(θ) on the space 

of all possible models in light of training data, D, yielding a posterior distribution p(θ|D). 

Given a molecular representation for prediction, x*, the predictive posterior distribution 

p(y*|x*, D) is in theory obtained by averaging all possible models weighted by their 

respective posteriors. Bayesian methods have experienced a recent resurgence in drug design 

applications due to increasing computational power and advancement in algorithms for 

approximate inference.

Gaussian processes (GPs) [40] allow for Bayesian inference in a non-parametric way, where 

the prior is determined by a mean and kernel function. The prior may be updated with 

observed data and for regression with Gaussian noise, the predictive posterior distribution 

is Gaussian with mean μ and variance σ2. The predictive variance σ2 represents the 

total uncertainty but can be decomposed into the variance of the error term σϵ2 which 

represents aleatoric uncertainty. Epistemic uncertainty is the difference between σ2 − σϵ2 and 

is determined by the hyperparameters of the kernel function such as the characteristic length 

scale. GPs are commonly used tools for property prediction in the low data regime (i.e. 

below 1000 data points) due to their known robustness to overfitting [40–42]. Hie et al. [43] 

used a GP trained on less than 100 compounds to screen a large library for candidates with 

nanomolar affinity for diverse kinases and whole-cell growth inhibition of Mycobacterium 

tuberculosis [43]. The authors show how uncertainty estimation can enable machine-guided 

discovery. However, the traditional implementation of GPs incurs cubic scaling with training 

set size, rendering them less desirable when training data is abundant.
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Bayesian neural networks (BNNs) place probability distributions on neural network 

parameters w and the analytically intractable posterior distribution p(w|D) is typically 

estimated using variational Bayesian inference [44]. The predictive posterior distribution 

is approximated using Monte Carlo sampling, which intuitively involves averaging the 

predictions of multiple parameter configurations sampled from the posterior (Figure 

2-c). Replacing point-estimated network parameters with distributions allows for the 

quantification of epistemic uncertainty as well as heteroscedastic aleatoric uncertainty. 

Recently, such networks have been combined with state-of-the-art representation learning 

to give uncertain predictions of the physiological properties of small molecules [45].

For classification tasks, confidence calibration seeks to produce probability estimates which 

correctly reproduce the true correctness likelihood. In other words, given N predictions 

each with confidence 0.9 about a label, we would expect 90% of the predictions to give 

the correct label. Scalar valued confidence statistics such as expected calibration error and 

maximum calibration error have also been proposed. Many calibration methods such as 

isotonic regression or temperature scaling are based on a learned post-processing step in 

which a calibrated probability qi is derived from the model’s output probability pi* [46]. 

Confidence calibration schemes can be applied as a scalable post-processing step to any 

predictive learning algorithm, and their ideas can be extended to regression tasks.

Confidence or uncertainty estimation in molecular property prediction is crucial for tasks 

that involve data-driven decision making where valuable resources or human risk is at stake. 

For example, BNNs have been employed to give intuitive probabilistic statements about 

the severity of the risk of drug-induced liver injury [47, 48]. Predicting clinical outcomes 

from pre-clinical data and using uncertainty estimates to quantify and communicate risks 

can preserve time, resources, and patient well-being [49]. Predictive uncertainty is central to 

the field of active learning [50], which has been known in the context of drug discovery for 

almost two decades. Active learning strategies balance exploitation of the knowledge of a 

predictive model to retrieve active candidate compounds with the exploration of regions in 

compound space where the model is highly speculative [45, 51, 52]. Explorative behaviour 

of an active learner is paramount when structural novelty is prioritized. Elucidation of 

error sources in training data remains a critical application for uncertain predictive models. 

Ryu et al. modeled aleatoric and epistemic uncertainty separately using Bayesian graph 

convolutional neural networks for a variety of molecular property prediction tasks including 

classification of bioactivity and toxicity. Analysis of predictive aleatoric uncertainty allowed 

for the identification of poor quality training data for some molecular candidates [53].

In the near future, we believe predictive uncertainty will become an indispensable 

component of molecular property prediction. Researchers will continue to systematically 

benchmark uncertainty quantification methods on various datasets [54]. We anticipate 

software packages that facilitate uncertain predictions will continue to appear [55].

IV. UNCERTAINTY IN THE INPUT FEATURES

Contrary to uncertainty in the properties being predicted, imprecision in the input features 

is a source of uncertainty that is rarely considered. Property prediction in drug design often 
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relies on representations encoding a specific molecule, such as SMILES strings [58], or on 

three-dimensional structural data. However, these static descriptions of molecular systems 

are not representative of their dynamic nature in solution. In this section, we discuss how 

input-related uncertainty might arise when predicting chemical properties from molecular 

structures, and how some of the latest ML models might be used to capture this uncertainty 

in the confidence of the predictions.

One form of input uncertainty is due to the presence of multiple protonation and tautomeric 

states in solution. String and graph representations of molecules are static and unable to 

capture these multiple states and their probabilities in solution. SMILES strings representing 

two different tautomers are likely to return different property predictions when they in fact 

should be the same given the behaviour of these molecules in solution. This represents 

a challenge to many compound property predictions and cheminformatics tools and may 

be seen as a form of input uncertainty, given that the chemical species in solution can 

be modeled only approximately. Similarly, protonation states depend on the chemical 

environment of the molecule, there may not be one dominant state in solution and, finally, 

these may change upon interaction with a binding partner. All these aspects contribute to 

creating uncertainty about the input representation used in ML prediction tasks.

