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Abstract
Feature Selection (FS) is considered as an important preprocessing step in data mining and is used to remove redundant or 
unrelated features from high-dimensional data. Most optimization algorithms for FS problems are not balanced in search. A 
hybrid algorithm called nonlinear binary grasshopper whale optimization algorithm (NL-BGWOA) is proposed to solve the 
problem in this paper. In the proposed method, a new position updating strategy combining the position changes of whales 
and grasshoppers population is expressed, which optimizes the diversity of searching in the target domain. Ten distinct 
high-dimensional UCI datasets, the multi-modal Parkinson's speech datasets, and the COVID-19 symptom dataset are used 
to validate the proposed method. It has been demonstrated that the proposed NL-BGWOA performs well across most of 
high-dimensional datasets, which shows a high accuracy rate of up to 0.9895. Furthermore, the experimental results on the 
medical datasets also demonstrate the advantages of the proposed method in actual FS problem, including accuracy, size 
of feature subsets, and fitness with best values of 0.913, 5.7, and 0.0873, respectively. The results reveal that the proposed 
NL-BGWOA has comprehensive superiority in solving the FS problem of high-dimensional data.

Keywords Feature selection · Hybrid bionic optimization algorithm · Biomimetic position updating strategy · Nature-
inspired algorithm · High-dimensional UCI datasets · Multi-modal medical datasets

1 Introduction

Nowadays, with the rapid accumulation of massive data 
in different fields, data are being produced at a never seen 
before scale in dimensions [1]. High-dimensional data 
usually contain an increasing amount of information, but 
many unrelated or weakly correlated features also exist, 
which affect the data processing [2]. Therefore, it is urgent 
to develop effective data mining technology to reduce the 
dimension of high-dimensional data in various fields, such 
as medicine, bioinformatics, text mining, and internet of 
drones [3, 4]. FS is an effective data dimensional reduction 
method, which has been widely used and plays an important 
role in machine learning and pattern recognition fields [5]. 
By reducing the dimension of the dataset, it improves the 
calculation speed of the model. As a preprocessing step, 
FS is essentially a combinatorial optimization problem [6]. 

The purpose of FS aims to remove irrelevant and redun-
dant attributes of specific datasets [7]. Different FS methods 
can be selected for data processing due to different learning 
algorithms. When dealing with high-dimensional data, the 
search strategy in the FS method is particularly important 
[8]. Recently, meta-heuristics with various search strategies 
have been largely employed to solve FS problems [9]. With 
the global search ability, the Swarm Intelligence (SI)-based 
heuristic search methods can better alleviate the time com-
plexity and computing costs in FS [10]. The SI optimiza-
tion algorithms are inspired by natural animal communi-
ties’ behavior and simulate the foraging and predation law 
continuously [11].

At present, many popular SI algorithms have been 
employed to solve the FS problems, such as: Genetic Algo-
rithm (GA) [12], Particle Swarm Optimization (PSO) 
[13], and Grey Wolf Optimization algorithm (GWO) [14]. 
Recently, some algorithms including Whale Optimization 
Algorithm (WOA) [15], Butterfly Optimization Algorithm 
(BOA) [16], and Grasshopper Optimization Algorithm 
(GOA) are proposed [17]. These optimization algorithms 
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based on population generate a set of candidate solutions in 
each run. This can lead the better consequences in FS.

Similarly, Abualigah et al. propose a novel nature-inspired 
meta-heuristic optimizer, called Reptile Search Algorithm 
(RSA), which is motivated by the hunting behavior of croco-
diles [18]. The Dwarf Mongoose Optimization algorithm 
(DMO) algorithm is proposed to mimic the foraging behav-
ior of the dwarf mongoose and displays the bionic behavior 
for searching [19]. Using a bionic disease transmission strat-
egy, a meta-heuristic algorithm named Ebola Optimization 
Search Algorithm (EOSA) is proposed, which is based on 
the propagation mechanism of the Ebola virus disease [20]. 
Moreover, the distributed behavior of the major arithmetic 
operators can also establish a meta-heuristic approach to 
optimization problems, which is called Arithmetic Optimi-
zation Algorithm (AOA) [21]. Besides, a population-based 
optimization method is proposed, called Aquila Optimizer 
(AO), which is inspired by the natural behavior of aquila 
during prey capture [22]. Table  1 describes the bionic 
behavior differences of some nature-inspired meta-heuristic 
algorithms.

However, considering that many optimization problems 
are set in a binary space, the above SI optimization algo-
rithms cannot meet this condition. Here, calculating the opti-
mal position is the key to completing FS problems when 
employing SI optimization algorithms. Besides, appropri-
ately balancing exploration and exploitation will lead to the 
improvement of the search algorithm’s performance. There-
fore, how to explore the space of the search and exploit the 
optimal solutions are two contradictory principles to be 
considered [23].

To deal well with this issue, the majority of SI optimiza-
tion algorithms have been further optimized. It is a com-
mon method to improve the location update in a binary way 
and redefine the space of position updating. A binary PSO 
(BPSO) in which a particle moves in a state space restricted 
to zero and one on each dimension is proposed [24]. To solve 

the diverse FS problems, Hussien et al. design two novel 
binary variants of the WOA called BWOA-S and BWOA-V 
[25]. By combining a mutation operator into the GOA, a 
novel version called binary GOA (BGOA) is proposed [26]. 
The BGOA can enhance the exploratory behavior of the 
original GOA. Although binary variant algorithms can solve 
the binary optimization problem in feature subset selection 
of high-dimensional datasets, it still makes errors because of 
careless search facing complex FS problems. New solutions 
are still urgently needed to solve the search problem in FS.

The combination of the advantages of SI optimization 
algorithms can also balance the relationship between explo-
ration and exploitation. Hybrid algorithms have attracted 
more and more attention in the field of optimization algo-
rithms [27]. Table 2 summarizes the relevant studies on 
hybrid optimization algorithms in recent years. Marfarja 
et  al. propose a hybrid WOA and simulated annealing 
(SA) algorithm in a wrapper feature selection method to 
enhance the exploitation of the WOA [28]. Al-Tashi et al. 
improve a binary version of the hybrid PSO and GWO as 
an FS method, which employs suitable operators to solve 
binary problems [29]. To surmount the inconveniences in 

Table 1  Differences in bionic behavior between some nature-inspired meta-heuristic algorithms

Algorithm Inspiration References

Aquila Optimizer (AO) Aquila Bird [22]
Arithmetic Optimization Algorithm (AOA) Arithmetic Operators [21]
Butterfly Optimization Algorithm (BOA) Food Search and Mating Behavior of Butterflies [16]
Dwarf Mongoose Optimization algorithm (DMO) Behavior of The Dwarf Mongoose [19]
Ebola Optimization Search Algorithm (EOSA) Ebola Virus [20]
Genetic Algorithm (GA) Evolutionary Biology [12]
Grasshopper Optimization Algorithm (GOA) Foraging and Swarming Behavior of Grasshoppers [17]
Grey Wolf Optimization (GWO) Hunting Process of Grey Wolves [14]
Particle Swarm Optimization (PSO) Simplified Social Model [13]
Reptile Search Algorithm (RSA) Behavior of Crocodiles [18]
Whale Optimization Algorithm (WOA) Social Behavior of Humpback Whales [15]

Table 2  Some hybrid optimization algorithms

References Hybrid methods Abbreviation

[28] WOA and SA WOASA(T)-1, 2
[29] GWO and PSO BGWOPSO
[30] GWO and GOA GWO–GOA
[31] MA and KHA MAKHA
[32] SOA and TEO SOA-TEO1, 2, 3
[33] MPMD and WOA MPMDIWOA
[34] GWO and CSA GWOCSA
[35] BA and PSO HBBEPSO
[36] CRO and SA BCROSAT
[37] ACO and BCO AC-ABC
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dimensional space and non-informational peculiarities, 
Purushothaman et al. introduce a hybrid between the GWO 
and the GOA for text feature selection and clustering [30]. 
Besides the simple combination in the hybrid algorithms, 
some studies have improved the bionic variation by improv-
ing the coefficients in the function.

Hence, a system for FS based on a hybrid Monkey Algo-
rithm (MA) with Krill Herd Algorithm (KHA) is proposed 
[31]. The fitness function of the proposed algorithm incor-
porates both classification accuracy and feature reduction 
size. Jia H et al. propose three hybrid algorithms to solve FS 
problems based on Seagull Optimization Algorithm (SOA) 
and Thermal Exchange Optimization (TEO) [32]. A hybrid 
feature subset selection algorithm called the Maximum 
Pearson’s Maximum Distance Improved Whale Optimiza-
tion Algorithm (MPMDIWOA) is proposed by designing 
two parameters to adjust the weights of the relevance and 
redundancy [33]. Hybrid bionic optimization algorithms 
perform well in feature subset selection, but there is no con-
crete practice in practical application. Recently, some practi-
cal feature selection problems have begun to focus on using 
hybrid algorithms.

Considering the strengths of GWO and Crow Search 
Algorithm (CSA), a hybrid GWO with CSA, namely 
GWOCSA is proposed, which aims to generate promis-
ing candidate solutions and achieve global optima effi-
ciently [34]. A new hybrid binary version of bat (BA) and 
enhanced PSO is proposed to solve FS problems, called 
Hybrid Binary Bat Enhanced Particle Swarm Optimization 
Algorithm (HBBEPSO) [35]. It combines the bat algorithm 
with its capacity for echolocation into the version of the 
particle swarm optimization. Moreover, Cy et al. introduce a 
hybrid model called BCROSAT for FS in high-dimensional 
biomedical datasets, in which the tournament selection 
mechanism and SA algorithm are combined with Binary 
Coral Reef Optimization (BCRO) [36]. Shunmugapriya and 
Kanmani propose a novel swarm-based hybrid algorithm 
named AC-ABC Hybrid, which combines the characteris-
tics of Ant Colony Optimization (ACO) and Artificial Bee 
Colony (ABC) algorithms to optimize FS [37]. Although 
these hybrid bionic optimization algorithms solve the feature 
subset selection in some problems, they still fall into local 
optimum in high-dimensional datasets.