Three-dimensional structural data is often used to predict properties like drug binding 

affinity, selectivity, and mutational effects on protein stability and drug resistance. This data 

is typically derived by X-ray crystallography and, increasingly, cryo-electron microscopy 

(cryo-EM). Despite providing abundant information on protein-ligand interactions, which 

can be used to drive drug design, these structures are only a single snapshot of all 

possible protein-ligand conformations in solution. As such, this three-dimensional data is 

a single datapoint of a much broader input probability distribution. Some structure-based 

modeling approaches, like ensemble docking, try to take this uncertainty into account by 

sampling multiple conformations with molecular dynamics simulations. In such a way, 

ensemble docking tries to capture the distribution/uncertainty of protein-ligand structures. 

By generating an “ensemble” of drug target confirmations, the docking results are less likely 

to be overfitted to a specific protein conformation. However, fast scoring functions for ligand 

binding affinities are typically trained on databases of static structures, such as the PDBbind 

database, and do not capture this type of uncertainty in their predictions. In addition to 

the statistical uncertainty caused by conformational variability, differences between protein 

structures in crystallo and in vivo due to packing effects and cryo temperatures may result in 

systematic biases.

Ideally, one would like uncertainty about multiple possible chemical and conformational 

states in solution to be captured by the ML model and reflected in the confidence of the 

property predictions. Currently, only a handful of specialized ML approaches are able to 

capture uncertainty in the input features. Gaussian process latent variable models, together 

with other similar kernel-based approaches [59, 60], are examples of such models [61, 62]. 

Recent work has also started to investigate the effect of molecular ensembles in property 

predictions [63] with ML models. However, we are unaware of widely adopted supervised 

ML models that can either take into account known input uncertainty, or that can infer it 

directly from data. We believe this to be an underexplored research direction with much 
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potential for practical applications. Such models could become an indispensable component 

of molecular property prediction, being able to capture or infer feature uncertainty in 

structural and chemical data.

V. UNCERTAINTY IN THE BINDING AFFINITIES

A key property of interest in drug discovery is the binding affinity of a ligand to a 

target receptor. Of the many physics-based models that have been developed and refined 

to predict binding affinity, here we focus on two widely-used techniques that utilize the 

three-dimensional structures of ligand and receptor, and a molecular-mechanics energy 

function to compute ligand affinities: molecular docking and free energy perturbation (FEP) 

methods.

Of the two, molecular docking is less computationally expensive and more suitable for high-

throughput virtual screening of potential inhibitors. Docking algorithms such as AutoDock 

Vina [64], Glide [65], Surflex-Dock [66] and GOLD [67] can predict correct bound poses 

(< 2 Å RMSD) with an accuracy of 70–80% [68] and can correctly rank (trios of low-, 

medium- and high-affinity) ligands with an accuracy of almost 60% [68–70]. Predictions of 

absolute binding affinity from docking scores, however, generally show a poor correlation to 

experimental binding affinities [71], with pKa (decadic logarithm of the affinity) prediction 

accuracies of 1.5–2.0 (RMSE) [69, 72].

Large uncertainties in docking estimates can be attributed to conceptual deficiencies in the 

scoring function, for example, a lack of proper accounting of solvation thermodynamics, 

which may require incorporation of explicit water molecules against an ensemble of receptor 

poses to better represent the physical system [73]. Docking scores are also made uncertain 

by implementation choices made for algorithmic efficiency. For example, flexible ligand 

or receptor degrees of freedom are usually restricted to enable efficient conformational 

searching. Recent studies using deep learning neural-network-based scoring functions show 

promise in reducing prediction uncertainties [72, 74]. Regardless of these inaccuracies, 

docking approaches are likely to remain an essential component of virtual screening, as 

they can reduce and enrich the chemical space of potential binders, and provide initial 

bound-pose conformations for seeding molecular dynamics (MD) simulations.

In contrast to docking, FEP methods are much more expensive, requiring all-atom MD 

simulations to perform statistical sampling of ligand-receptor configurations [75–78]. The 

benefit is a best-in-class prediction of ligand binding affinity, achieving accuracies within 

chemical accuracy, i.e. 1.0 kcal/mol [79, 80]. Assigning uncertainties to such predictions, 

however, requires consideration of the many error sources these methods introduce. These 

can be categorized as arising from both sampling and scoring inaccuracies.

A. Uncertainty in FEP Estimates due to Sampling Error

To understand uncertainty from statistical sampling error, consider that using MD simulation 

näıvely to predict ligand affinity would require equilibrium sampling of multiple reversible 

binding transitions which typically exceed the timescales of state-of-the-art MD, even on 

special-purpose high-performance computers [81]. FEP and related methods circumvent this 
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problem by performing simulations in multiple thermodynamic ensembles for a series of 

alchemical intermediates and analyzing the resulting samples with a statistical free energy 

estimator. Absolute binding free energy (ABFE) is computed along alchemical paths that 

decouple all non-bonded interactions in solution of the ligand, including the binding to 

a receptor. Relative binding free energy (RBFE) is computed along with an alchemical 

transformation from one molecular topology to another.