In brief, the SI optimization algorithm has an excellent 
performance in FS, it is easy to fall into the local optimal 
condition in the process of feature selection and fail to select 
the most representative feature subset. Therefore, how to 
solve the defect and select the least feature subset is a cru-
cial problem [38]. To improve this problem existing in most 
optimization algorithms, this paper proposes a nonlinear 
binary grasshopper whale optimization algorithm, namely 
NL-BGWOA, which combines the whale individual updat-
ing method in WOA with GOA and optimizes the position 

updating strategy. The proposed NL-BGWOA incorporates 
the adaptive weight and nonlinear adjustment coefficients. 
To verify the reliability of the proposed NL-BGWOA, it is 
compared with several other state-of-the-art algorithms in 
FS experiments, such as GOA, WOA, BGOA, and BWOA. 
Moreover, the proposed algorithm is also tested on high-
dimensional UCI datasets, multi-modal Parkinson's speech 
datasets, and COVID-19 symptom dataset, whose experi-
mental results are evaluated.

The rest of the paper is organized as follows. Section 2 
gives an outline of the standard GOA, WOA, and the corre-
sponding binary version of them. Section 3 presents the pro-
posed NL-BGWOA algorithm and its procedures. Section 4 
describes the experimental design, results, and analysis of 
the basic FS problem and the actual problem in medical 
datasets. Finally, Sect. 5 draws some conclusions for this 
paper and presents the further work.

2  Background

2.1  Grasshopper Optimization Algorithm

2.1.1  The Original Algorithm

In nature, grasshoppers often gather in large-scale ways to 
prey. The characteristics of grasshoppers are related to their 
movement. The swarm in the nymph phase is characterized 
by slow movement with small steps by the grasshoppers. In 
contrast, the swarm in the adult phase is characterized by 
abrupt and long-distance movement, which corresponds to 
the exploration and exploitation phase of the nature-inspired 
algorithms.

The grasshopper optimization algorithm gives a math-
ematical model that simulates the movement of grasshopper 
populations:

where dij is the distance between the ith and the jth grasshop-
per: dij =

|||Xi − Xj
||| ; s is the strength of social forces: 

s(r) = fe
−r

l − e−r , where f indicates the intensity of attraction 
and l is the attractive length scale; ubd and lbd are the upper 
and lower bound, respectively; T⃗d is the value of the best 
solution, and c�(� = 1, 2) is a decreasing coefficient to shrink 
the comfort zone, repulsion zone, and attraction zone.

The parameter c� is the core parameter of the GOA algo-
rithm, and the parameter update strategy has an important 
influence on the convergence performance of the algorithm. 
The linearly decreasing parameter c� can realize the process 

(1)Xd
i
= c1
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of the algorithm from exploration to development and the 
ability to reduce the comfort zone between grasshoppers.

where cmax
�

 is the maximum value, cmin
�

 is the minimum 
value, the value of � is 1 or 2, t indicates the current itera-
tion, and tmax is the maximum number of iterations.

The outer c1 is used to reduce the search coverage toward 
the target grasshopper as the iteration count increases, while 
the inner c2 is used to reduce the effect of the attraction and 
repulsion forces between grasshoppers proportionally to the 
number of iterations.

2.1.2  Binary Grasshopper Optimization Algorithm

The grasshopper optimization algorithm has strong local 
development capabilities, so it has good performance in 
solving continuous optimization problems. However, accord-
ing to the nature of the FS problem, the search space can be 
represented by binary values [0,1]. Since binary operators 
are expected to be much simpler than continuous counter-
parts, the GOA algorithm needs to be discretized. Therefore, 
Majdi Mafarja et al. propose a method by modifying the 
population update strategy of the GOA algorithm to obtain 
the Binary Grasshopper Optimization Algorithm (BGOA).

Here, sigmoidal and hyperbolic tan functions are two 
transfer functions, which play key roles in BGOA. This 
paper takes the sigmoidal function as an example:

(2)c� = cmax
�

− t ⋅
cmax
�

− cmin
�

tmax

,
The position of the current grasshopper will be updated 

based on the probability value T(Δx):

where Xd
t+1

 represents the dth dimension of the grasshopper 
in the next iteration and r is a random number in the range 
[0, 1] . A conceptual model of the interactions between grass-
hoppers and the comfort zone is illustrated in Fig. 1a.

2.2  Whale Optimization Algorithm

2.2.1  The Original Algorithm

The WOA is a SI optimization algorithm that imitates hump-
back whale predation, which includes the encircling prey 
phase, the exploitation phase, and the exploration phase. 
During the encircling prey phase, individual whales can 
identify the location of prey and enclose them. The cor-
responding computation is as follows:

where t is the number of iteration. X∗(t) is the optimal whale 
position and X(t) is the current whale position. A ⋅ D1 is the 
corresponding step size.

(3)T(Δx) =
1

1 + e−Δx
.

(4)Xd
t+1

=

{
1 r1 < T

(
ΔXd

t+1

)
0 r1 ≥ T

(
ΔXd

t+1

) ,

(5)X(t + 1) = X∗(t) − A ⋅ D1,

Comfort Zone

Attraction Force

Repulsion Force

(a) Behavior of grasshoppers (b) Behavior of whale

Fig. 1  Behavior of individual grasshoppers and whale
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In the exploitation phase, the WOA designs two ways 
to simulate the bubble-net attacking method of whales. 
The first way is similar to the encircling prey phase when 
A ∈ [−1, 1] is established. The second way is called the spi-
ral updating position, where the whale moves to the current 
optimal individual in a spiral movement. The corresponding 
process for position updating is defined as follows:

where D2 is the distance between the individual whale and 
the current optimal whale. b is the logarithmic spiral shape 
constant, in general, b is set to 1. l is a random number in 
interval [−1, 1].

In conclusion, the whale position can be updated by the 
above two cases:

 where p is a random number in [0, 1] , which represents a 
probability value. When p is less than 0.5, the whales use the 
first case to shrink and surround. Otherwise, the whales use 
the second case to spirally update their position.

During the exploration phase, if there is no optimal prey 
in the shrinking range, the whale will jump out of the range 
and search randomly. When |A| ≥ 1 is true, the mathematical 
model is as follows:

where Xrand is the position of a random whale in the current 
population.

2.2.2  Binary Whale Optimization Algorithm

The WOA has a simple structure and uses a few coefficients, 
so it is often used for various situations. However, the origi-
nal WOA may exist local optimization. Therefore, the binary 
WOA for the feature selection redefined the space of position 
updating.

In binary WOA, the positions of the individual whale in 
solution space are restricted to the binary space [0, 1]:

where rand is the number in the interval [0, 1] . X(t + 1) is the 
updated binary position at t iteration. s(X(t + 1)) is a combi-
nation of the position updating and the sigmodal function, 
which is defined as follows:

(6)X(t + 1) = D2 ⋅ e
bl
⋅ cos (2�l) + X∗(t),

(7)X(t + 1) =

{
X∗(t) − A ⋅ D1 P < 0.5

D2 ⋅ e
bl
⋅ cos (2𝜋l) + X∗(t) P ≥ 0.5

,

(8)X(t + 1) = Xrand(t) − A ⋅ D1,

(9)X(t + 1) =

{
1 if(s(X(t + 1))) ≥ rand

0 otherwise
,

(10)s(X(t + 1)) =
1

1 + e10(X(t+1)−0.5)
.

The general movement of the individual whale as it hunts 
and preys through the bubble-net attacking method is illus-
trated in Fig. 1b.

3  The Proposed Method

According to the fundamental purpose of the FS problem, 
the proposed NL-BGWOA finds the least optimal feature 
subset from the original datasets, improves the accuracy of 
the optimization algorithm, and simplifies the data process-
ing. Besides, the proposed method improves the nonlinear 
decline coefficient and the adaptive weight that changes in 
the iteration process. The specific improvement contents are 
as follows.

3.1  The Related Work

(1) The nonlinear coefficient
The swarm intelligence optimization algorithm is mainly 

divided into two stages: the exploration stage and the explo-
ration stage. These two important stages determine the per-
formance of the algorithm, so how to effectively balance 
them is a key consideration.

However, there is a major problem in most swarm intelli-
gence optimization algorithms: the core coefficient decreases 
linearly at a constant rate, which will slow down the conver-
gence speed and easily make the algorithm fall into a local 
optimum. To tackle the above problem, this paper proposes a 
nonlinear change strategy, which adjusts the linear change of 
the coefficient by combining the change trend of the cosine 
function.

The proposed nonlinear coefficient c is described by the 
following equation:

where cmax
�

 and cmin
�

 is the maximum and minimum, the value 
of � is 1 or 2, respectively, t indicates the current iteration, 
and tmax is the maximum number of iterations.

The proposed nonlinear coefficient speeds up the search 
speed in the exploitation stage, which enables the individual 
to obtain the target quickly. During the exploration phase, 
the speed of the coefficient slows down, so the population 
can carefully search the surrounding space. Therefore, the 
proposed method can effectively avoid falling into the local 
optimum and better balance the global and local search. The 
comparison between the nonlinear and linear coefficients c 
is shown in Fig. 2.

2. The adaptive weight

(11)c� =

[
cos

(
�

2

√
t

tmax

)]
×

[
cmax
�

− t ⋅
cmax
�

− cmin
�

tmax

]
,
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The movement of individuals in the swarm intelligence 
optimization algorithm during position updating is also very 
important. During iterating, it should be considered that the 
position updating method in different iteration cycles and the 
degree of dependence between individuals. In this paper, the 
adaptive weight w(t) is integrated into the updating position, 
which is defined as follows:

(12)w(t) = 1 − cos

(
�

2
⋅

(
1 −

t

tmax

))
,

where t  is the number of current iteration and tmax is the 
number of the maximum iterations.

The position update after the adoption of adaptive weights 
will dynamically adjust the size of the weights according to 
the increase in the number of iterations, so that the cur-
rent optimal position guides individuals differently. As the 
number of iterations increases, the individual with a larger 
weight will speed up the movement, which speeds up the 
convergence speed.

 

(a) The linear coefficient (b) The nonlinear coefficient 

Fig. 2  The comparison between the nonlinear and linear coefficients c

Fig. 3  Comparison of adaptive weight with different t
max
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As shown in Fig. 3, different tmax has a great influence 
on the adaptive weight w(t) . The weight w(t) is large at the 
beginning and gradually become smaller, which is affected 
by the number of the maximum iteration tmax . By compari-
son, it can be seen that when tmax is 100, the condition can 
be met simultaneously. The optimal tmax is highlighted in 
green.

3.2  The Proposed NL‑BGWOA

The purpose of the feature selection is to select relevant fea-
tures and eliminate redundant ones. The BWOA remains 
the better performance in low-dimensional datasets, but 
it cannot select the effective features to handle the high-
dimensional datasets. The BGOA has certain advantages in 
processing high-dimensional data, which can make up for 
the deficiencies of BWOA. Therefore, this paper proposes 
a novel algorithm named NL-BGWOA that combines the 
advantages of BGOA and BWOA.