Statistical free energy estimators that utilize multiensemble sampling include exponential 

averaging (EXP) [82], thermodynamic integration (TI) [83], the weighted-histogram method 

(WHAM) [84], the Bennett acceptance ratio (BAR) method [85], the multistate Bennett 

acceptance ratio (MBAR) method [86], and newer dynamical estimators like TRAM [87] 

and DHAM [88]. Uncertainties from statistical sampling can influence the confidence 

of calculated Gibbs free energies in complicated ways. Hence, regardless of which free 

estimator is used, a non-parametric bootstrap is preferred to estimate uncertainty in Gibbs 

free energies [76]. Similarly, uncertainties can be calculated over block-averages of a long 

and equilibrated simulation trajectory, or can alternatively be estimated across multiple 

independent simulations, in some cases initiated with different ligand starting poses. For 

FEP, which involves computing free energy differences between the ligand-bound state and 

the free ligand in solution, overall uncertainties are often obtained by summing individual 

uncertainties for each ensemble in quadrature [71, 76].

Different free energy estimators have unique bias and variance due to finite sampling, 

but they all depend on having sufficient thermodynamic overlap between neighbouring 

ensembles along the thermodynamic path. For this reason, relative free energy estimation 

is often more accurate for pairs of similar molecules, since the alchemical transformation 

involves a smaller number of atoms, and hence inherently has a better overlap. Achieving 

good thermodynamic overlap is the main consideration guiding choices about the number 

and type of alchemical intermediates, which may require position or angular restraints on the 

ligand to focus sampling on particular ligand poses [71].

Most free-energy estimators assume that samples are statistically independent and drawn 

from the equilibrium distribution. Sufficient equilibration can be notoriously slow to achieve 

for some systems, e.g. ligands with “hidden barriers” between conformational states, a 

problem which Hamiltonian replica exchange and other enhanced sampling methods have 

been designed to address [16]. To avoid statistically correlated input, which results in 

artificially low uncertainty estimates, recommended strategies discard initial unequilibrated 

samples, and subsample snapshots at a frequency (2τ + 1), where τ is a computed 

correlation time [89]. An algorithm to automatically detect simulation equilibration in this 

way has been developed [90].

Related to FEP is a class of non-equilibrium work (NEW) free energy methods, based on the 

Crooks fluctuation theorem [91], which drives a system between alchemical endpoints and 

analyzes the distribution of non-equilibrium work values [77]. These methods can achieve 

comparable accuracies to FEP with fewer intermediates [92–94], yielding uncertainties that 

depend on the variance of the work distributions, in turn depending on the timescale of 

the alchemical schedule. Sampling uncertainty can also be introduced by artifacts from 

Nigam et al. Page 9

Expert Opin Drug Discov. Author manuscript; available in PMC 2022 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the implementation of MD. For example, uncertainties on thermodynamic and kinetic 

properties can depend greatly on solvation artifacts that depend on simulation box size 

[95]. Furthermore, surprisingly, variation in computed energies across different simulation 

packages [96], integrators, and thermostats may be non-negligible [97].

B. Uncertainty in FEP Estimates due to Scoring Error

The workhorse of FEP is a molecular mechanics energy function, called a force field, 

which has usually been designed to approximate a quantum mechanical potential energy 

surface, and tuned to reproduce experimental observables. Iterative cycles of force field 

development, parameterization and assessment are thus vital for reducing the uncertainty 

introduced by force field inaccuracy [94, 98, 99]. With new machine learning advances have 

come new ways to improve force fields for the prediction of ligand binding free energies. 

One product of the recently-launched Open Force Field Initiative is a new generation of 

force fields that eschews atom-types in favour of direct chemical perception, utilizing the 

SMIRKS-native Open Force Field (SMIRNOFF) scheme for parameter assignment [100]. 

Parameterization of Open Force Field v1.0.0, code-named Parsley [38], was made possible 

by the ForceBalance algorithm, a Bayesian algorithm for automatic and reproducible 

parameterization [101–103]. Polarizable force fields such as AMOEBA continue to make 

gains in accuracy for predictions of Gibbs free energy of binding [104, 105], and there are 

examples of neural network-based potentials, which aim to reproduce molecular properties 

with DFT accuracy at force field cost [106, 107].

Finally, uncertainty can also result from the assumptions of a selected model. For example, 

most fixed-charge force fields require the pre-selection of particular protonation states 

for both ligand and ionizable side chains of a receptor. Depending on the predicted pKa 

of acidic or basic groups, which may differ significantly between bound and unbound 

states, multiple simulations may be required to explore these possibilities. Overall, there 

are several factors to consider when designing a study to compute binding affinities for 

drug-like molecules. New methodologies and best practices can often be found through 

blind assessment challenges such as SAMPL [108] (Statistical Assessment of Modeling of 

Proteins and Ligands), which are created annually to assess predictions of binding affinities 

among other properties important to drug discovery.

VI. UNCERTAINTY IN GENERATIVE MODELING

Generative models can produce synthetic data samples, some of them by learning from 

reference data. For molecular design, generative models are used to tackle the inverse 

design problem [109], where novel structures with desired properties are generated. 

Molecular property estimators are often used in conjunction with these models [110]. In 

this section, we discuss the importance of property prediction uncertainty in the context 

of generative modeling. In particular, we consider variational autoencoders (VAEs) [111], 

generative adversarial networks (GANs) [112], reinforcement learning (RL) [113], and 

genetic algorithms (GAs) [114].