The proposed method can select the representative sali-
ent features of the adopted datasets and can find more opti-
mal solutions in the search space. Concretely, n features 
are selected from 2n generated features that are potential 
solutions in the search space. The salient features are fur-
ther selected by the NL-BGWOA to produce more repre-
sentative and significant feature subsets. In the proposed 
NL-BGWOA, multiple influences are analyzed for optimal 
locations, with the aim of conducting more detailed searches 
in high-dimensional datasets. The proposed method can 
improve the efficiency of the search. Besides, the optimiza-
tion between the current optimal position and the next one 
during each search can improve the accuracy of FS. Figure 4 
shows the process of the proposed NL-BGWOA.

(1) Mathematical model of the proposed method

In the proposed method, the selection of the significant 
feature subsets focuses on the updating position. Here, the 
new position update strategy is transformed by changing the 
calculation of the distance between individuals in the force 
function. In the position update strategy, the position of the 
individual in a potential search space depends on a variety 
of factors:

Here, Gi is the gravity, Ai is the wind force, and Si is the 
interaction force between two individuals in populations:

where N  is the number of individuals. d′
ij
 is the distance 

between the i th individual to the j th individual: 
d�
ij
= Xd(t + 1) − Xd(t) . 

⇀

d ij is the corresponding unit vector, 

which is set by 
⇀

d ij =
xj−xi

d�
ij

.

Consequently, the individual position is determined by 
the position, distance, force, and the last optimal position 
between the populations. The position update model in the 
NL-BGWOA algorithm is defined as:

In the proposed method, Xd
i
 is the optimal position after 

selection, c1 and c2 are the two nonlinear coefficients used 
to balance the search, ubd and lbd are the upper and lower 
bound, respectively. X(t) or xi is initial position vector of 
the NL-BGWOA. X(t + 1) or xj is the current position of 
the next optimal position in NL-BGWOA. w(t) is the adap-
tive weight in iteration, T⃗d is the value of the best solution. 
In this paper, X(t + 1) and X(t) are expressed by Eqs. 7 and 
8, respectively.

(2) The corresponding flowchart and pseudo-procedure
The proposed method can expand its searching capabil-

ity and locate the near global optimum solution. The archi-
tecture and the corresponding steps of the proposed NL-
BGWOA are explained in Fig. 5. The specific steps of the 
proposed method are as follows:

Step 1: Initialize parameters cmax
�

 , cmin
�

 , A , C , and p.
Step 2: Initialize the positions of the search agents and 

the number of iterations.
Step 3: Sort by the fitness of each individual and calculate 

the adaptive weight w(t).

(13)Xi = Si + Gi + Ai.

(14)Si =

N∑
j=1
j≠1

s
(
d�ij

)
⋅

⇀

d ij

(15)

Xd
i = c1

⎛

⎜

⎜

⎜

⎝

N
∑

j=1
j≠i

c2
ubd − lbd

2
s
(

|

|

|

Xd
j (t + 1) − Xd

i (t)
|

|

|

) xj − xi
dij

⎞

⎟

⎟

⎟

⎠

+ w(t) ⋅ T⃗d .

Fig. 4  The proposed NL-BGWOA



244 L. Fang, X. Liang 

1 3

Step 4: According to the probability number p , update 
the position using the shrinking encircling mechanism or 
the spiral equation.

Step 5: If the iteration gets to the maximum, then output 
the result. Otherwise, go to Step 3.

Step 6: Randomly reinitialize the feature subset.
Step 7: Calculate the fitness of initial features and keep 

the recent best fitness value and position in NL-BGWOA.

Fig. 5  The overall structure of 
the proposed NL-BGWOA

Step 8: Enter the iterative process of NL-BGWOA, 
update the optimal solution, and return the best features.

Step 9: Update the current optimal position and fitness 
value, then return the optimal features.

Step 10: If the iteration gets to the maximum, then output 
the result. Otherwise, go to Step 6.

The corresponding pseudo-code is illustrated as follows:
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Pseudo-procedure of the proposed method

Initialize the parameters of the algorithm maxc , minc , A , C , and p

Initialize the positions of the search agents ( 1,2,..., )iX i n

Calculate the fitness of each search agent

� �

�
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The proposed NL-BGWOA fully integrates the strengths 
of BWOA and BGOA and tackles the FS of high-dimen-
sional data. Besides, the proposed method expresses the 
datasets in the iteration and computes the fewer features. 
Therefore, it can guarantee the goodness of the feature 
subsets and increase the performance of the optimization 
algorithm.

4  Experimental Results and Evaluation

4.1  Data Description and Parameters’ Setting

To verify the performance of the proposed algorithm and 
extensively investigate the application, other state-of-the-art 
algorithms are selected for comparison experiments with 
the proposed algorithm. By analyzing some results in the 
feature selection experiment, such as the accuracy rate and 
the number of feature selections, the advantages between the 
proposed algorithm and other algorithms can be compared. 
The corresponding parameter settings are shown in Table 3. 
Each algorithm is conducted in 20 independent experiments 
with the following parameter settings.

Here, several basic feature selection experiments have 
been performed over ten distinct high-dimensional UCI 
datasets [39]. The details of ten datasets are depicted in 
Table 4.