VAEs possess the ability to take discrete structures such as molecules and convert them into 

high-dimensional latent representations by way of neural networks (referred to as encoders). 
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Simultaneously, a mapping from the latent representation back to the discrete structure is 

trained using a separate neural network (referred to as a decoder). During training, VAEs 

learn to encode and decode correct molecules and simultaneously shape the latent space into 

a gaussian distribution for sampling. For molecular design, Gómez-Bombarelli et al. [115] 

introduced an additional neural network that predicts molecular properties from the latent 

space representation. During the training of this network, gradient optimization steps are 

taken for both the parameters of the encoder network and the property prediction network. 

This shapes the latent space based on the predicted property.

The formulation of VAEs as generative models brings about three sources of uncertainty 

for the associated property prediction model: (1) Decoding points from a latent space does 

not always lead to valid molecules. However, for every point in the latent space one can 

predict molecular properties via the prediction model. Hence, these regions can be viewed 

as uncertain spaces where predictions have to be disregarded due to the lack of a physical 

manifestation. (2) The encoding of structures to the latent space is stochastic. Kingma 

et al. [111] introduced a reparameterization step that ensures differentiability through the 

latent space for training the overall architecture and imposition of a gaussian distribution. 

As a result, identical molecules are typically encoded at a range of points in the latent 

space. While these encoded molecules should have the exact same predicted property, the 

range of positions tends to give rise to different predictions. Hence, there are multiple 

property predictions associated with any given molecule representing the corresponding 

uncertainty. (3) Discrete objects within VAEs, in particular molecular string representations 

and adjacency matrices, are usually decoded from the latent space as a time-series. These 

discrete objects are generated one at a time, by sampling over the distribution of all user-

defined actions, i.e. units such as the allowed characters in a string. Typically, the unit with 

the largest probability is selected. However, multiple units can have identical probabilities. 

Consequently, decoding the same point from the latent space multiple times can result in 

distinct molecules. Additionally, as the same latent space point represents all these different 

molecules simultaneously, they will have the exact same predicted property.

GANs [112, 116, 117] are generative models with joint training of two competing networks, 

a generator and a discriminator. Like VAEs, they rely on a gaussian latent space to draw 

samples from and decode them using a neural network (referred to as generator network). 

The generated samples are compared to references from a dataset by another neural network 

(referred to as discriminator). The generator and discriminator compete with each other, 

the generator tries to produce samples that appear more realistic to the discriminator while 

the discriminator tries to improve its reliability to distinguish generated from reference 

samples. Similar to VAEs, in the traditional formulation of GANs, property predictors can be 

associated with the latent space. The sources of uncertainty are essentially identical to VAEs.

RL is a field where agents learn to navigate environments to maximize rewards. In molecular 

design, RL agents build chemical compounds [118–120], and rewards are provided for 

achieving desired molecular properties. Actions constitute making changes to chemical 

structures, while rewards are calculated on-the-fly based on the resulting structures. In 

contrast, GAs [121–123] are generative models that generate structures without gradient-

based optimization. The algorithm is initiated with a set of molecules, i.e. the initial 
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population, that are ranked by calculating their fitness. For molecular design, the fitness 

is typically assessed based on a set of target properties. The fittest molecules are carried 

over to the next generation, the unfit molecules are replaced with mutations and crossovers 

of the best. For both RL and GAs, to offset the often prohibitive computational cost of 

obtaining accurate property predictions, cheap approximations such as ML models are 

utilized to estimate rewards and fitness, respectively. By using cheap property predictors, in 

high-dimensional spaces, the generation of structures can be skewed to uncertain regions 

of the chemical space. For instance, certain structures can be adversarial examples or 

outliers for property predictors, where the model can be overly confident or uncertain 

about its prediction. Hence, the resulting molecule modifications are uncertain due to the 

uncertainty in the rewards. Notably, Thiede et al. [124] demonstrated that the uncertainty 

from prediction networks can be used directly in the reward function to guide the generation 

of structures outside of the confidence region of the prediction network for curiosity-driven 

molecular design. Interestingly, Shen et al. [125] propose PASITHEA, where a property 

prediction neural network is directly used for generating molecules with deep dreaming. An 

interesting direction would be the incorporation of uncertainty within property predictors for 

structure generation via the deep dreaming algorithm.

Generative models coupled with property predictors are yet to achieve wide adoption due to 

their complex setup, their high computational costs and the need to adapt them to specific 

problems. When used for properties that are inherently complicated and hard to predict, 

the role of uncertainty and prediction confidence will be very important. In addition, in 

models with latent spaces such as VAEs and GANs, the choice of molecular representation 

influences both the validity of the latent space and thereby the prediction confidence. For 

instance, the use of VAEs and GANs was demonstrated in conjunction with the SMILES 

[58] representation, where the probability to produce invalid strings is high. Consequently, 

both VAEs and GANs trained on SMILES can produce invalid molecules. Importantly, this 

problem has recently been solved by the SELFIES representation [126], which guarantees 

molecular validity by design. While SELFIES increases model confidence by generating 

only valid molecules, it does not remove uncertainty from inherent model stochasticities 

such as probabilistic encoding and decoding. Furthermore, confidence in molecular property 

predictors can be increased by extending datasets used for training and validation of property 

predictors systematically. Recently, STONED [127], a simple generative model producing 

molecules at high speed via systematic navigation within SELFIES, has been introduced. 

Accordingly, based on an initial dataset, it can be used to diversify the molecule space 

systematically leading to better property prediction models.