Table 3  Parameter settings 
of the algorithms used for 
comparison in the current study

Algorithm Parameter Values

PSO(BPSO) Number of particles 10
Maximum number of iterations 100
Inertia weight w in PSO(BPSO) 1
Acceleration constants in PSO(BPSO) [2,2]

WOA(BWOA) Number of whales 10
Maximum number of iterations 100
Classification quality coefficient � in WOA(BGOA) 0.99

GOA(BGOA) Number of grasshoppers 10
Maximum number of iterations 100
Linear decrease coefficient cmax and cmin (1, 1.0E−04)
Classification quality coefficient � in GOA(BGOA) 0.99

NL-BGWOA Number of individuals 10
Maximum number of iterations 100
Classification quality coefficient � in NL-BGWOA 0.99
Linear decrease coefficient cmax and cmin (1, 1.0E−04)

Table 4  Benchmark datasets

No. of datasets Name No. of features No. of samples

D1 Arrhythmia 279 452
D2 BreastEW 32 596
D3 Clean1 165 476
D4 Clean2 165 6598
D5 Dermatology 34 366
D6 Hill-Valley 100 606
D7 LonosphereEW 34 351
D8 SonarEW 60 208
D9 Spambase 57 4601
D10 WaveformEW 40 5000

Table 5  Multi-modal Parkinson's disease speech datasets

No. of datasets No. of features No. of samples

P1 754 756
P2 26 1040

Table 6  COVID-19 symptom dataset

No. of samples Label Symptoms

2575 Boolean (COVID-19 positive or negative) Age, fever, body pain, runny nose, difficult breathing, and the infection probability 
of COVID-19 patients
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Meanwhile, the multi-modal Parkinson's speech datasets 
from the UCI repository and COVID-19 symptom dataset 
are used to verify the specific practical problem of the pro-
posed algorithm, which are described as follows:

Here, the datasets P1 [40] and P2 [41] in Table 5 contain 
a group of linear and time–frequency-based features, meas-
ures of variation in fundamental frequency, amplitude, and 
so on. Especially for P1, besides the above fundamental fea-
tures, the disease speech data set includes speech intensity, 
resonance frequencies, bandwidth-based features, and other 
specific features. The comprehensive multi-modal Parkin-
son's datasets can be referred to in Appendix A.

Table  6 describes the information of the COVID-19 
patient symptom dataset from Kaggle [42]. COVID-19 
patient’s dataset is collected from a nearby hospital, where 
there are a total of 2575 positive and negative symptoms. 
The symptoms include age, fever, body pain, runny nose, 
difficult breath, and the infection probability of COVID-
19 patients, of which the value is either 1 or 0. In difficult 
breathing, there are three types of values, which are no dif-
ficulty breathing problem, severe problem, and moderate 
problem.

4.2  Evaluation Criteria

(a) Accuracy
Accuracy is the criterion for comparing the classification 

accuracy when performing feature selection experiments, 
which is obtained from the 5-KNN classifier on the test data. 
Average accuracy is calculated in the total runs:

where M is the number of runs, Accuracy(i) is classification 
accuracy in the i th experiment.

(b) The size of selected features subsets

(16)Mean =
1

M

M∑
i=1

Accuracy(i),

The size of selected feature subsets is another indicator 
to evaluate algorithms. It is an average value of the selected 
feature subsets when algorithms run M times:

where Size(i) is the number of selected features in the i th 
experiment.

(c) Fitness value
The fitness value of the optimal solution is not only used 

to update the position of individuals, but also to evaluate 
the performance of the algorithms. It is the average of the 
fitness values acquired after running all the iterations of the 
optimization algorithms:

where Fitness(i) is the fitness value in the i th experiment.

4.3  Performance Evaluation

4.3.1  Feature Selection for Benchmark Datasets

In this paper, the 5-KNN classifier is used to measure the 
performance. All datasets are divided into two parts: 80% 
of the instances are devoted to training and 20% of the 
instances are used to test.

Table  7 presents the average classification accuracy 
for feature selection after running 20 times. Note that the 
best results are highlighted in bold. From Table 7, it can 
be clearly seen that the proposed algorithm has advantages 
over other algorithms on the majority of high-dimensional 
datasets, especially D3 and D7.

To describe the experimental results more intuitively, 
several representative datasets are selected in Fig. 6. Here, 
the red lines and the corresponding numbers represent the 

(17)Mean =
1

M

M∑
i=1

Size(i),

(18)Mean =
1

M

M∑
i=1

Fitness(i),

Table 7  Mean classification 
accuracy

Datasets Algorithms

PSO WOA GOA BPSO BWOA BGOA NL-BGWOA

D1 0.5841 0.5911 0.5833 0.5810 0.5977 0.5926 0.5994
D2 0.9588 0.9566 0.9737 0.9558 0.9823 0.9824 0.9823
D3 0.8549 0.9100 0.8931 0.9021 0.9205 0.9180 0.9258
D4 0.9465 0.9713 0.9645 0.9692 0.9723 0.9604 0.9725
D5 0.9863 0.9863 0.9534 0.9863 0.9786 0.9863 0.9895
D6 0.5816 0.5560 0.5818 0.5597 0.6237 0.6045 0.6320
D7 0.9307 0.9420 0.8893 0.9200 0.9371 0.9164 0.9443
D8 0.8667 0.8988 0.8667 0.8654 0.8805 0.9002 0.8857
D9 0.9105 0.8850 0.8934 0.8787 0.9160 0.9167 0.9239
D10 0.7120 0.8056 0.7582 0.7610 0.8120 0.8104 0.8125
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proposed NL-BGWOA. It can see the advantages of the 
proposed NL-BGWOA in classification accuracy compared 
with other algorithms.