VII. CONCLUSION

In this review, we inspected common sources of uncertainties encountered in data-driven 

drug design workflows, some of which are well-studied in the literature, and some of 

which are typically neglected. Hidden biases in data can lead to overly confident property 

predictions that fail to manifest in the real world. Data-driven prediction models that 

explicitly incorporate uncertainty convey insights into the confidence of the model itself 

and provide a handle to assess the prediction quality. Accounting for uncertainty in the input 

features is underappreciated in ML research but is inherent to complex systems such as 
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the chemistry of the human body. In contrast, error estimation in the prediction of binding 

free energies is one of the central methods in the field to assess the quality of simulation 

workflows that guides the development of efficient sampling techniques. Uncertainties in 

generative models are another underappreciated topic that needs to be addressed to improve 

the success of property-driven molecular design approaches. Overall, it is evident that 

assigning confidence in molecular property predictions is intimately tied to understanding 

the associated sources of error, and we believe that future progress in this field will require 

the development and application of even more methods accounting for uncertainties.

VIII. EXPERT OPINION

Assigning confidence to predictions is directly connected to uncertainty identification and 

quantification. When training ML models for predicting complex molecular properties, users 

need to be aware of potential biases of the training data when assessing generalizability. 

The recent use of DUD-E to train data-driven models serves as a cautionary tale for 

models learning to exploit biases in the data rather than learning the underlying physics 

of intermolecular interactions [24]. Most importantly, the smaller the training dataset size 

the larger the danger of hidden bias and the higher the importance of accounting for them. 

In that regard, transfer learning, especially in extremely sparse data regimes, requires more 

research to establish it as the method of choice for molecular property prediction.

Moreover, not only do small datasets lead to significant biases but they also lead to higher 

epistemic uncertainty because the model does not have enough information to learn the true 

relationship between input features and output labels [29]. However, expanding datasets, 

especially for properties relevant in drug design, can be prohibitively expensive and very 

time-consuming, in particular in the case of experimental data. Furthermore, not every new 

datum added to an existing dataset provides the same amount of additional information. 

Accordingly, developing systematic methods to identify data to be added to the existing 

dataset to maximize the improvement in prediction accuracy and the reduction in epistemic 

uncertainty is the subject of ongoing research.

Additionally, the aleatoric uncertainty [29] that is inherent in the data used to train ML 

models is at least as important as the epistemic one. One prominent example from the 

field of drug discovery discussed in this review is the use of estimated and simulated 

binding affinities to assess the interaction strength between ligands and receptors. Notably, 

binding affinities estimated via molecular docking are only of limited accuracy, but their 

computation efficiency allows assembling large datasets. The main question is whether the 

estimated property, regardless of how efficient it can be computed, conveys any information 

about the real relationship between input features and model output. When noise dominates 

over valuable information, the largest dataset will not provide useful information for ML 

models to be learned. In summary, it is important to build datasets and construct models 

that explicitly and consistently account for both aleatoric and epistemic uncertainties. While 

uncertainty estimates are relatively straightforward to obtain in general, they are only rarely 

benchmarked or evaluated during model training and future work needs to establish robust 

procedures for that purpose.
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Another important and often underappreciated source of uncertainty, especially in complex 

systems, are the input features. This is particularly true for chemistry where molecular 

properties are generally conformer-dependent, and most molecules adopt much more than 

just one conformation under ambient conditions. Data-driven models, in contrast, are largely 

trained on 2D molecular representations that neglect conformations entirely. Accordingly, 

incorporating 3D structures and appropriate features in ML models is an active field of 

research [63]. The main challenge is to offset the added cost of generating representative 3D 

conformations with higher prediction accuracy in the final models. Currently, 2D molecular 

representations are still the state of the art in the field but we believe 3D features will 

become the standard in the near future.

One topic of paramount importance in drug design is simulating binding affinity between 

ligands and receptors. For that purpose, docking is a popular technique that provides 

crude estimates of interaction geometries and strengths using extremely efficient scoring 

approaches. However, this efficiency comes at the price of accuracy and, hence, cannot 

match the quality of FEP simulations, which are several orders of magnitude more 

computationally demanding. Importantly, even among FEP approaches there is an inevitable 

trade-off between cost and accuracy as the extent of sampling conducted directly controls 

the quality of the results. Accordingly, for extremely accurate results [71], FEP methods 

need to capture multiple binding transitions and this can increase the simulation cost by 

orders of magnitude making it less practical. Finally, a large portion of the uncertainties 

from both docking approaches and MD simulations stem from the scoring functions and 

the force fields used, respectively. While systematic optimization procedures for force field 

parameters are being developed and implemented, the development of force fields that not 

only provide energy but also uncertainty estimates has received less attention and we believe 

that future work in that direction is necessary to deliver more accurate models.

Finally, the generative models for molecular design introduced recently rely on efficient 

molecular property predictors to generate molecules with both desirable structure and 

function [110]. However, an explicit account and treatment of uncertainties, unfortunately, 

is largely neglected in the field. While accounting for property prediction uncertainties 

seems relatively straightforward with current methodologies, dealing with uncertainties in 

the molecular structure itself, and modifications thereof remains unexplored territory in 

comparison. Accordingly, we believe that future research in that direction is paramount and 

has the potential to lead to significant advances in computer-driven molecular design in 

general and drug design in particular.
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FIG. 1. 
Common problems with datasets for data-driven molecular property prediction and 

strategies to improve confidence in the models. A) Small training datasets hamper 

generalization. B) Biased training datasets lead to models only learning the inherent bias 

rather than meaningful relationships. C) The applicability domain of a model defines the 

molecules for which the property predictions are expected to be reliable. D) Transfer 

learning via pre-training on large (unlabelled) datasets improves prediction accuracy for 

property prediction based on small training datasets.
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FIG. 2. 
Four common methods for producing uncertainties or confidence intervals in molecular 

property prediction. A) Bagging (bootstrap aggregation) algorithm with random forests 

as the ML model. B) Deterministic neural network trained using frequentist maximum 

likelihood estimation to approximate the distribution on the targets. C) Bayesian neural 

network in a regression setting depicting the test time sampling of different network 

configurations from the posterior distribution on the weights. D) Inductive conformal 

prediction in a regression setting using random forests as the ML model.
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FIG. 3. 
Examples of uncertainty in the structural and chemical inputs used by ML models. (a) 

Conformational variability is encountered both in proteins and small organic molecules. 

On the left-hand side, some of the conformations of carbonic anhydrase II are shown, as 

observed via nuclear magnetic resonance (PDB-ID 6HD2). On the right-hand side are some 

of the possible conformations of Imatinib (computed with Frog [56]). (b) Examples of major 

protonation and tautomeric states present in the solution for an amino acid and a drug. The 

protonated form of histidine has a pKa of approximately 6.0, which means that it is generally 

expected to be found in its neutral form at physiological pH. Yet, because of the local 

environment in protein binding pockets, it is often unclear which of the two is the major 

species, and they may both co-exist in non-negligible proportions. On the right-hand side, 

some of the tautomeric states of warfarin [57] are shown.

Nigam et al. Page 24

Expert Opin Drug Discov. Author manuscript; available in PMC 2022 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 4. 
A generalized sequence of steps to compute binding affinities, and their corresponding facets 

of uncertainty. The top half of the diagram illustrates low-cost methods, where the sources 

of uncertainty can be more easily identified. The bottom half of the pathway refers to the 

methods which sacrifice computational cost for accuracy, and for which the minimization of 

uncertainty largely represents open problems in computing accurate binding affinities.
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FIG. 5. 
Architectures and sources of uncertainty of generative models for molecular design, 

namely: (A) Variational autoencoder, (B) Generative adversarial network, (C) Reinforcement 

learning, and (D) Genetic algorithms. Sources of uncertainty within each architecture are 

highlighted in blue.

Nigam et al. Page 26

Expert Opin Drug Discov. Author manuscript; available in PMC 2022 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Nigam et al. Page 27

TA
B

L
E

 I.

So
m

e 
of

 th
e 

co
m

m
on

 d
at

as
et

s 
us

ed
 f

or
 m

ol
ec

ul
ar

 m
ac

hi
ne

 le
ar

ni
ng

 a
nd

 d
at

a-
dr

iv
en

 p
ro

pe
rt

y 
pr

ed
ic

tio
n.

N
am

e
D

es
cr

ip
ti

on
N

um
be

r 
of

 
m

ol
ec

ul
es

P
os

si
bl

e 
bi

as

Z
IN

C
 [

1]
D

at
ab

as
e 

of
 c

om
m

er
ci

al
ly

 a
va

ila
bl

e 
co

m
po

un
ds

 to
ge

th
er

 w
ith

 v
er

y 
si

m
pl

e 
es

tim
at

ed
 m

ol
ec

ul
ar

 p
ro

pe
rt

ie
s 

fo
r 

vi
rt

ua
l s

cr
ee

ni
ng

.
1.

4 
bi

lli
on

In
he

re
nt

ly
 b

ia
se

d 
by

 c
ur

re
nt

ly
 s

yn
th

es
iz

ab
le

 c
he

m
ic

al
 s

pa
ce

. 
C

on
se

qu
en

tly
, t

he
 m

ol
ec

ul
ar

 s
ha

pe
s 

ha
ve

 b
ee

n 
sh

ow
n 

to
 b

e 
hi

gh
ly

 
bi

as
ed

 a
ga

in
st

 s
ph

er
e-

lik
e 

m
ol

ec
ul

es
.

Q
M

9 
[2

]
E

le
ct

ro
ni

c 
pr

op
er

tie
s 

es
tim

at
ed

 u
si

ng
 d

en
si

ty
 f

un
ct

io
na

l t
he

or
y 

(D
FT

) 
si

m
ul

at
io

ns
.

13
4 

th
ou

sa
nd

B
ia

se
d 

to
w

ar
ds

 s
m

al
l m

ol
ec

ul
es

 o
nl

y 
co

nt
ai

ni
ng

 th
e 

el
em

en
ts

 C
, H

, 
N

, O
 a

nd
 F

.

Pu
bC

he
m

Q
C

 [
3,

 4
]

G
eo

m
et

ri
es

 a
nd

 e
le

ct
ro

ni
c 

pr
op

er
tie

s 
of

 m
ol

ec
ul

es
 w

ith
 s

ho
rt

 s
tr

in
g 

re
pr

es
en

ta
tio

ns
 ta

ke
n 

fr
om

 P
ub

C
he

m
.

22
1 

m
ill

io
n

B
ia

se
d 

to
w

ar
ds

 s
m

al
l m

ol
ec

ul
es

 th
at

 h
av

e 
be

en
 r

ep
or

te
d 

in
 th

e 
lit

er
at

ur
e 

be
fo

re
.