Table 8 shows the average size of selected feature sub-
sets on ten different high-dimensional datasets, where the 
best values are in bold. Meanwhile, several representative 
datasets are selected to represent the size of selected feature 
subsets, as shown in Fig. 7. As can be observed in Table 8 
and Fig. 7, the proposed NL-BGWOA performs superior in 
the mean size of feature subsets on almost all the datasets.

Especially on D3 and D9, the size of selected feature 
subsets obtained by the NL-BGWOA is far less than the 
results from other algorithms. This indicates that the pro-
posed method can effectively reduce the number of features, 
select the most relevant optimal feature subsets, and imple-
ment the purpose of FS problems. The numbers in Fig. 7 
specify the size of feature subsets selected by the proposed 
NL-BGWOA.

Table 9 and Fig. 8 summarize the experimental results of 
the fitness for the proposed method. The best fitness values 
are in bold. Note that some representative datasets are also 
selected, as shown in Fig. 8.

It can be observed from Table 9 and Fig. 8 that the major-
ity of the best results highlighted in bold are obtained by 
the proposed NL-BGWOA. For instance, the NL-BGWOA 
provides average fitness values of 0.0336 and 0.0563 on D4 
and D7, respectively. The numbers highlighted in Fig. 8 rep-
resent the values of fitness for the proposed algorithm.

As can be seen in Table 9 and Fig. 8, the NL-BGWOA’s 
superior performance in mean fitness values demonstrates 
the ability to search and select the optimal objectives, which 
has a high potential to solve the promising problems. Over-
all, the average fitness values of NL-BGWOA prove the 
competency to efficiently find the optima in the search space.

4.3.2  Feature Selection Experiment for Medical Datasets

Table 10 and Fig. 9 show the results of three evaluation 
criteria obtained from the proposed method in comparison 
to other algorithms on the multi-modal Parkinson datasets, 
where the bold represents the best method. According to the 
results reported in Table 10 and Fig. 9, there is a significant 
contrast between the proposed NL-BGWOA and other algo-
rithms, especially the number of selected features (Num-FS). 
The values of Num-FS are highlighted in Fig. 9, which are 
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Mean classification accuracy comparison 
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Fig. 6  Mean classification accuracy for several representative datasets

Table 8  Mean size of selected 
feature subsets

Datasets Algorithms

PSO WOA GOA BPSO BWOA BGOA NL-BGWOA

D1 137.6 143.0 128.1 140.0 134.3 173.9 108.3
D2 14.7 13.5 12.8 14.8 10.2 10.9 5.6
D3 104.9 86.8 78.7 82.1 64.9 86.6 35.8
D4 109.4 78 79.7 84.6 68.3 71.5 43.0
D5 19.7 22.1 17.3 18.3 20.5 15.8 11.9
D6 51.3 48.5 47.9 46.0 39.6 55.0 22.3
D7 14.7 13.6 15.4 15.0 5.1 13.1 3.2
D8 37.6 28.6 29.1 27.6 14.5 27.4 7.4
D9 29.9 31.2 27 29.9 24.9 29.5 16.4
D10 35.8 32.5 17.7 22.7 11.0 21.7 9.1

108.3

35.8

11.9

3.2

16.4
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Fig. 7  Mean size of selected feature subsets for several representative 
datasets
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presented in the form of numbers around the corresponding 
algorithm.

Similarly, the proposed NL-BGWOA is tested on the 
COVID-19 symptom dataset, with experimental results 
shown in Table 11 and Fig. 10. The results show that the 
proposed method can improve the accuracy, the number of 
feature subsets, and fitness. The best values are shown in 
bold in Table 11.  Especially the value of fitness and the 
number of feature subsets are improved significantly, which 
the optimal values are 1.0 and 0.4191, respectively. The 
numbers around the algorithms in Fig. 10 show a compari-
son using the number of selected features as an example.

Table 9  Mean fitness values Datasets Algorithms

PSO WOA GOA BPSO BWOA BGOA NL-BGWOA

D1 0.4569 0.4404 0.4207 0.4147 0.4113 0.4141 0.3934
D2 0.0412 0.0434 0.0659 0.0442 0.0205 0.0154 0.0205
D3 0.1508 0.1719 0.2170 0.1783 0.1636 0.2139 0.1215
D4 0.0596 0.0382 0.0800 0.0368 0.0371 0.0747 0.0336
D5 0.0549 0.0234 0.0697 0.0623 0.0215 0.0526 0.0138
D6 0.4468 0.4450 0.4243 0.4405 0.4256 0.4109 0.3614
D7 0.0693 0.0579 0.1449 0.0800 0.1268 0.1736 0.0563
D8 0.1382 0.1112 0.1684 0.1378 0.1207 0.2305 0.1143
D9 0.1305 0.1227 0.1911 0.1970 0.1241 0.1258 0.1061
D10 0.2871 0.1944 0.3063 0.2243 0.1965 0.2249 0.1876

0.3934
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0.0563

0.1061
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Fig. 8  Mean fitness values comparison for several representative 
datasets