To
x2

1 
[5

]
To

xi
co

lo
gi

c 
pr

op
er

tie
s 

of
 m

ol
ec

ul
es

 w
ith

 r
es

pe
ct

 to
 1

2 
di

ff
er

en
t a

ss
ay

s
13

 th
ou

sa
nd

B
ia

se
d 

to
w

ar
ds

 e
nv

ir
on

m
en

ta
l c

om
po

un
ds

 a
nd

 a
pp

ro
ve

d 
dr

ug
s.

To
xC

as
t [

6]
H

ig
h-

th
ro

ug
hp

ut
 s

cr
ee

ni
ng

 a
nd

 c
om

pu
ta

tio
na

l d
at

a 
fo

r 
th

e 
to

xi
co

lo
gy

 o
f 

m
ol

ec
ul

es
 f

ro
m

 in
du

st
ry

, c
on

su
m

er
 p

ro
du

ct
s 

an
d 

th
e 

fo
od

 in
du

st
ry

 b
as

ed
 o

n 
ce

ll 
as

sa
ys

.
1.

8 
th

ou
sa

nd
B

ia
se

d 
to

w
ar

ds
 m

ol
ec

ul
es

 u
se

d 
in

 in
du

st
ry

, c
on

su
m

er
 p

ro
du

ct
s 

an
d 

th
e 

fo
od

 in
du

st
ry

.

C
lin

To
x 

[7
]

D
ru

gs
 a

nd
 d

ru
g 

ca
nd

id
at

es
 th

at
 m

ad
e 

it 
to

 c
lin

ic
al

 tr
ia

ls
 a

nd
 w

er
e 

ei
th

er
 

ap
pr

ov
ed

 o
r 

fa
ile

d.
1.

5 
th

ou
sa

nd
B

ia
se

d 
to

w
ar

ds
 d

ru
gs

 th
at

 m
ad

e 
it 

to
 c

lin
ic

al
 tr

ia
ls

.

SI
D

E
R

 [
8]

R
ec

or
de

d 
ad

ve
rs

e 
dr

ug
 r

ea
ct

io
ns

 o
f 

m
ar

ke
te

d 
dr

ug
s.

1.
4 

th
ou

sa
nd

B
ia

se
d 

to
w

ar
ds

 m
ar

ke
te

d 
dr

ug
s.

C
hE

M
B

L
 [

9]
B

io
ac

tiv
e 

sm
al

l m
ol

ec
ul

es
 a

nd
 th

ei
r 

ac
tiv

iti
es

 e
xt

ra
ct

ed
 f

ro
m

 th
e 

lit
er

at
ur

e,
 

fr
om

 c
lin

ic
al

 tr
ia

ls
 a

nd
 f

ro
m

 o
th

er
 d

at
ab

as
es

.
2.

0 
m

ill
io

n
B

ia
se

d 
to

w
ar

ds
 c

om
po

un
ds

 f
or

 w
hi

ch
 b

io
ac

tiv
ity

 w
as

 p
ub

lis
he

d 
in

 th
e 

sc
ie

nt
if

ic
 li

te
ra

tu
re

.

D
U

D
-E

 [
10

]
L

ig
an

d 
bi

nd
in

g 
af

fi
ni

tie
s 

ag
ai

ns
t 1

02
 d

is
tin

ct
 ta

rg
et

 p
ro

te
in

s 
w

ith
 b

ot
h 

st
ro

ng
 

an
d 

w
ea

k 
bi

nd
er

s.
23

 th
ou

sa
nd

B
ia

se
d 

to
w

ar
ds

 m
ol

ec
ul

es
 th

at
 h

av
e 

be
en

 s
yn

th
es

iz
ed

 a
nd

 e
va

lu
at

ed
 

fo
r 

bi
nd

in
g 

af
fi

ni
ty

.

A
qS

ol
D

B
 [

11
]

A
qu

eo
us

 s
ol

ub
ili

ty
 d

at
a 

of
 o

rg
an

ic
 m

ol
ec

ul
es

 ta
ke

n 
fr

om
 9

 d
if

fe
re

nt
 d

at
as

et
s.

10
 th

ou
sa

nd
B

ia
se

d 
to

w
ar

ds
 o

rg
an

ic
 m

ol
ec

ul
es

 w
ith

 r
el

at
iv

el
y 

hi
gh

 a
qu

eo
us

 
so

lu
bi

lit
y.

O
lf

ac
tio

n 
Pr

ed
ic

tio
n 

C
ha

lle
ng

e 
[1

1]
O

lf
ac

to
ry

 p
er

ce
pt

io
n 

of
 o

rg
an

ic
 m

ol
ec

ul
es

 a
t d

if
fe

re
nt

 c
on

ce
nt

ra
tio

ns
.

0.
5 

th
ou

sa
nd

B
ia

se
d 

to
w

ar
ds

 s
m

al
l a

nd
 v

ol
at

ile
 o

rg
an

ic
 m

ol
ec

ul
es

. R
es

ul
ts

 b
ia

se
d 

by
 f

am
ili

ar
ity

 o
f 

sm
el

ls
.

Fr
ee

So
lv

 [
12

]
E

xp
er

im
en

ta
l a

nd
 c

om
pu

te
d 

hy
dr

at
io

n 
fr

ee
 e

ne
rg

ie
s 

of
 s

m
al

l a
nd

 n
eu

tr
al

 
m

ol
ec

ul
es

.
0.