Fig. 9  The comparison of dif-
ferent algorithms on the multi-
modal Parkinson datasets 378.6
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Table 10  Evaluation of the 
current study on the multi-
modal Parkinson datasets

Algorithms D1 D2

Accuracy Num-FS Fitness Accuracy Num-FS Fitness

PSO 0.765 378.6 0.2354 0.694 13.6 0.3060
WOA 0.782 183.4 0.2179 0.665 11.5 0.3351
GOA 0.866 365.5 0.2393 0.665 11.1 0.3437
BPSO 0.766 371.1 0.2341 0.688 13.1 0.3118
BWOA 0.905 180.7 0.0955 0.695 10.5 0.3053
BGOA 0.911 485.7 0.0900 0.692 9.2 0.3151
NL-BGWOA 0.913 111.7 0.0873 0.698 5.7 0.3034
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The above experimental results indicate that the proposed 
NL-BGWOA has superior performance to the other algo-
rithms in terms of three evaluation criteria during processing 
the medical datasets. The results mean that the proposed 
NL-BGWOA can tackle the foremost purpose of feature 
selection problems. Besides, it selects the features that can 
represent patients accurately. This application is also used 
the selected related features to determine whether the patient 
has a disease.

4.4  Statistical Test

Moreover, for further analysis of the proposed method, the 
statistical test is used to show the comparison statistically. 
It is a non-parametric test that provides a statistical value 
indicating whether the proposed method is significantly dif-
ferent from other methods.

Table 12 summarizes the results of the Friedman test 
based on classification accuracy, with the optimal values 
in bold. From the above discussion and results, it can be 
observed that the best rank is given to NL-BGWOA corre-
sponding to their mean rank, which is followed by BWOA, 
BGOA, BPSO, WOA, GOA, and PSO. It is concluded that 
the proposed NL-BGWOA has better performance on search 
quality.

5  Conclusion

For the FS problem, BWOA and BGOA may select a large 
number of features and fall into optima. Therefore, they will 
add a certain degree of difficulty to subsequent data process-
ing. In this paper, a novel FS method called NL-BGWOA 
is proposed, which integrates the strengths of BWOA and 
BGOA in the FS problem and tackles the FS of high-dimen-
sional data. The proposed method expresses the datasets in 
the iteration by computing the fewer features, which can 
increase the performance of optimization algorithm and 
guarantee the goodness of the feature subsets. To verify 
the effectiveness of the proposed method, this paper con-
ducts experiments on 10 benchmark datasets, multi-modal 
Parkinson datasets, and COVID-19 symptom datasets. The 
results demonstrated the superiority of the proposed method 
compared to most state-of-the-art algorithms in terms of the 
selected feature subsets. However, the classification accu-
racy and fitness still need to be improved facing datasets 
with fewer features, especially in various actual applications. 
As further work, the proposed method can be applied to 
more practices to solve the problems in the real life such as 
disease diagnosis, prediction, and engineering optimization 
problems.

Appendix A

Description of multi-modal Parkinson's disease speech 
datasets.

No. of datasets Features Description

P1 Baseline features Jitter variants
Shimmer variants
Fundamental fre-

quency parameters
Harmonicity param-

eters
Recurrence period 

density entropy 
(RPDE)

Detrended fluctuation 
analysis (DFA)

Pitch period entropy 
(PPE)

Table 11  Evaluation of the COVID-19 symptom dataset

Algorithms Accuracy Num-FS Fitness

PSO 0.5184 2.0 0.4805
WOA 0.5073 3.0 0.4629
GOA 0.5188 2.0 0.4431
BPSO 0.5167 3.0 0.4386
BWOA 0.5204 3.0 0.4837
BGOA 0.5201 2.0 0.4353
NL-BGWOA 0.5217 1.0 0.4191

Table 12  Results of Friedman test

Algorithms Mean Ranking

PSO 2.0000 7
WOA 2.8077 5
GOA 2.0385 6
BPSO 3.2091 4
BWOA 4.3462 2
BGOA 4.0769 3
NL-BGWOA 5.7308 1

2

3

2

33

2

1

PSO

WOA

GOA

BPSOBWOA

BGOA

NL-BGWOA
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Fig. 10  The comparison of different algorithms on the COVID-19 
symptom datasets
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No. of datasets Features Description

Time frequency 
features

Intensity parameters
Formant frequencies
Bandwidth

Mel frequency ceps-
tral coefficients

MFCCs

Wavelet transform 
based features

Wavelet transform 
(WT)

features related with 
F0

Vocal fold features Glottis quotient (GQ)
Glottal to noise excita-

tion (GNE)
Vocal fold excitation 

ratio (VFER)
Empirical mode 

decomposition 
(EMD)

P2 Frequency features Jitter (local)
Jitter (local, absolute)
Jitter (rap)
Jitter (ppq5)
Jitter (ddp)

Amplitude features Shimmer (local)
Shimmer (local, dB)
Shimmer (apq3)
Shimmer (apq5)
Shimmer (apq11)
Shimmer (dda)

Harmonicity features Autocorrelation
Noise-to-harmonic
Harmonic-to-noise

Pitch features Median pitch
Mean pitch
Standard deviation
Minimum pitch
Maximum pitch

Pulse features Number of pulses
Number of periods
Mean period
Standard deviation of 

period
Voicing features Fraction of locally 

unvoiced frames
Number of voice 

breaks
Degree of voice breaks
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