6 
th

ou
sa

nd
B

ia
se

d 
to

w
ar

ds
 s

m
al

l a
nd

 n
eu

tr
al

 m
ol

ec
ul

es
 th

at
 h

av
e 

be
en

 s
tu

di
ed

 in
 

th
e 

lit
er

at
ur

e 
bo

th
 c

om
pu

ta
tio

na
lly

 a
nd

 e
xp

er
im

en
ta

lly
 f

or
 h

yd
ra

tio
n 

fr
ee

 e
ne

rg
ie

s.

E
SO

L
 [

13
]

E
xp

er
im

en
ta

l a
qu

eo
us

 s
ol

ub
ili

ty
 c

om
bi

ni
ng

 d
at

as
et

s 
fo

r 
sm

al
l m

ol
ec

ul
es

 
fr

om
 th

e 
lit

er
at

ur
e,

 f
or

 m
ed

iu
m

-s
iz

ed
 m

ol
ec

ul
es

 u
se

d 
as

 p
es

tic
id

es
 a

nd
 la

rg
er

 
pr

op
ri

et
ar

y 
co

m
po

un
ds

 f
ro

m
 th

e 
ph

ar
m

ac
eu

tic
al

 in
du

st
ry

.
2.

9 
th

ou
sa

nd
T

he
 s

ub
-g

ro
up

s 
ea

ch
 h

av
e 

a 
di

ff
er

en
t b

ia
s 

as
 th

ey
 e

ac
h 

ha
ve

 d
if

fe
re

nt
 

ap
pl

ic
at

io
n 

do
m

ai
ns

.

L
ip

op
hi

lic
ity

 [
14

, 1
5]

E
xp

er
im

en
ta

l n
-o

ct
an

ol
/w

at
er

 (
bu

ff
er

ed
 a

t p
H

 7
.4

) 
di

st
ri

bu
tio

n 
co

ef
fi

ci
en

t o
f 

or
ga

ni
c 

m
ol

ec
ul

es
 ta

ke
n 

fr
om

 o
th

er
 d

at
ab

as
es

.
1.

1 
th

ou
sa

nd
B

ia
se

d 
to

w
ar

ds
 m

ol
ec

ul
es

 w
ith

 d
is

tr
ib

ut
io

n 
co

ef
fi

ci
en

ts
 b

et
w

ee
n 

−
10

 
an

d 
10

.

Pu
bC

he
m

 B
io

as
sa

y 
[1

6]
B

io
ac

tiv
ity

 o
ut

co
m

es
 f

ro
m

 h
ig

h-
th

ro
ug

hp
ut

 s
cr

ee
ni

ng
s 

of
 m

ol
ec

ul
es

.
2.

3 
m

ill
io

n
B

ia
se

d 
to

w
ar

ds
 m

ol
ec

ul
es

 o
f 

in
te

re
st

 a
nd

 m
ol

ec
ul

es
 th

at
 a

re
 

sy
nt

he
si

za
bl

e.

PD
B

bi
nd

 [
17

, 1
8]

E
xp

er
im

en
ta

l b
in

di
ng

 a
ff

in
ity

 f
or

 b
io

m
ol

ec
ul

ar
 c

om
pl

ex
es

 d
ep

os
ite

d 
in

 th
e 

pr
ot

ei
n 

da
ta

 b
an

k 
(P

D
B

).
21

.4
 th

ou
sa

nd
B

ia
se

d 
to

w
ar

ds
 c

om
pl

ex
es

 w
ith

 a
va

ila
bl

e 
cr

ys
ta

l s
tr

uc
tu

re
s.

Expert Opin Drug Discov. Author manuscript; available in PMC 2022 September 07.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Nigam et al. Page 28

N
am

e
D

es
cr

ip
ti

on
N

um
be

r 
of

 
m

ol
ec

ul
es

P
os

si
bl

e 
bi

as

B
B

B
P 

[1
9]

T
he

 b
lo

od
-b

ra
in

 p
en

et
ra

tio
n 

pa
rt

iti
on

 c
oe

ff
ic

ie
nt

 f
or

 m
ol

ec
ul

es
 c

ol
le

ct
ed

 
fr

om
 th

e 
lit

er
at

ur
e.

2.
1 

th
ou

sa
nd

B
ia

se
d 

to
w

ar
ds

 m
ol

ec
ul

es
 s

tu
di

ed
 in

 th
e 

lit
er

at
ur

e 
fo

r 
bl

oo
d-

br
ai

n 
pe

ne
tr

at
io

n.

Expert Opin Drug Discov. Author manuscript; available in PMC 2022 September 07.


	Abstract
	Graphical Abstract
	INTRODUCTION
	DATASET UNCERTAINTY
	UNCERTAINTY IN THE OUTPUTS
	UNCERTAINTY IN THE INPUT FEATURES
	UNCERTAINTY IN THE BINDING AFFINITIES
	Uncertainty in FEP Estimates due to Sampling Error
	Uncertainty in FEP Estimates due to Scoring Error

	UNCERTAINTY IN GENERATIVE MODELING
	CONCLUSION
	EXPERT OPINION
	References
	FIG. 1.
	FIG. 2.
	FIG. 3.
	FIG. 4.
	FIG. 5.
	TABLE I.

